Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-09-28 11:37:56 -0400 (Thu, 28 Sep 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 1934/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
singleCellTK 2.10.0 (landing page) Yichen Wang
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the singleCellTK package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: singleCellTK |
Version: 2.10.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.10.0.tar.gz |
StartedAt: 2023-09-28 07:43:14 -0400 (Thu, 28 Sep 2023) |
EndedAt: 2023-09-28 08:18:03 -0400 (Thu, 28 Sep 2023) |
EllapsedTime: 2088.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: singleCellTK.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: x86_64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.3 (clang-1403.0.22.14.1) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.6.4 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘singleCellTK/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘singleCellTK’ version ‘2.10.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘singleCellTK’ can be installed ... OK * checking installed package size ... NOTE installed size is 6.7Mb sub-directories of 1Mb or more: extdata 1.5Mb shiny 2.9Mb * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking startup messages can be suppressed ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed plotScDblFinderResults 46.721 0.949 64.837 runScDblFinder 35.873 0.471 46.252 plotDoubletFinderResults 33.822 0.243 44.658 importExampleData 24.558 2.551 35.413 runDoubletFinder 25.041 0.166 32.603 plotBatchCorrCompare 14.450 0.158 18.753 plotScdsHybridResults 12.795 0.173 17.342 plotTSCANClusterDEG 12.156 0.208 16.732 plotBcdsResults 12.049 0.206 15.396 plotDecontXResults 11.623 0.091 15.244 plotFindMarkerHeatmap 10.718 0.053 14.700 plotEmptyDropsResults 10.511 0.044 14.191 plotEmptyDropsScatter 10.440 0.052 14.397 plotDEGViolin 10.123 0.153 13.094 runEmptyDrops 9.836 0.073 12.723 plotCxdsResults 9.211 0.081 11.612 plotDEGRegression 8.689 0.088 11.221 runDecontX 8.692 0.080 11.482 detectCellOutlier 8.102 0.179 10.746 runUMAP 7.913 0.069 10.037 plotUMAP 7.879 0.077 10.322 runFindMarker 7.299 0.073 9.186 getFindMarkerTopTable 7.181 0.077 9.489 runSeuratSCTransform 7.022 0.122 9.094 plotDEGHeatmap 6.663 0.131 8.676 convertSCEToSeurat 6.030 0.269 7.974 importGeneSetsFromMSigDB 6.027 0.201 8.095 plotTSCANPseudotimeHeatmap 5.084 0.041 6.911 plotTSCANClusterPseudo 5.038 0.045 6.956 plotTSCANDimReduceFeatures 5.006 0.039 6.883 plotRunPerCellQCResults 4.968 0.037 6.761 plotTSCANPseudotimeGenes 4.964 0.038 6.959 plotTSCANResults 4.768 0.039 6.275 getTSCANResults 3.871 0.056 5.162 runCxdsBcdsHybrid 3.840 0.059 5.084 runEnrichR 0.620 0.047 67.589 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘spelling.R’ Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck/00check.log’ for details.
