Back to Multiple platform build/check report for BioC 3.16
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2022-06-24 11:08:38 -0400 (Fri, 24 Jun 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.4 LTS)x86_644.2.0 Patched (2022-06-02 r82447) -- "Vigorous Calisthenics" 4331
palomino4Windows Server 2022 Datacenterx644.2.0 Patched (2022-06-02 r82447 ucrt) -- "Vigorous Calisthenics" 4136
lconwaymacOS 12.2.1 Montereyx86_644.2.0 Patched (2022-05-29 r82424) -- "Vigorous Calisthenics" 4147
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on lconway


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1836/2118HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.7.0  (landing page)
Yichen Wang
Snapshot Date: 2022-06-23 14:00:04 -0400 (Thu, 23 Jun 2022)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: master
git_last_commit: 289be130
git_last_commit_date: 2022-04-26 11:48:48 -0400 (Tue, 26 Apr 2022)
nebbiolo2Linux (Ubuntu 20.04.4 LTS) / x86_64  OK    OK    ERROR  
palomino4Windows Server 2022 Datacenter / x64  OK    OK    ERROR    OK  
lconwaymacOS 12.2.1 Monterey / x86_64  OK    OK    ERROR    OK  

Summary

Package: singleCellTK
Version: 2.7.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.7.0.tar.gz
StartedAt: 2022-06-23 22:40:54 -0400 (Thu, 23 Jun 2022)
EndedAt: 2022-06-23 22:53:40 -0400 (Thu, 23 Jun 2022)
EllapsedTime: 766.3 seconds
RetCode: 1
Status:   ERROR  
CheckDir: singleCellTK.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.7.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck’
* using R version 4.2.0 Patched (2022-05-29 r82424)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.7.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.5Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.8Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                             user system elapsed
plotScDblFinderResults     25.767  0.819  26.641
plotDoubletFinderResults   22.594  0.192  22.817
importExampleData          16.829  2.078  19.444
runDoubletFinder           17.320  0.109  17.457
runScDblFinder             16.306  0.443  16.771
plotBatchCorrCompare       10.068  0.091  10.167
plotTSCANPseudotimeHeatmap 10.100  0.057  10.175
plotScdsHybridResults       8.385  0.187   8.721
plotBcdsResults             7.577  0.148   7.741
plotDecontXResults          7.492  0.074   7.593
runDecontX                  6.584  0.094   6.700
plotMarkerDiffExp           6.494  0.038   6.546
plotEmptyDropsResults       6.073  0.020   6.105
plotCxdsResults             5.903  0.063   5.982
plotEmptyDropsScatter       5.935  0.022   5.970
plotUMAP                    5.821  0.051   5.877
runEmptyDrops               5.757  0.019   5.782
detectCellOutlier           5.413  0.127   5.552
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 ERROR
Running the tests in ‘tests/testthat.R’ failed.
Last 13 lines of output:
  0%   10   20   30   40   50   60   70   80   90   100%
  [----|----|----|----|----|----|----|----|----|----|
  **************************************************|
  [ FAIL 1 | WARN 17 | SKIP 0 | PASS 161 ]
  
  ══ Failed tests ════════════════════════════════════════════════════════════════
  ── Failure (test-cellTypeLabeling.R:14:3): Testing SingleR ─────────────────────
  "SingleR_hpca_main_first.labels" %in% names(colData(sce)) is not TRUE
  
  `actual`:   FALSE
  `expected`: TRUE 
  
  [ FAIL 1 | WARN 17 | SKIP 0 | PASS 161 ]
  Error: Test failures
  Execution halted
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 ERROR, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.2/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.2.0 Patched (2022-05-29 r82424) -- "Vigorous Calisthenics"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.208   0.066   0.256 

singleCellTK.Rcheck/tests/testthat.Rout.fail


R version 4.2.0 Patched (2022-05-29 r82424) -- "Vigorous Calisthenics"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    aperm, apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 1 | WARN 17 | SKIP 0 | PASS 161 ]

══ Failed tests ════════════════════════════════════════════════════════════════
── Failure (test-cellTypeLabeling.R:14:3): Testing SingleR ─────────────────────
"SingleR_hpca_main_first.labels" %in% names(colData(sce)) is not TRUE

