Back to Multiple platform build/check report for BioC 3.17:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2023-03-21 11:05:37 -0400 (Tue, 21 Mar 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.1 LTS)x86_64R Under development (unstable) (2023-03-16 r83996) -- "Unsuffered Consequences" 4305
palomino3Windows Server 2022 Datacenterx64R Under development (unstable) (2023-03-15 r83984 ucrt) -- "Unsuffered Consequences" 4287
merida1macOS 10.14.6 Mojavex86_64R Under development (unstable) (2023-03-16 r83985) -- "Unsuffered Consequences" 4286
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on nebbiolo1


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1900/2189HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.9.0  (landing page)
Yichen Wang
Snapshot Date: 2023-03-20 14:00:22 -0400 (Mon, 20 Mar 2023)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: master
git_last_commit: 4468720
git_last_commit_date: 2022-11-01 11:17:41 -0400 (Tue, 01 Nov 2022)
nebbiolo1Linux (Ubuntu 22.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 10.14.6 Mojave / x86_64  ERROR    ERROR  skippedskipped

Summary

Package: singleCellTK
Version: 2.9.0
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.9.0.tar.gz
StartedAt: 2023-03-21 00:02:38 -0400 (Tue, 21 Mar 2023)
EndedAt: 2023-03-21 00:17:12 -0400 (Tue, 21 Mar 2023)
EllapsedTime: 874.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.9.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2023-03-16 r83996)
* using platform: x86_64-pc-linux-gnu (64-bit)
* R was compiled by
    gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
    GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
* running under: Ubuntu 22.04.2 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.9.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  5.4Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   31.120  0.639  31.810
plotDoubletFinderResults 28.006  0.316  28.319
runScDblFinder           21.296  0.280  21.576
importExampleData        19.287  1.780  21.652
runDoubletFinder         19.781  0.104  19.885
plotBatchCorrCompare     15.037  0.432  15.460
plotScdsHybridResults    11.674  0.101  10.885
plotBcdsResults          10.918  0.284  10.265
plotDecontXResults        9.665  0.200   9.866
runUMAP                   7.039  0.848   7.884
runDecontX                7.211  0.096   7.307
plotCxdsResults           6.833  0.168   6.998
plotUMAP                  6.887  0.099   6.985
detectCellOutlier         6.691  0.248   6.940
plotEmptyDropsResults     6.797  0.048   6.845
plotEmptyDropsScatter     6.733  0.068   6.801
runEmptyDrops             6.455  0.004   6.459
plotTSCANClusterDEG       5.391  0.028   5.419
getFindMarkerTopTable     4.639  0.400   5.039
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘singleCellTK.Rmd’ using ‘UTF-8’... OK
 NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2023-03-16 r83996) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.174   0.012   0.176 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2023-03-16 r83996) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 221 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 221 ]
> 
> proc.time()
   user  system elapsed 
238.359   4.279 243.589 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0030.0000.003
calcEffectSizes0.20.00.2
combineSCE1.8080.0241.832
computeZScore0.3210.0560.376
convertSCEToSeurat3.7950.1723.968
convertSeuratToSCE0.5490.0040.552
dedupRowNames0.0600.0040.065
detectCellOutlier6.6910.2486.940
diffAbundanceFET0.0440.0080.051
discreteColorPalette0.0080.0000.008
distinctColors0.0000.0030.002
downSampleCells0.6750.1320.808
downSampleDepth0.5550.0440.599
expData-ANY-character-method0.3350.0120.347
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3750.0440.419
expData-set0.4120.0120.424
expData0.3970.0200.418
expDataNames-ANY-method0.3590.0040.363
expDataNames0.3470.0480.395
expDeleteDataTag0.0610.0000.061
expSetDataTag0.0310.0000.031
expTaggedData0.0320.0000.032
exportSCE0.0230.0040.027
exportSCEtoAnnData0.0910.0120.103
exportSCEtoFlatFile0.0770.0240.100
featureIndex0.0390.0040.043
generateSimulatedData0.0420.0040.046
getBiomarker0.0500.0070.057
getDEGTopTable0.9760.1041.080
getDiffAbundanceResults0.0400.0040.044
getEnrichRResult0.4180.0572.177
getFindMarkerTopTable4.6390.4005.039
getMSigDBTable0.0050.0000.005
getPathwayResultNames0.0230.0080.030
getSampleSummaryStatsTable0.4300.0360.466
getSoupX0.4090.0040.414
