Back to Multiple platform build/check report for BioC 3.16
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2022-08-16 11:05:55 -0400 (Tue, 16 Aug 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.4 LTS)x86_644.2.1 (2022-06-23) -- "Funny-Looking Kid" 4378
palomino4Windows Server 2022 Datacenterx644.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" 4161
lconwaymacOS 12.2.1 Montereyx86_644.2.1 Patched (2022-07-09 r82577) -- "Funny-Looking Kid" 4169
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on nebbiolo2


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1854/2140HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.7.1  (landing page)
Yichen Wang
Snapshot Date: 2022-08-15 14:00:06 -0400 (Mon, 15 Aug 2022)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: master
git_last_commit: 99e76b9c
git_last_commit_date: 2022-06-30 14:32:34 -0400 (Thu, 30 Jun 2022)
nebbiolo2Linux (Ubuntu 20.04.4 LTS) / x86_64  OK    OK    ERROR  
palomino4Windows Server 2022 Datacenter / x64  OK    OK    ERROR    OK  
lconwaymacOS 12.2.1 Monterey / x86_64  OK    OK    ERROR    OK  

Summary

Package: singleCellTK
Version: 2.7.1
Command: /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/library --no-vignettes --timings singleCellTK_2.7.1.tar.gz
StartedAt: 2022-08-15 21:56:37 -0400 (Mon, 15 Aug 2022)
EndedAt: 2022-08-15 22:09:46 -0400 (Mon, 15 Aug 2022)
EllapsedTime: 788.6 seconds
RetCode: 1
Status:   ERROR  
CheckDir: singleCellTK.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/library --no-vignettes --timings singleCellTK_2.7.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck’
* using R version 4.2.1 (2022-06-23)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.7.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.6Mb
  sub-directories of 1Mb or more:
    extdata   1.6Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   27.017  0.556  27.302
plotDoubletFinderResults 26.549  0.527  27.068
runDoubletFinder         20.797  0.107  20.905
runScDblFinder           17.649  0.144  17.528
importExampleData        15.698  1.851  18.221
plotBatchCorrCompare     12.407  0.470  12.859
plotScdsHybridResults    10.096  0.176   9.374
plotBcdsResults           9.012  0.221   8.268
plotDecontXResults        7.754  0.340   8.093
plotUMAP                  7.587  0.092   7.671
runDecontX                7.432  0.084   7.516
plotEmptyDropsResults     6.776  0.068   6.845
plotEmptyDropsScatter     6.675  0.048   6.724
plotCxdsResults           6.533  0.113   6.635
detectCellOutlier         6.167  0.351   6.518
runEmptyDrops             6.437  0.004   6.441
getUMAP                   4.730  0.508   5.230
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 ERROR
Running the tests in ‘tests/testthat.R’ failed.
Last 13 lines of output:
  0%   10   20   30   40   50   60   70   80   90   100%
  [----|----|----|----|----|----|----|----|----|----|
  **************************************************|
  [ FAIL 1 | WARN 18 | SKIP 0 | PASS 225 ]
  
  ══ Failed tests ════════════════════════════════════════════════════════════════
  ── Failure (test-cellTypeLabeling.R:14:3): Testing SingleR ─────────────────────
  "SingleR_hpca_main_first.labels" %in% names(colData(sce)) is not TRUE
  
  `actual`:   FALSE
  `expected`: TRUE 
  
  [ FAIL 1 | WARN 18 | SKIP 0 | PASS 225 ]
  Error: Test failures
  Execution halted
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 ERROR, 1 NOTE
See
  ‘/home/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.16-bioc/R/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.146   0.034   0.165 

singleCellTK.Rcheck/tests/testthat.Rout.fail


R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    aperm, apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 1 | WARN 18 | SKIP 0 | PASS 225 ]

══ Failed tests ════════════════════════════════════════════════════════════════
── Failure (test-cellTypeLabeling.R:14:3): Testing SingleR ─────────────────────
"SingleR_hpca_main_first.labels" %in% names(colData(sce)) is not TRUE