singleCellTK.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘singleCellTK’ ... ** using staged installation ** R ** data ** exec ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (singleCellTK)
singleCellTK.Rcheck/tests/spelling.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if (requireNamespace('spelling', quietly = TRUE)) + spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE) NULL > > proc.time() user system elapsed 0.363 0.121 0.479
singleCellTK.Rcheck/tests/testthat.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(singleCellTK) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following object is masked from 'package:utils': findMatches The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: SingleCellExperiment Loading required package: DelayedArray Loading required package: Matrix Attaching package: 'Matrix' The following object is masked from 'package:S4Vectors': expand Loading required package: S4Arrays Loading required package: abind Attaching package: 'S4Arrays' The following object is masked from 'package:abind': abind The following object is masked from 'package:base': rowsum Attaching package: 'DelayedArray' The following objects are masked from 'package:base': apply, scale, sweep Attaching package: 'singleCellTK' The following object is masked from 'package:BiocGenerics': plotPCA > > test_check("singleCellTK") Found 2 batches Using null model in ComBat-seq. Adjusting for 0 covariate(s) or covariate level(s) Estimating dispersions Fitting the GLM model Shrinkage off - using GLM estimates for parameters Adjusting the data Found 2 batches Using null model in ComBat-seq. Adjusting for 1 covariate(s) or covariate level(s) Estimating dispersions Fitting the GLM model Shrinkage off - using GLM estimates for parameters Adjusting the data Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Uploading data to Enrichr... Done. Querying HDSigDB_Human_2021... Done. Parsing results... Done. Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene means 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variance to mean ratios 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene means 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variance to mean ratios 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Estimating GSVA scores for 34 gene sets. Estimating ECDFs with Gaussian kernels | | | 0% | |== | 3% | |==== | 6% | |====== | 9% | |======== | 12% | |========== | 15% | |============ | 18% | |============== | 21% | |================ | 24% | |=================== | 26% | |===================== | 29% | |======================= | 32% | |========================= | 35% | |=========================== | 38% | |============================= | 41% | |=============================== | 44% | |================================= | 47% | |=================================== | 50% | |===================================== | 53% | |======================================= | 56% | |========================================= | 59% | |=========================================== | 62% | |============================================= | 65% | |=============================================== | 68% | |================================================= | 71% | |=================================================== | 74% | |====================================================== | 76% | |======================================================== | 79% | |========================================================== | 