getTSCANResults2.1960.1682.364
getTopHVG0.8570.0400.897
importAnnData0.0010.0000.002
importBUStools0.2720.0320.305
importCellRanger1.1680.0561.225
importCellRangerV2Sample0.2600.0080.267
importCellRangerV3Sample0.4290.0160.445
importDropEst0.3390.0040.345
importExampleData19.287 1.78021.652
importGeneSetsFromCollection0.7500.0280.777
importGeneSetsFromGMT0.0710.0080.079
importGeneSetsFromList0.1400.0040.144
importGeneSetsFromMSigDB2.7440.2352.979
importMitoGeneSet0.0550.0050.058
importOptimus0.0010.0000.002
importSEQC0.5140.0000.516
importSTARsolo0.4800.0000.481
iterateSimulations0.5490.0000.549
listSampleSummaryStatsTables0.5800.0160.596
mergeSCEColData0.9120.0120.923
mouseBrainSubsetSCE0.0460.0000.046
msigdb_table0.0020.0000.002
plotBarcodeRankDropsResults1.2610.0401.301
plotBarcodeRankScatter0.8670.0310.898
plotBatchCorrCompare15.037 0.43215.460
plotBatchVariance0.3420.0400.382
plotBcdsResults10.918 0.28410.265
plotClusterAbundance1.4560.0401.496
plotCxdsResults6.8330.1686.998
plotDEGHeatmap2.7150.0402.755
plotDEGRegression3.7870.0643.845
plotDEGViolin4.5530.1164.662
plotDEGVolcano1.0990.0081.107
plotDecontXResults9.6650.2009.866
plotDimRed0.3350.0120.347
plotDoubletFinderResults28.006 0.31628.319
plotEmptyDropsResults6.7970.0486.845
plotEmptyDropsScatter6.7330.0686.801
plotFindMarkerHeatmap4.8000.0564.857
plotMASTThresholdGenes1.4500.0201.469
plotPCA0.5690.0000.569
plotPathway0.8530.0120.866
plotRunPerCellQCResults1.2990.0041.303
plotSCEBarAssayData0.1700.0040.174
plotSCEBarColData0.1240.0080.133
plotSCEBatchFeatureMean0.2610.0000.261
plotSCEDensity0.2110.0000.211
plotSCEDensityAssayData0.1600.0040.164
plotSCEDensityColData0.210.000.21
plotSCEDimReduceColData0.9880.0121.001
plotSCEDimReduceFeatures0.3640.0000.364
plotSCEHeatmap0.7470.0040.750
plotSCEScatter0.4290.0000.430
plotSCEViolin0.2400.0040.244
plotSCEViolinAssayData0.2570.0040.261
plotSCEViolinColData0.2440.0080.252
plotScDblFinderResults31.120 0.63931.810
plotScdsHybridResults11.674 0.10110.885
plotScrubletResults0.0210.0030.025
plotSeuratElbow0.0250.0000.024
plotSeuratHVG0.0200.0040.025
plotSeuratJackStraw0.0260.0000.025
plotSeuratReduction0.0200.0040.025
plotSoupXResults0.1950.0040.198
plotTSCANClusterDEG5.3910.0285.419
plotTSCANClusterPseudo2.2170.0002.217
plotTSCANDimReduceFeatures2.1070.0082.115
plotTSCANPseudotimeGenes2.1440.0162.161
plotTSCANPseudotimeHeatmap2.1260.0002.127
plotTSCANResults2.1100.0082.118
plotTSNE0.4830.0040.486
plotTopHVG0.3810.0000.381
plotUMAP6.8870.0996.985
readSingleCellMatrix0.0040.0000.005
reportCellQC0.1880.0000.188
reportDropletQC0.0240.0000.023
reportQCTool0.1720.0040.176
retrieveSCEIndex0.0290.0000.030
runBBKNN000
runBarcodeRankDrops0.4380.0080.446
runBcds2.3470.0081.473
runCellQC0.1840.0000.184
runComBatSeq0.4430.0240.467
runCxds0.6400.0040.644
runCxdsBcdsHybrid2.3320.0081.510
runDEAnalysis0.6470.0040.650
runDecontX7.2110.0967.307
runDimReduce0.4620.0000.462
runDoubletFinder19.781 0.10419.885
runDropletQC0.0240.0000.024
runEmptyDrops6.4550.0046.459
runEnrichR0.3620.0201.759
runFastMNN1.7410.0281.769
runFeatureSelection0.1980.0000.198
runFindMarker3.3300.0243.354
runGSVA0.6780.0000.678
runHarmony0.0350.0000.035
runKMeans0.3780.0160.394
runLimmaBC0.0790.0000.079
runMNNCorrect0.5460.0040.550
runModelGeneVar0.5530.0120.565
runNormalization0.5640.0120.576
runPerCellQC0.4630.0000.463
runSCANORAMA000
runSCMerge0.0000.0040.004
runScDblFinder21.296 0.28021.576
runScranSNN0.840.040.88
runScrublet0.0240.0000.025
runSeuratFindClusters0.0210.0040.024
runSeuratFindHVG0.6270.0080.635
runSeuratHeatmap0.0250.0000.025
runSeuratICA0.0260.0000.025
runSeuratJackStraw0.0250.0000.025
runSeuratNormalizeData0.0250.0000.026
runSeuratPCA0.0260.0000.026
runSeuratSCTransform3.1660.1083.275
runSeuratScaleData0.0240.0000.024
runSeuratUMAP0.0250.0000.024
runSingleR0.0300.0040.034
runSoupX0.1730.0000.173
runTSCAN1.3810.0081.388
runTSCANClusterDEAnalysis1.6590.1081.768
runTSCANDEG1.4460.2281.675
runTSNE0.9010.0400.940
runUMAP7.0390.8487.884
runVAM0.5750.0160.592
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.3170.0160.333
scaterCPM0.1410.0040.145
scaterPCA0.4520.0120.464
scaterlogNormCounts0.2590.0160.275
sce0.0240.0000.025
sctkListGeneSetCollections0.0810.0080.089
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.0870.0040.090
setSCTKDisplayRow0.4540.0440.498
singleCellTK0.0000.0000.001
subDiffEx0.4590.0200.480
subsetSCECols0.1820.0120.194
subsetSCERows0.4450.0040.449
summarizeSCE0.0470.0120.059
trimCounts0.2530.0200.272