`actual`:   FALSE
`expected`: TRUE 

[ FAIL 1 | WARN 18 | SKIP 0 | PASS 225 ]
Error: Test failures
Execution halted

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0010.003
SEG0.0020.0000.002
calcEffectSizes0.1800.0120.192
combineSCE1.6320.0791.712
computeZScore0.3780.0730.450
convertSCEToSeurat3.6650.9074.572
convertSeuratToSCE0.5660.0240.590
dedupRowNames0.0570.0000.056
detectCellOutlier6.1670.3516.518
diffAbundanceFET0.0890.0040.092
discreteColorPalette0.0070.0000.006
distinctColors0.0020.0000.002
downSampleCells0.6500.0440.694
downSampleDepth0.4900.0120.502
expData-ANY-character-method0.3240.0000.324
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3490.0080.357
expData-set0.3270.0240.351
expData0.3300.0080.338
expDataNames-ANY-method0.3160.0080.323
expDataNames0.3090.0040.312
expDeleteDataTag0.0410.0000.041
expSetDataTag0.0260.0000.026
expTaggedData0.0270.0000.028
exportSCE0.0230.0000.023
exportSCEtoAnnData0.0900.0080.099
exportSCEtoFlatFile0.0870.0080.095
featureIndex0.0370.0000.037
findMarkerDiffExp3.8490.1083.956
findMarkerTopTable3.3600.0763.437
generateSimulatedData0.0430.0000.043
getBiomarker0.0510.0000.051
getDEGTopTable0.5590.0000.559
getDiffAbundanceResults0.0330.0040.036
getEnrichRResult0.3030.0122.783
getMSigDBTable0.0030.0000.003
getPathwayResultNames0.0230.0000.024
getSampleSummaryStatsTable0.3160.0000.316
getSoupX0.3840.0000.385
getTSCANResults1.8230.0041.827
getTSNE0.9010.0000.902
getTopHVG0.8430.0070.852
getUMAP4.7300.5085.230
importAnnData0.0010.0000.001
importBUStools0.2580.0000.258
importCellRanger0.9880.0921.080
importCellRangerV2Sample0.2630.0240.286
importCellRangerV3Sample0.3530.0320.385
importDropEst0.3260.0200.346
importExampleData15.698 1.85118.221
importGeneSetsFromCollection0.7260.0360.762
importGeneSetsFromGMT0.0610.0120.074
importGeneSetsFromList0.1170.0040.121
importGeneSetsFromMSigDB3.8980.2604.158
importMitoGeneSet0.0510.0000.051
importOptimus0.0010.0000.001
importSEQC0.2990.0360.335
importSTARsolo0.2550.0040.260
iterateSimulations0.3040.0120.316
listSampleSummaryStatsTables0.4110.0360.446
mergeSCEColData0.4920.0120.504
mouseBrainSubsetSCE0.0250.0000.026
msigdb_table0.0010.0000.002
plotBarcodeRankDropsResults0.9130.0120.925
plotBarcodeRankScatter0.6680.0120.681
plotBatchCorrCompare12.407 0.47012.859
plotBatchVariance0.2610.0080.268
plotBcdsResults9.0120.2218.268
plotClusterAbundance0.9060.0240.931
plotCxdsResults6.5330.1136.635
plotDEGHeatmap3.0200.0363.056
plotDEGRegression3.5300.1003.617
plotDEGViolin4.1910.0804.257
plotDEGVolcano1.0240.0041.028
plotDecontXResults7.7540.3408.093
plotDimRed0.2910.0400.331
plotDoubletFinderResults26.549 0.52727.068
plotEmptyDropsResults6.7760.0686.845
plotEmptyDropsScatter6.6750.0486.724
plotMASTThresholdGenes1.5620.0201.582
plotMarkerDiffExp4.4860.0404.526
plotPCA0.4540.0040.457
plotPathway0.7710.0200.792
plotRunPerCellQCResults0.0260.0000.025
plotSCEBarAssayData0.1400.0080.149