82% | |============================================================ | 85% | |============================================================== | 88% | |================================================================ | 91% | |================================================================== | 94% | |==================================================================== | 97% | |======================================================================| 100% Estimating GSVA scores for 2 gene sets. Estimating ECDFs with Gaussian kernels | | | 0% | |=================================== | 50% | |======================================================================| 100% Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 390 Number of edges: 9590 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.8042 Number of communities: 6 Elapsed time: 0 seconds Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| [ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ] [ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ] > > proc.time() user system elapsed 433.711 9.250 576.846
singleCellTK.Rcheck/singleCellTK-Ex.timings
name | user | system | elapsed | |
MitoGenes | 0.004 | 0.004 | 0.013 | |
SEG | 0.004 | 0.005 | 0.012 | |
calcEffectSizes | 0.412 | 0.015 | 0.566 | |
combineSCE | 3.334 | 0.102 | 4.505 | |
computeZScore | 0.481 | 0.016 | 0.634 | |
convertSCEToSeurat | 6.030 | 0.269 | 7.974 | |
convertSeuratToSCE | 0.953 | 0.024 | 1.329 | |
dedupRowNames | 0.113 | 0.005 | 0.173 | |
detectCellOutlier | 8.102 | 0.179 | 10.746 | |
diffAbundanceFET | 0.083 | 0.004 | 0.112 | |
discreteColorPalette | 0.011 | 0.001 | 0.016 | |
distinctColors | 0.004 | 0.001 | 0.005 | |
downSampleCells | 1.408 | 0.184 | 2.090 | |
downSampleDepth | 1.085 | 0.046 | 1.460 | |
expData-ANY-character-method | 0.688 | 0.010 | 0.926 | |
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method | 0.771 | 0.010 | 1.035 | |
expData-set | 0.779 | 0.025 | 1.039 | |
expData | 0.754 | 0.078 | 1.147 | |
expDataNames-ANY-method | 0.669 | 0.010 | 0.878 | |
expDataNames | 0.659 | 0.012 | 0.849 | |
expDeleteDataTag | 0.061 | 0.003 | 0.085 | |
expSetDataTag | 0.044 | 0.004 | 0.068 | |
expTaggedData | 0.048 | 0.003 | 0.069 | |
exportSCE | 0.039 | 0.006 | 0.057 | |
exportSCEtoAnnData | 0.140 | 0.005 | 0.193 | |
exportSCEtoFlatFile | 0.144 | 0.005 | 0.196 | |
featureIndex | 0.064 | 0.006 | 0.085 | |
generateSimulatedData | 0.079 | 0.007 | 0.122 | |
getBiomarker | 0.096 | 0.007 | 0.127 | |
getDEGTopTable | 1.915 | 0.059 | 2.605 | |
getDiffAbundanceResults | 0.073 | 0.002 | 0.097 | |
getEnrichRResult | 0.662 | 0.054 | 2.368 | |
getFindMarkerTopTable | 7.181 | 0.077 | 9.489 | |
getMSigDBTable | 0.008 | 0.006 | 0.017 | |
getPathwayResultNames | 0.046 | 0.006 | 0.066 | |
getSampleSummaryStatsTable | 0.731 | 0.008 | 0.955 | |
getSoupX | 0.000 | 0.000 | 0.001 | |
getTSCANResults | 3.871 | 0.056 | 5.162 | |
getTopHVG | 1.717 | 0.016 | 2.255 | |
importAnnData | 0.003 | 0.001 | 0.004 | |
importBUStools | 0.764 | 0.024 | 1.041 | |
importCellRanger | 2.352 | 0.063 | 3.225 | |
importCellRangerV2Sample | 0.581 | 0.005 | 0.734 | |
importCellRangerV3Sample | 0.854 | 0.021 | 1.126 | |
importDropEst | 0.770 | 0.038 | 1.031 | |
importExampleData | 24.558 | 2.551 | 35.413 | |
importGeneSetsFromCollection | 1.590 | 0.159 | 2.209 | |
importGeneSetsFromGMT | 0.130 | 0.007 | 0.170 | |
importGeneSetsFromList | 0.279 | 0.009 | 0.362 | |
importGeneSetsFromMSigDB | 6.027 | 0.201 | 8.095 | |
