Back to Multiple platform build/check report for BioC 3.16:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2023-03-20 11:06:22 -0400 (Mon, 20 Mar 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.5 LTS)x86_644.2.2 (2022-10-31) -- "Innocent and Trusting" 4516
palomino4Windows Server 2022 Datacenterx644.2.2 (2022-10-31 ucrt) -- "Innocent and Trusting" 4295
lconwaymacOS 12.5.1 Montereyx86_644.2.2 (2022-10-31) -- "Innocent and Trusting" 4324
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on lconway


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1889/2183HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.8.0  (landing page)
Yichen Wang
Snapshot Date: 2023-03-17 14:00:04 -0400 (Fri, 17 Mar 2023)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_16
git_last_commit: 711d2ed
git_last_commit_date: 2022-11-01 11:17:41 -0400 (Tue, 01 Nov 2022)
nebbiolo2Linux (Ubuntu 20.04.5 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.5.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: singleCellTK
Version: 2.8.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.8.0.tar.gz
StartedAt: 2023-03-17 22:54:50 -0400 (Fri, 17 Mar 2023)
EndedAt: 2023-03-17 23:07:05 -0400 (Fri, 17 Mar 2023)
EllapsedTime: 735.5 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.8.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck’
* using R version 4.2.2 (2022-10-31)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.8.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.6Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.8Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   21.794  0.819  22.799
plotDoubletFinderResults 20.857  0.225  21.215
importExampleData        17.410  2.289  22.531
runDoubletFinder         16.267  0.159  16.489
runScDblFinder           14.289  0.401  14.730
plotBatchCorrCompare      9.460  0.126   9.612
plotScdsHybridResults     7.936  0.188   8.181
plotDecontXResults        6.748  0.082   6.849
plotBcdsResults           6.511  0.161   6.726
runDecontX                5.804  0.101   5.915
plotUMAP                  5.768  0.088   5.866
plotEmptyDropsResults     5.710  0.026   5.760
runUMAP                   5.431  0.076   5.513
plotEmptyDropsScatter     5.436  0.026   5.472
plotCxdsResults           5.291  0.063   5.360
runEmptyDrops             5.049  0.013   5.067
detectCellOutlier         4.697  0.166   5.073
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.16-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.2/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.2.2 (2022-10-31) -- "Innocent and Trusting"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.182   0.070   0.251 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.2.2 (2022-10-31) -- "Innocent and Trusting"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 20 | SKIP 0 | PASS 221 ]

[ FAIL 0 | WARN 20 | SKIP 0 | PASS 221 ]
> 
> proc.time()
   user  system elapsed 
210.188   6.228 223.971 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0020.004
SEG0.0020.0010.003
calcEffectSizes0.1150.0030.117
combineSCE1.3020.0221.352
computeZScore0.2420.0080.250
convertSCEToSeurat3.0280.2283.376
convertSeuratToSCE0.3630.0070.371
dedupRowNames0.0490.0040.053
detectCellOutlier4.6970.1665.073
diffAbundanceFET0.0450.0020.047
discreteColorPalette0.0070.0000.008
distinctColors0.0030.0000.003
downSampleCells0.6280.0710.722
downSampleDepth0.5060.0720.608
expData-ANY-character-method0.2570.0070.264
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3170.0090.329
expData-set0.3010.0110.313
expData0.2860.0060.293
expDataNames-ANY-method0.2540.0060.259
expDataNames0.2480.0040.252
expDeleteDataTag0.0400.0030.043
expSetDataTag0.0230.0020.025
expTaggedData0.0230.0020.024
exportSCE0.0200.0020.022
exportSCEtoAnnData0.0740.0010.076