plotSCEBarColData0.1080.0200.127
plotSCEBatchFeatureMean0.2740.0040.279
plotSCEDensity0.230.000.23
plotSCEDensityAssayData0.1540.0000.157
plotSCEDensityColData0.1910.0120.204
plotSCEDimReduceColData0.7400.0120.751
plotSCEDimReduceFeatures0.3430.0000.342
plotSCEHeatmap0.7530.0000.753
plotSCEScatter0.3220.0040.325
plotSCEViolin0.2000.0040.204
plotSCEViolinAssayData0.2280.0040.232
plotSCEViolinColData0.1990.0040.203
plotScDblFinderResults27.017 0.55627.302
plotScdsHybridResults10.096 0.176 9.374
plotScrubletResults0.0220.0040.026
plotSeuratElbow0.0230.0000.023
plotSeuratHVG0.0240.0000.024
plotSeuratJackStraw0.0230.0000.023
plotSeuratReduction0.0230.0000.023
plotSoupXResults0.1870.0080.195
plotTSCANClusterDEG4.9430.0524.995
plotTSCANClusterPseudo2.1930.0202.213
plotTSCANDimReduceFeatures2.1730.0042.177
plotTSCANPseudotimeGenes1.9770.0041.980
plotTSCANPseudotimeHeatmap2.3480.0002.348
plotTSCANResults2.0380.0042.042
plotTSNE0.4990.0000.499
plotTopHVG0.4230.0000.423
plotUMAP7.5870.0927.671
readSingleCellMatrix0.0040.0000.004
reportCellQC0.1860.0000.186
reportDropletQC0.0250.0000.024
reportQCTool0.1880.0000.187
retrieveSCEIndex0.0330.0000.033
runBBKNN000
runBarcodeRankDrops0.5220.0000.522
runBcds2.5350.0361.587
runCellQC0.2630.0120.274
runComBatSeq0.4670.0040.471
runCxds0.5480.0000.549
runCxdsBcdsHybrid2.5630.0201.641
runDEAnalysis0.7900.0000.789
runDecontX7.4320.0847.516
runDimReduce0.5630.0000.563
runDoubletFinder20.797 0.10720.905
runDropletQC0.0250.0000.025
runEmptyDrops6.4370.0046.441
runEnrichR0.2610.0041.237
runFastMNN1.6260.0201.647
runFeatureSelection0.1960.0040.200
runGSVA0.8300.0000.829
runKMeans0.4150.0000.416
runLimmaBC0.0690.0000.069
runMNNCorrect0.5210.0000.521
runModelGeneVar0.5010.0000.500
runNormalization0.5810.0080.589
runPerCellQC0.4960.0040.500
runSCANORAMA0.0000.0000.001
runSCMerge0.0030.0000.004
runScDblFinder17.649 0.14417.528
runScranSNN0.7270.0040.731
runScrublet0.0250.0000.025
runSeuratFindClusters0.0240.0000.024
runSeuratFindHVG0.6360.0200.657
runSeuratHeatmap0.0250.0000.025
runSeuratICA0.0240.0000.024
runSeuratJackStraw0.0230.0000.023
runSeuratNormalizeData0.0230.0000.024
runSeuratPCA0.0240.0000.024
runSeuratSCTransform3.1520.1403.294
runSeuratScaleData0.0250.0000.026
runSeuratUMAP0.0240.0000.024
runSingleR0.0370.0000.037
runSoupX0.1900.0000.189
runTSCAN1.5320.0041.536
runTSCANClusterDEAnalysis1.6690.0001.669
runTSCANDEG1.5420.0321.574
runVAM0.580.020.60
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.310.000.31
scaterCPM0.1330.0000.133
scaterPCA0.5690.0000.569
scaterlogNormCounts0.2480.0000.247
sce0.0240.0000.024
sctkListGeneSetCollections0.0750.0000.076
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0860.0000.086
setSCTKDisplayRow0.3770.0040.381
singleCellTK000
subDiffEx0.4590.0000.459
subsetSCECols0.1810.0000.181
subsetSCERows0.4680.0040.472
summarizeSCE0.060.000.06
trimCounts0.3070.0000.307