importMitoGeneSet | 0.116 | 0.015 | 0.178 | |
importOptimus | 0.003 | 0.001 | 0.008 | |
importSEQC | 0.557 | 0.026 | 0.745 | |
importSTARsolo | 0.633 | 0.058 | 0.933 | |
iterateSimulations | 0.780 | 0.057 | 1.152 | |
listSampleSummaryStatsTables | 0.864 | 0.010 | 1.168 | |
mergeSCEColData | 1.038 | 0.035 | 1.387 | |
mouseBrainSubsetSCE | 0.047 | 0.006 | 0.078 | |
msigdb_table | 0.002 | 0.005 | 0.011 | |
plotBarcodeRankDropsResults | 1.894 | 0.035 | 2.479 | |
plotBarcodeRankScatter | 1.580 | 0.021 | 2.397 | |
plotBatchCorrCompare | 14.450 | 0.158 | 18.753 | |
plotBatchVariance | 0.743 | 0.050 | 1.033 | |
plotBcdsResults | 12.049 | 0.206 | 15.396 | |
plotClusterAbundance | 2.572 | 0.038 | 3.175 | |
plotCxdsResults | 9.211 | 0.081 | 11.612 | |
plotDEGHeatmap | 6.663 | 0.131 | 8.676 | |
plotDEGRegression | 8.689 | 0.088 | 11.221 | |
plotDEGViolin | 10.123 | 0.153 | 13.094 | |
plotDEGVolcano | 2.323 | 0.025 | 2.955 | |
plotDecontXResults | 11.623 | 0.091 | 15.244 | |
plotDimRed | 0.603 | 0.008 | 0.869 | |
plotDoubletFinderResults | 33.822 | 0.243 | 44.658 | |
plotEmptyDropsResults | 10.511 | 0.044 | 14.191 | |
plotEmptyDropsScatter | 10.440 | 0.052 | 14.397 | |
plotFindMarkerHeatmap | 10.718 | 0.053 | 14.700 | |
plotMASTThresholdGenes | 3.600 | 0.043 | 4.961 | |
plotPCA | 1.198 | 0.015 | 1.646 | |
plotPathway | 1.817 | 0.021 | 2.482 | |
plotRunPerCellQCResults | 4.968 | 0.037 | 6.761 | |
plotSCEBarAssayData | 0.380 | 0.008 | 0.508 | |
plotSCEBarColData | 0.293 | 0.006 | 0.388 | |
plotSCEBatchFeatureMean | 0.572 | 0.005 | 0.776 | |
plotSCEDensity | 0.472 | 0.009 | 0.655 | |
plotSCEDensityAssayData | 0.362 | 0.008 | 0.490 | |
plotSCEDensityColData | 0.461 | 0.008 | 0.620 | |
plotSCEDimReduceColData | 1.908 | 0.024 | 2.601 | |
plotSCEDimReduceFeatures | 0.798 | 0.010 | 1.097 | |
plotSCEHeatmap | 1.685 | 0.017 | 2.290 | |
plotSCEScatter | 0.788 | 0.011 | 1.083 | |
plotSCEViolin | 0.517 | 0.010 | 0.713 | |
plotSCEViolinAssayData | 0.561 | 0.010 | 0.765 | |
plotSCEViolinColData | 0.517 | 0.010 | 0.713 | |
plotScDblFinderResults | 46.721 | 0.949 | 64.837 | |
plotScanpyDotPlot | 0.045 | 0.005 | 0.067 | |
plotScanpyEmbedding | 0.043 | 0.004 | 0.061 | |
plotScanpyHVG | 0.041 | 0.005 | 0.062 | |
plotScanpyHeatmap | 0.042 | 0.003 | 0.057 | |
plotScanpyMarkerGenes | 0.042 | 0.003 | 0.065 | |
plotScanpyMarkerGenesDotPlot | 0.042 | 0.006 | 0.064 | |
plotScanpyMarkerGenesHeatmap | 0.041 | 0.003 | 0.056 | |
plotScanpyMarkerGenesMatrixPlot | 0.041 | 0.004 | 0.055 | |
plotScanpyMarkerGenesViolin | 0.041 | 0.002 | 0.060 | |
plotScanpyMatrixPlot | 0.042 | 0.006 | 0.061 | |
plotScanpyPCA | 0.041 | 0.004 | 0.062 | |
plotScanpyPCAGeneRanking | 0.044 | 0.004 | 0.059 | |
plotScanpyPCAVariance | 0.043 | 0.004 | 0.061 | |
plotScanpyViolin | 0.041 | 0.005 | 0.063 | |
plotScdsHybridResults | 12.795 | 0.173 | 17.342 | |
plotScrubletResults | 0.046 | 0.008 | 0.073 | |
plotSeuratElbow | 0.045 | 0.003 | 0.062 | |
plotSeuratHVG | 0.040 | 0.004 | 0.057 | |
plotSeuratJackStraw | 0.041 | 0.006 | 0.065 | |
plotSeuratReduction | 0.042 | 0.004 | 0.064 | |
plotSoupXResults | 0 | 0 | 0 | |
plotTSCANClusterDEG | 12.156 | 0.208 | 16.732 | |
plotTSCANClusterPseudo | 5.038 | 0.045 | 6.956 | |
plotTSCANDimReduceFeatures | 5.006 | 0.039 | 6.883 | |
plotTSCANPseudotimeGenes | 4.964 | 0.038 | 6.959 | |
plotTSCANPseudotimeHeatmap | 5.084 | 0.041 | 6.911 | |
plotTSCANResults | 4.768 | 0.039 | 6.275 | |
plotTSNE | 1.164 | 0.018 | 1.542 | |
plotTopHVG | 0.833 | 0.019 | 1.109 | |
