Back to Multiple platform build/check report for BioC 3.17:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2023-09-28 11:36:01 -0400 (Thu, 28 Sep 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.2 LTS)x86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4626
palomino3Windows Server 2022 Datacenterx644.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" 4379
merida1macOS 12.6.4 Montereyx86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4395
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1934/2230HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.10.0  (landing page)
Yichen Wang
Snapshot Date: 2023-09-27 14:00:15 -0400 (Wed, 27 Sep 2023)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_17
git_last_commit: 277e675
git_last_commit_date: 2023-04-25 11:01:21 -0400 (Tue, 25 Apr 2023)
nebbiolo1Linux (Ubuntu 22.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.6.4 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

CHECK results for singleCellTK on nebbiolo1


To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.10.0
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.10.0.tar.gz
StartedAt: 2023-09-28 01:13:32 -0400 (Thu, 28 Sep 2023)
EndedAt: 2023-09-28 01:27:09 -0400 (Thu, 28 Sep 2023)
EllapsedTime: 816.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.10.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck’
* using R version 4.3.1 (2023-06-16)
* using platform: x86_64-pc-linux-gnu (64-bit)
* R was compiled by
    gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0
    GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0
* running under: Ubuntu 22.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.10.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  5.5Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   29.170  0.560  29.729
plotDoubletFinderResults 22.446  0.388  22.829
runScDblFinder           20.772  0.780  21.553
runDoubletFinder         17.276  0.065  17.340
importExampleData        15.248  1.967  17.809
plotBatchCorrCompare     10.572  0.497  11.062
plotBcdsResults           9.622  0.363   9.016
plotScdsHybridResults     9.474  0.180   8.716
plotDecontXResults        7.297  0.228   7.525
runUMAP                   6.513  0.320   6.832
plotEmptyDropsResults     6.763  0.044   6.807
plotEmptyDropsScatter     6.733  0.044   6.777
runDecontX                6.368  0.100   6.469
runEmptyDrops             6.348  0.008   6.356
plotUMAP                  6.075  0.092   6.164
plotCxdsResults           5.982  0.139   6.118
detectCellOutlier         5.906  0.188   6.094
plotTSCANClusterDEG       5.330  0.076   5.405
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘singleCellTK.Rmd’ using ‘UTF-8’... OK
 NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.157   0.031   0.177 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ]

[ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ]
> 
> proc.time()
   user  system elapsed 
233.666   8.294 243.180 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0000.0030.003
SEG0.0030.0000.003
calcEffectSizes0.1510.0370.186
combineSCE1.5350.0351.571
computeZScore0.2480.0320.280
convertSCEToSeurat3.3140.2553.570
