Back to Multiple platform build/check report for BioC 3.16:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2023-03-29 11:05:19 -0400 (Wed, 29 Mar 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.5 LTS)x86_644.2.3 (2023-03-15) -- "Shortstop Beagle" 4482
palomino4Windows Server 2022 Datacenterx644.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" 4278
lconwaymacOS 12.5.1 Montereyx86_644.2.3 (2023-03-15) -- "Shortstop Beagle" 4306
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on nebbiolo2


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1889/2183HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.8.0  (landing page)
Yichen Wang
Snapshot Date: 2023-03-27 14:00:04 -0400 (Mon, 27 Mar 2023)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_16
git_last_commit: 711d2ed
git_last_commit_date: 2022-11-01 11:17:41 -0400 (Tue, 01 Nov 2022)
nebbiolo2Linux (Ubuntu 20.04.5 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.5.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: singleCellTK
Version: 2.8.0
Command: /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/site-library --timings singleCellTK_2.8.0.tar.gz
StartedAt: 2023-03-28 00:10:45 -0400 (Tue, 28 Mar 2023)
EndedAt: 2023-03-28 00:24:34 -0400 (Tue, 28 Mar 2023)
EllapsedTime: 829.2 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/site-library --timings singleCellTK_2.8.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck’
* using R version 4.2.3 (2023-03-15)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.8.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.7Mb
  sub-directories of 1Mb or more:
    extdata   1.6Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   28.357  0.388  28.739
plotDoubletFinderResults 24.439  0.120  24.552
importExampleData        21.437  1.756  23.835
runDoubletFinder         20.971  0.148  21.119
runScDblFinder           16.934  0.672  17.607
plotBatchCorrCompare     10.997  0.164  11.148
plotScdsHybridResults    10.634  0.175   9.828
plotBcdsResults           8.214  0.144   7.513
plotUMAP                  8.173  0.056   8.223
plotDecontXResults        8.038  0.064   8.102
runDecontX                7.086  0.072   7.159
plotEmptyDropsResults     6.768  0.016   6.784
plotEmptyDropsScatter     6.671  0.044   6.715
runEmptyDrops             6.536  0.012   6.548
runUMAP                   6.283  0.132   6.408
plotTSCANClusterDEG       6.125  0.088   6.213
plotCxdsResults           6.095  0.072   6.161
detectCellOutlier         5.065  0.171   5.238
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘singleCellTK.Rmd’ using ‘UTF-8’... OK
 NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.16-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.2.3 (2023-03-15) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.147   0.037   0.169 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.2.3 (2023-03-15) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 20 | SKIP 0 | PASS 221 ]

[ FAIL 0 | WARN 20 | SKIP 0 | PASS 221 ]
> 
> proc.time()
   user  system elapsed 
234.828   5.506 240.831 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0020.0000.002
calcEffectSizes0.1450.0040.149
combineSCE1.6190.0271.647
computeZScore0.3090.0130.321
convertSCEToSeurat3.6480.2203.868
convertSeuratToSCE0.390.000.39
dedupRowNames0.0520.0000.052
detectCellOutlier5.0650.1715.238
diffAbundanceFET0.0390.0080.047
discreteColorPalette0.0020.0040.006
distinctColors0.0020.0010.002
downSampleCells0.6120.0800.692
downSampleDepth0.4890.0150.505
expData-ANY-character-method0.2850.0040.289
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3310.0080.339
expData-set0.3340.0080.342
expData0.3080.0000.308
expDataNames-ANY-method0.3160.0110.328
expDataNames0.2990.0000.299
expDeleteDataTag0.0330.0040.037
expSetDataTag0.0250.0000.025
expTaggedData0.0270.0000.027
exportSCE0.0200.0040.024
exportSCEtoAnnData0.0930.0030.098
exportSCEtoFlatFile0.0960.0000.096
featureIndex0.0370.0000.037
generateSimulatedData0.0430.0040.047
getBiomarker0.0520.0000.052
getDEGTopTable0.8310.0200.851
getDiffAbundanceResults0.0380.0000.038
getEnrichRResult0.4020.0911.819
getFindMarkerTopTable3.3870.1443.530
getMSigDBTable0.0000.0040.004
getPathwayResultNames0.0250.0000.025
getSampleSummaryStatsTable0.3550.0000.355
getSoupX0.4040.0120.415
getTSCANResults2.0440.0482.091
getTopHVG0.8400.0040.843
importAnnData0.0010.0000.001