plotUMAP | 7.879 | 0.077 | 10.322 | |
readSingleCellMatrix | 0.009 | 0.002 | 0.014 | |
reportCellQC | 0.376 | 0.008 | 0.500 | |
reportDropletQC | 0.040 | 0.004 | 0.056 | |
reportQCTool | 0.382 | 0.009 | 0.506 | |
retrieveSCEIndex | 0.050 | 0.005 | 0.067 | |
runBBKNN | 0.000 | 0.001 | 0.002 | |
runBarcodeRankDrops | 0.899 | 0.010 | 1.193 | |
runBcds | 3.764 | 0.061 | 4.976 | |
runCellQC | 0.404 | 0.019 | 0.559 | |
runComBatSeq | 0.988 | 0.037 | 1.345 | |
runCxds | 1.122 | 0.041 | 1.526 | |
runCxdsBcdsHybrid | 3.840 | 0.059 | 5.084 | |
runDEAnalysis | 1.536 | 0.015 | 2.054 | |
runDecontX | 8.692 | 0.080 | 11.482 | |
runDimReduce | 1.015 | 0.010 | 1.322 | |
runDoubletFinder | 25.041 | 0.166 | 32.603 | |
runDropletQC | 0.041 | 0.005 | 0.079 | |
runEmptyDrops | 9.836 | 0.073 | 12.723 | |
runEnrichR | 0.620 | 0.047 | 67.589 | |
runFastMNN | 3.697 | 0.051 | 4.769 | |
runFeatureSelection | 0.433 | 0.005 | 0.567 | |
runFindMarker | 7.299 | 0.073 | 9.186 | |
runGSVA | 1.527 | 0.018 | 1.972 | |
runHarmony | 0.079 | 0.003 | 0.106 | |
runKMeans | 0.875 | 0.012 | 1.124 | |
runLimmaBC | 0.165 | 0.002 | 0.210 | |
runMNNCorrect | 1.102 | 0.008 | 1.394 | |
runModelGeneVar | 1.004 | 0.012 | 1.285 | |
runNormalization | 1.177 | 0.013 | 1.499 | |
runPerCellQC | 1.195 | 0.016 | 1.528 | |
runSCANORAMA | 0.000 | 0.000 | 0.001 | |
runSCMerge | 0.007 | 0.002 | 0.008 | |
runScDblFinder | 35.873 | 0.471 | 46.252 | |
runScanpyFindClusters | 0.042 | 0.005 | 0.062 | |
runScanpyFindHVG | 0.042 | 0.004 | 0.058 | |
runScanpyFindMarkers | 0.042 | 0.005 | 0.061 | |
runScanpyNormalizeData | 0.443 | 0.007 | 0.562 | |
runScanpyPCA | 0.042 | 0.004 | 0.061 | |
runScanpyScaleData | 0.043 | 0.004 | 0.062 | |
runScanpyTSNE | 0.043 | 0.008 | 0.063 | |
runScanpyUMAP | 0.044 | 0.005 | 0.061 | |
runScranSNN | 1.590 | 0.021 | 2.033 | |
runScrublet | 0.043 | 0.002 | 0.055 | |
runSeuratFindClusters | 0.046 | 0.004 | 0.066 | |
runSeuratFindHVG | 1.536 | 0.120 | 2.085 | |
runSeuratHeatmap | 0.043 | 0.004 | 0.059 | |
runSeuratICA | 0.042 | 0.005 | 0.062 | |
runSeuratJackStraw | 0.042 | 0.005 | 0.061 | |
runSeuratNormalizeData | 0.044 | 0.005 | 0.061 | |
runSeuratPCA | 0.044 | 0.003 | 0.058 | |
runSeuratSCTransform | 7.022 | 0.122 | 9.094 | |
runSeuratScaleData | 0.041 | 0.005 | 0.062 | |
runSeuratUMAP | 0.040 | 0.007 | 0.057 | |
runSingleR | 0.080 | 0.005 | 0.108 | |
runSoupX | 0.001 | 0.001 | 0.001 | |
runTSCAN | 3.155 | 0.024 | 4.017 | |
runTSCANClusterDEAnalysis | 3.502 | 0.039 | 4.589 | |
runTSCANDEG | 3.333 | 0.026 | 4.122 | |
runTSNE | 1.691 | 0.024 | 2.170 | |
runUMAP | 7.913 | 0.069 | 10.037 | |
runVAM | 1.248 | 0.014 | 1.664 | |
runZINBWaVE | 0.007 | 0.002 | 0.011 | |
sampleSummaryStats | 0.661 | 0.009 | 0.854 | |
scaterCPM | 0.240 | 0.004 | 0.318 | |
scaterPCA | 0.933 | 0.011 | 1.200 | |
scaterlogNormCounts | 0.488 | 0.006 | 0.635 | |
sce | 0.038 | 0.010 | 0.067 | |
sctkListGeneSetCollections | 0.167 | 0.010 | 0.218 | |
sctkPythonInstallConda | 0.000 | 0.001 | 0.001 | |
sctkPythonInstallVirtualEnv | 0.000 | 0.000 | 0.001 | |
selectSCTKConda | 0.000 | 0.001 | 0.001 | |
selectSCTKVirtualEnvironment | 0.000 | 0.001 | 0.001 | |
setRowNames | 0.194 | 0.008 | 0.253 | |
setSCTKDisplayRow | 0.965 | 0.021 | 1.263 | |
singleCellTK | 0.000 | 0.001 | 0.001 | |
subDiffEx | 0.978 | 0.021 | 1.254 | |
subsetSCECols | 0.399 | 0.011 | 0.521 | |
subsetSCERows | 0.944 | 0.015 | 1.218 | |
summarizeSCE | 0.121 | 0.005 | 0.159 | |
trimCounts | 0.419 | 0.010 | 0.565 | |