`actual`:   FALSE
`expected`: TRUE 

[ FAIL 1 | WARN 17 | SKIP 0 | PASS 161 ]
Error: Test failures
Execution halted

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0040.007
SEG0.0010.0010.003
calcEffectSizes0.1870.0160.203
combineSCE1.4920.0271.522
computeZScore0.2790.0100.289
convertSCEToSeurat3.5180.1853.721
convertSeuratToSCE0.4140.0290.443
dedupRowNames0.0520.0030.055
detectCellOutlier5.4130.1275.552
diffAbundanceFET0.0770.0030.079
discreteColorPalette0.0070.0010.007
distinctColors0.0020.0000.002
downSampleCells0.6670.0470.719
downSampleDepth0.5130.0290.544
expData-ANY-character-method0.3720.0070.379
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3760.0060.382
expData-set0.3780.0060.387
expData0.2960.0070.302
expDataNames-ANY-method0.4030.0060.410
expDataNames0.3500.0060.356
expDeleteDataTag0.0390.0030.043
expSetDataTag0.0270.0020.030
expTaggedData0.0360.0020.039
exportSCE0.0290.0030.033
exportSCEtoAnnData0.0880.0020.091
exportSCEtoFlatFile0.0920.0010.094
featureIndex0.0460.0040.051
findMarkerDiffExp4.0980.0694.174
findMarkerTopTable3.6390.0393.685
generateSimulatedData0.0350.0030.039
getBiomarker0.0400.0020.042
getDEGTopTable0.4860.0060.491
getDiffAbundanceResults0.0310.0000.032
getEnrichRResult0.2400.0181.407
getMSigDBTable0.0050.0030.008
getSampleSummaryStatsTable0.3890.0070.397
getSoupX0.4010.0100.411
getTSNE0.2640.0040.268
getTopHVG0.2280.0040.232
getUMAP3.6400.0303.669
importAnnData0.0010.0000.001
importBUStools0.2610.0030.265
importCellRanger1.0920.0721.179
importCellRangerV2Sample0.3140.0070.322
importCellRangerV3Sample0.3990.0140.419
importDropEst0.4300.0050.436
importExampleData16.829 2.07819.444
importGeneSetsFromCollection0.8540.1070.968
importGeneSetsFromGMT0.0810.0060.088
importGeneSetsFromList0.1460.0080.154
importGeneSetsFromMSigDB3.3900.2753.675
importMitoGeneSet0.0600.0060.067
importOptimus0.0010.0000.001
importSEQC0.3190.0150.336
importSTARsolo0.2810.0040.287
iterateSimulations0.3600.0060.368
listSampleSummaryStatsTables0.4110.0080.419
mergeSCEColData0.4800.0170.503
mouseBrainSubsetSCE0.0280.0020.029
msigdb_table0.0010.0020.003
plotBarcodeRankDropsResults0.8630.0150.880
plotBarcodeRankScatter0.6170.0090.627
plotBatchCorrCompare10.068 0.09110.167
plotBatchVariance0.2440.0060.250
plotBcdsResults7.5770.1487.741
plotClusterAbundance0.9750.0060.984
plotClusterPseudo3.1000.0463.154
plotCxdsResults5.9030.0635.982
plotDEGHeatmap2.7880.0982.892
plotDEGRegression3.3970.0393.441
plotDEGViolin3.8730.1264.008
plotDEGVolcano0.9430.0100.956
plotDecontXResults7.4920.0747.593
plotDimRed0.2190.0030.223
plotDoubletFinderResults22.594 0.19222.817
plotEmptyDropsResults6.0730.0206.105
plotEmptyDropsScatter5.9350.0225.970
plotMASTThresholdGenes1.4510.0171.470
plotMarkerDiffExp6.4940.0386.546
plotPCA0.4970.0060.505
plotPathway0.8890.0100.903
plotRunPerCellQCResults0.0250.0020.028
plotSCEBarAssayData0.1530.0030.157