importBUStools0.2770.0080.284
importCellRanger1.1270.0081.137
importCellRangerV2Sample0.3340.0120.347
importCellRangerV3Sample0.4290.0000.430
importDropEst0.3980.0120.410
importExampleData21.437 1.75623.835
importGeneSetsFromCollection0.7970.0280.825
importGeneSetsFromGMT0.0710.0040.075
importGeneSetsFromList0.1370.0000.137
importGeneSetsFromMSigDB4.4690.3764.845
importMitoGeneSet0.0590.0000.059
importOptimus0.0010.0000.001
importSEQC0.2960.0040.300
importSTARsolo0.300.020.32
iterateSimulations0.3990.0120.411
listSampleSummaryStatsTables0.5030.0160.519
mergeSCEColData0.4980.0080.506
mouseBrainSubsetSCE0.0280.0000.028
msigdb_table0.0010.0000.001
plotBarcodeRankDropsResults0.9840.0040.988
plotBarcodeRankScatter0.8520.0080.861
plotBatchCorrCompare10.997 0.16411.148
plotBatchVariance0.3110.0080.318
plotBcdsResults8.2140.1447.513
plotClusterAbundance1.0570.0441.101
plotCxdsResults6.0950.0726.161
plotDEGHeatmap2.8220.0122.834
plotDEGRegression3.4600.0123.465
plotDEGViolin4.0850.0484.129
plotDEGVolcano1.2330.0001.232
plotDecontXResults8.0380.0648.102
plotDimRed0.2700.0040.275
plotDoubletFinderResults24.439 0.12024.552
plotEmptyDropsResults6.7680.0166.784
plotEmptyDropsScatter6.6710.0446.715
plotFindMarkerHeatmap4.3450.0284.373
plotMASTThresholdGenes1.5240.0001.524
plotPCA0.6000.0040.604
plotPathway0.8830.0000.883
plotRunPerCellQCResults1.4080.0001.408
plotSCEBarAssayData0.1750.0030.178
plotSCEBarColData0.1360.0080.143
plotSCEBatchFeatureMean0.2410.0000.240
plotSCEDensity0.3270.0040.332
plotSCEDensityAssayData0.2040.0040.208
plotSCEDensityColData0.2130.0000.213
plotSCEDimReduceColData0.7940.0040.799
plotSCEDimReduceFeatures0.4890.0040.493
plotSCEHeatmap0.7560.0040.759
plotSCEScatter0.4560.0000.456
plotSCEViolin0.3480.0040.351
plotSCEViolinAssayData0.2760.0000.276
plotSCEViolinColData0.2440.0040.248
plotScDblFinderResults28.357 0.38828.739
plotScdsHybridResults10.634 0.175 9.828
plotScrubletResults0.0270.0000.027
plotSeuratElbow0.0250.0000.025
plotSeuratHVG0.0260.0000.026
plotSeuratJackStraw0.0250.0000.025
plotSeuratReduction0.0220.0030.026
plotSoupXResults0.190.000.19
plotTSCANClusterDEG6.1250.0886.213
plotTSCANClusterPseudo2.8460.0162.862
plotTSCANDimReduceFeatures2.4400.0042.443
plotTSCANPseudotimeGenes2.4130.0242.437
plotTSCANPseudotimeHeatmap2.5310.0202.552
plotTSCANResults2.3740.0002.374
plotTSNE0.5450.0000.545
plotTopHVG0.4660.0000.467
plotUMAP8.1730.0568.223
readSingleCellMatrix0.0050.0000.005
reportCellQC0.1970.0000.197
reportDropletQC0.0250.0000.025
reportQCTool0.1950.0000.195
retrieveSCEIndex0.0320.0000.031
runBBKNN000
runBarcodeRankDrops0.4810.0000.481
runBcds2.7370.0561.724
runCellQC0.1980.0000.199
runComBatSeq0.4430.0080.451
runCxds0.6400.0080.649
runCxdsBcdsHybrid2.5370.0161.630
runDEAnalysis0.7080.0000.709
runDecontX7.0860.0727.159
runDimReduce0.4610.0000.461
runDoubletFinder20.971 0.14821.119
runDropletQC0.0260.0000.026
runEmptyDrops6.5360.0126.548
runEnrichR0.3620.0271.743
runFastMNN1.8950.0521.946
runFeatureSelection0.2160.0080.224
runFindMarker3.6050.0603.665
runGSVA0.8260.0960.922
runHarmony0.0350.0030.039
runKMeans0.3920.0200.413
runLimmaBC0.0710.0080.079
runMNNCorrect0.5020.0720.573
runModelGeneVar0.4380.0440.483
runNormalization0.5520.0560.608
runPerCellQC0.5180.0440.562
runSCANORAMA000
runSCMerge0.0040.0000.003
runScDblFinder16.934 0.67217.607
runScranSNN0.6870.0680.755
runScrublet0.0250.0000.025
runSeuratFindClusters0.0230.0000.023
runSeuratFindHVG0.6260.0680.693
runSeuratHeatmap0.0230.0000.023
runSeuratICA0.0230.0000.022
runSeuratJackStraw0.0240.0000.023
runSeuratNormalizeData0.0240.0000.024
runSeuratPCA0.0240.0000.023
runSeuratSCTransform2.8830.2243.109
runSeuratScaleData0.0230.0000.023
runSeuratUMAP0.0230.0000.023
runSingleR0.0330.0000.032
runSoupX0.1680.0000.167
runTSCAN1.3860.0201.405
runTSCANClusterDEAnalysis1.5450.0481.593
runTSCANDEG1.6280.0321.660
runTSNE0.8570.0080.865
runUMAP6.2830.1326.408
runVAM0.4930.0000.493
runZINBWaVE0.0030.0000.004
sampleSummaryStats0.2880.0000.288
scaterCPM0.1310.0040.135
scaterPCA0.4090.0000.409
scaterlogNormCounts0.2400.0080.248
sce0.0230.0000.023
sctkListGeneSetCollections0.0740.0000.074
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0770.0000.077
setSCTKDisplayRow0.3950.0000.395
singleCellTK000
subDiffEx0.4750.0080.483
subsetSCECols0.1610.0000.161
subsetSCERows0.3930.0000.392
summarizeSCE0.0570.0000.057
trimCounts0.2630.0000.263