convertSeuratToSCE0.3970.0000.397
dedupRowNames0.0550.0000.055
detectCellOutlier5.9060.1886.094
diffAbundanceFET0.0450.0040.048
discreteColorPalette0.0030.0030.007
distinctColors0.0000.0030.003
downSampleCells0.6540.0680.723
downSampleDepth0.5220.0280.549
expData-ANY-character-method0.3070.0000.307
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3570.0040.360
expData-set0.3540.0080.362
expData0.3040.0120.315
expDataNames-ANY-method0.3250.0080.333
expDataNames0.3000.0040.304
expDeleteDataTag0.0330.0030.037
expSetDataTag0.0260.0000.026
expTaggedData0.0270.0000.027
exportSCE0.0240.0000.024
exportSCEtoAnnData0.0950.0040.099
exportSCEtoFlatFile0.0880.0080.095
featureIndex0.0360.0000.036
generateSimulatedData0.0420.0000.042
getBiomarker0.0450.0040.049
getDEGTopTable0.8650.0240.889
getDiffAbundanceResults0.0370.0040.041
getEnrichRResult0.6650.0413.021
getFindMarkerTopTable3.6290.2443.873
getMSigDBTable0.0040.0000.004
getPathwayResultNames0.0260.0040.029
getSampleSummaryStatsTable0.3690.0080.378
getSoupX0.0000.0000.001
getTSCANResults1.9170.1072.027
getTopHVG0.8110.0240.835
importAnnData0.0020.0000.001
importBUStools0.2720.0070.280
importCellRanger1.0930.1131.207
importCellRangerV2Sample0.260.000.26
importCellRangerV3Sample0.4150.0040.419
importDropEst0.3110.0000.313
importExampleData15.248 1.96717.809
importGeneSetsFromCollection0.6800.0320.712
importGeneSetsFromGMT0.0700.0040.073
importGeneSetsFromList0.1110.0120.123
importGeneSetsFromMSigDB2.2820.2192.502
importMitoGeneSet0.0460.0120.057
importOptimus0.0020.0000.002
importSEQC0.3520.0640.417
importSTARsolo0.2480.0200.268
iterateSimulations0.3110.0360.347
listSampleSummaryStatsTables0.3880.0360.424
mergeSCEColData0.4570.0200.477
mouseBrainSubsetSCE0.0270.0000.027
msigdb_table0.0010.0000.002
plotBarcodeRankDropsResults0.8610.0280.889
plotBarcodeRankScatter0.6480.0000.648
plotBatchCorrCompare10.572 0.49711.062
plotBatchVariance0.3270.0240.350
plotBcdsResults9.6220.3639.016
plotClusterAbundance1.0860.0291.113
plotCxdsResults5.9820.1396.118
plotDEGHeatmap2.7580.1202.878
plotDEGRegression3.6530.0923.738
plotDEGViolin4.2020.0764.271
plotDEGVolcano0.9700.0160.986
plotDecontXResults7.2970.2287.525
plotDimRed0.2620.0040.266
plotDoubletFinderResults22.446 0.38822.829
plotEmptyDropsResults6.7630.0446.807
plotEmptyDropsScatter6.7330.0446.777
plotFindMarkerHeatmap4.1780.0524.230
plotMASTThresholdGenes1.4560.0001.456
plotPCA0.5100.0080.517
plotPathway0.8250.0080.834
plotRunPerCellQCResults2.0510.0162.066
plotSCEBarAssayData0.1640.0040.168
plotSCEBarColData0.1230.0000.124
plotSCEBatchFeatureMean0.1990.0000.200
plotSCEDensity0.1980.0040.202
plotSCEDensityAssayData0.160.000.16
plotSCEDensityColData0.1980.0040.202
plotSCEDimReduceColData0.8850.0160.901
plotSCEDimReduceFeatures0.3440.0040.348
plotSCEHeatmap0.8260.0000.826
plotSCEScatter0.3230.0040.328
plotSCEViolin0.2230.0040.227
plotSCEViolinAssayData0.2410.0000.241
plotSCEViolinColData0.2250.0000.225
plotScDblFinderResults29.170 0.56029.729
plotScanpyDotPlot0.0220.0040.026
plotScanpyEmbedding0.0240.0000.025
plotScanpyHVG0.0250.0000.024
plotScanpyHeatmap0.0230.0000.024
plotScanpyMarkerGenes0.0230.0000.023
plotScanpyMarkerGenesDotPlot0.0230.0000.023