plotSCEBarColData0.1320.0040.137
plotSCEBatchFeatureMean0.1910.0020.194
plotSCEDensity0.2250.0030.229
plotSCEDensityAssayData0.2250.0040.230
plotSCEDensityColData0.2130.0020.217
plotSCEDimReduceColData0.8240.0090.838
plotSCEDimReduceFeatures0.4250.0060.431
plotSCEHeatmap0.7600.0080.769
plotSCEScatter0.3510.0050.356
plotSCEViolin0.2350.0050.241
plotSCEViolinAssayData0.3310.0050.337
plotSCEViolinColData0.1970.0040.202
plotScDblFinderResults25.767 0.81926.641
plotScdsHybridResults8.3850.1878.721
plotScrubletResults0.0320.0030.034
plotSeuratElbow0.0280.0020.030
plotSeuratHVG0.0280.0070.036
plotSeuratJackStraw0.0250.0040.029
plotSeuratReduction0.0280.0040.031
plotSoupXResults0.1730.0060.179
plotTSCANDEgenes2.9490.0553.010
plotTSCANPseudotimeGenes4.1610.0334.204
plotTSCANPseudotimeHeatmap10.100 0.05710.175
plotTSCANResults2.3460.0292.386
plotTSNE0.5260.0080.536
plotTopHVG0.3790.0060.386
plotUMAP5.8210.0515.877
readSingleCellMatrix0.0040.0000.005
reportCellQC0.1620.0040.166
reportDropletQC0.0200.0020.022
reportQCTool0.1700.0050.175
retrieveSCEIndex0.0310.0030.033
runBBKNN000
runBarcodeRankDrops0.5330.0070.541
runBcds1.8720.0461.920
runCellQC0.1700.0140.185
runComBatSeq0.5250.0430.570
runCxds0.4820.0090.491
runCxdsBcdsHybrid1.8750.0451.962
runDEAnalysis0.6580.0070.665
runDecontX6.5840.0946.700
runDimReduce0.9700.0110.982
runDoubletFinder17.320 0.10917.457
runDropletQC0.0260.0030.030
runEmptyDrops5.7570.0195.782
runEnrichR0.1860.0140.900
runFastMNN1.7460.0441.796
runFeatureSelection0.1950.0010.196
runGSVA0.5470.0070.555
runKMeans0.4710.0110.483
runLimmaBC0.0800.0010.081
runMNNCorrect0.5230.0040.528
runNormalization0.5590.0080.568
runPerCellQC0.4920.0090.502
runSCANORAMA0.0000.0010.000
runSCMerge0.0040.0010.005
runScDblFinder16.306 0.44316.771
runScranSNN0.3950.0060.402
runScrublet0.0290.0040.032
runSeuratFindClusters0.0310.0040.035
runSeuratFindHVG0.0280.0020.030
runSeuratHeatmap0.0270.0030.030
runSeuratICA0.0280.0030.032
runSeuratJackStraw0.0280.0030.032
runSeuratNormalizeData0.0310.0020.033
runSeuratPCA0.0250.0020.028
runSeuratSCTransform3.8000.1333.947
runSeuratScaleData0.0290.0020.032
runSeuratUMAP0.0260.0020.029
runSingleR0.0360.0010.037
runSoupX0.1860.0030.190
runTSCAN2.0330.0312.068
runTSCANClusterDEAnalysis2.3900.0232.416
runTSCANDEG1.8170.0211.838
runVAM0.4390.0040.444
runZINBWaVE0.0020.0000.003
sampleSummaryStats0.2460.0030.249
scaterCPM0.1470.0020.149
scaterPCA0.4310.0070.439
scaterlogNormCounts0.2540.0030.258
sce0.0200.0020.023
scranModelGeneVar0.2180.0030.221
sctkListGeneSetCollections0.2350.0110.247
sctkPythonInstallConda0.0000.0010.000
sctkPythonInstallVirtualEnv000
selectSCTKConda0.0010.0000.000
selectSCTKVirtualEnvironment000
setRowNames0.0960.0030.100
setSCTKDisplayRow0.4520.0170.469
singleCellTK0.0010.0000.000
subDiffEx0.4950.0090.505
subsetSCECols0.1840.0080.194
subsetSCERows0.4530.0060.459
summarizeSCE0.0480.0020.049
trimCounts0.2610.0160.276