plotScanpyMarkerGenesHeatmap0.0240.0000.024
plotScanpyMarkerGenesMatrixPlot0.0250.0000.024
plotScanpyMarkerGenesViolin0.0250.0000.024
plotScanpyMatrixPlot0.0240.0000.024
plotScanpyPCA0.0200.0040.024
plotScanpyPCAGeneRanking0.0240.0000.025
plotScanpyPCAVariance0.0200.0030.024
plotScanpyViolin0.0240.0000.024
plotScdsHybridResults9.4740.1808.716
plotScrubletResults0.0240.0000.024
plotSeuratElbow0.0200.0040.024
plotSeuratHVG0.0240.0000.024
plotSeuratJackStraw0.0240.0000.023
plotSeuratReduction0.0230.0000.024
plotSoupXResults0.0010.0000.000
plotTSCANClusterDEG5.3300.0765.405
plotTSCANClusterPseudo2.0670.0042.071
plotTSCANDimReduceFeatures2.0500.0122.063
plotTSCANPseudotimeGenes1.9540.0041.959
plotTSCANPseudotimeHeatmap2.0630.0282.091
plotTSCANResults1.9760.0041.980
plotTSNE0.460.000.46
plotTopHVG0.390.000.39
plotUMAP6.0750.0926.164
readSingleCellMatrix0.0050.0000.004
reportCellQC0.1840.0000.185
reportDropletQC0.0270.0040.030
reportQCTool0.1810.0040.185
retrieveSCEIndex0.0260.0040.030
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.4020.0080.410
runBcds2.3120.0121.424
runCellQC0.1750.0000.175
runComBatSeq0.4360.0040.440
runCxds0.5190.0120.530
runCxdsBcdsHybrid2.2540.0111.420
runDEAnalysis0.6790.0080.686
runDecontX6.3680.1006.469
runDimReduce0.4260.0040.429
runDoubletFinder17.276 0.06517.340
runDropletQC0.0250.0000.024
runEmptyDrops6.3480.0086.356
runEnrichR0.8490.0922.740
runFastMNN1.6580.2441.901
runFeatureSelection0.2030.0200.223
runFindMarker3.1410.3283.469
runGSVA0.6220.0710.693
runHarmony0.0390.0000.039
runKMeans0.4340.0720.505
runLimmaBC0.0710.0040.076
runMNNCorrect0.4540.0640.519
runModelGeneVar0.4240.0400.465
runNormalization0.5490.0160.565
runPerCellQC0.5950.0960.691
runSCANORAMA000
runSCMerge0.0010.0040.004
runScDblFinder20.772 0.78021.553
runScanpyFindClusters0.0250.0000.026
runScanpyFindHVG0.0240.0000.024
runScanpyFindMarkers0.0250.0000.024
runScanpyNormalizeData0.1810.0200.200
runScanpyPCA0.0240.0000.024
runScanpyScaleData0.0230.0000.024
runScanpyTSNE0.0230.0000.024
runScanpyUMAP0.0200.0040.023
runScranSNN0.6820.0720.754
runScrublet0.0240.0000.025
runSeuratFindClusters0.0250.0000.024
runSeuratFindHVG0.6770.0840.762
runSeuratHeatmap0.0240.0000.025
runSeuratICA0.0200.0040.023
runSeuratJackStraw0.0240.0000.023
runSeuratNormalizeData0.0230.0000.023
runSeuratPCA0.0200.0040.023
runSeuratSCTransform2.8780.2803.160
runSeuratScaleData0.0240.0000.023
runSeuratUMAP0.0230.0000.023
runSingleR0.0330.0000.033
runSoupX0.0000.0000.001
runTSCAN1.3060.0121.318
runTSCANClusterDEAnalysis1.4950.0601.555
runTSCANDEG1.4240.0241.448
runTSNE0.8350.0400.874
runUMAP6.5130.3206.832
runVAM0.5360.0160.553
runZINBWaVE0.0000.0050.005
sampleSummaryStats0.2920.0030.295
scaterCPM0.1330.0040.136
scaterPCA0.4190.0000.418
scaterlogNormCounts0.2410.0150.256
sce0.0230.0000.023
sctkListGeneSetCollections0.0740.0000.075
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv000
selectSCTKConda0.0010.0000.000
selectSCTKVirtualEnvironment000
setRowNames0.0740.0080.082
setSCTKDisplayRow0.3920.0080.400
singleCellTK0.0010.0000.000
subDiffEx0.4830.0310.514
subsetSCECols0.1670.0120.179
subsetSCERows0.4180.0000.419
summarizeSCE0.0510.0080.058
trimCounts0.2140.0200.235