exportSCEtoFlatFile0.0740.0030.076
featureIndex0.0310.0030.033
generateSimulatedData0.0350.0020.037
getBiomarker0.0390.0020.040
getDEGTopTable0.7640.0410.828
getDiffAbundanceResults0.0380.0010.039
getEnrichRResult0.3020.0331.903
getFindMarkerTopTable2.8790.0362.924
getMSigDBTable0.0030.0020.005
getPathwayResultNames0.0260.0030.030
getSampleSummaryStatsTable0.2960.0040.301
getSoupX0.3710.0110.384
getTSCANResults1.7090.0371.779
getTopHVG0.6750.0120.701
importAnnData0.0010.0000.001
importBUStools0.2950.0050.303
importCellRanger0.9000.0270.936
importCellRangerV2Sample0.2400.0020.242
importCellRangerV3Sample0.3240.0120.340
importDropEst0.2910.0030.294
importExampleData17.410 2.28922.531
importGeneSetsFromCollection0.6690.1370.844
importGeneSetsFromGMT0.0570.0060.066
importGeneSetsFromList0.0970.0040.102
importGeneSetsFromMSigDB2.9470.1283.123
importMitoGeneSet0.0510.0080.062
importOptimus0.0010.0000.001
importSEQC0.2100.0040.216
importSTARsolo0.2380.0080.251
iterateSimulations0.3140.0110.325
listSampleSummaryStatsTables0.3860.0220.408
mergeSCEColData0.4000.0290.447
mouseBrainSubsetSCE0.0250.0020.027
msigdb_table0.0010.0020.004
plotBarcodeRankDropsResults0.7280.0160.795
plotBarcodeRankScatter0.7220.0150.743
plotBatchCorrCompare9.4600.1269.612
plotBatchVariance0.2490.0050.255
plotBcdsResults6.5110.1616.726
plotClusterAbundance0.9000.0320.936
plotCxdsResults5.2910.0635.360
plotDEGHeatmap2.4520.0842.559
plotDEGRegression3.0820.0473.142
plotDEGViolin3.5850.0813.674
plotDEGVolcano0.9070.0150.934
plotDecontXResults6.7480.0826.849
plotDimRed0.2370.0040.242
plotDoubletFinderResults20.857 0.22521.215
plotEmptyDropsResults5.7100.0265.760
plotEmptyDropsScatter5.4360.0265.472
plotFindMarkerHeatmap3.7670.0293.817
plotMASTThresholdGenes1.2510.0241.296
plotPCA0.4590.0060.466
plotPathway0.7320.0110.745
plotRunPerCellQCResults1.0740.0131.090
plotSCEBarAssayData0.1460.0030.149
plotSCEBarColData0.1330.0040.143
plotSCEBatchFeatureMean0.1830.0060.200
plotSCEDensity0.2380.0060.273
plotSCEDensityAssayData0.1320.0030.136
plotSCEDensityColData0.1950.0030.199
plotSCEDimReduceColData0.6740.0090.687
plotSCEDimReduceFeatures0.3770.0080.401
plotSCEHeatmap0.5940.0100.614
plotSCEScatter0.3780.0080.389
plotSCEViolin0.2100.0040.214
plotSCEViolinAssayData0.2260.0050.232
plotSCEViolinColData0.2040.0050.210
plotScDblFinderResults21.794 0.81922.799
plotScdsHybridResults7.9360.1888.181
plotScrubletResults0.0210.0060.029
plotSeuratElbow0.0220.0120.037
plotSeuratHVG0.0270.0040.031
plotSeuratJackStraw0.0220.0040.026
plotSeuratReduction0.0230.0050.028
plotSoupXResults0.1940.0070.202
plotTSCANClusterDEG4.5860.0944.693
plotTSCANClusterPseudo1.8330.0271.877
plotTSCANDimReduceFeatures1.8640.0201.892
plotTSCANPseudotimeGenes1.7930.0181.815
plotTSCANPseudotimeHeatmap1.8560.0151.873
plotTSCANResults1.8440.0191.868
plotTSNE0.4370.0070.446
plotTopHVG0.3360.0070.344
plotUMAP5.7680.0885.866
readSingleCellMatrix0.0040.0010.006
reportCellQC0.1560.0070.163
reportDropletQC0.0210.0060.028
reportQCTool0.1630.0050.169
retrieveSCEIndex0.0260.0030.030
runBBKNN000
runBarcodeRankDrops0.3590.0060.366
runBcds1.5020.0501.556
runCellQC0.1460.0030.149
runComBatSeq0.4010.0170.425
runCxds0.5170.0570.588
runCxdsBcdsHybrid1.5900.0451.639
runDEAnalysis0.5790.0060.586
runDecontX5.8040.1015.915
runDimReduce0.3910.0110.408
runDoubletFinder16.267 0.15916.489
runDropletQC0.0220.0030.025
runEmptyDrops5.0490.0135.067
runEnrichR0.2000.0241.641
runFastMNN1.4280.0581.519
runFeatureSelection0.1690.0010.170
runFindMarker2.7050.0342.748
runGSVA0.6080.0180.631
runHarmony0.0350.0010.035
runKMeans0.3510.0060.358
runLimmaBC0.0670.0010.069
runMNNCorrect0.4640.0030.469
runModelGeneVar0.3770.0050.384
runNormalization0.5000.0090.511
runPerCellQC0.4660.0230.489
runSCANORAMA0.0000.0000.001
runSCMerge0.0030.0010.004
runScDblFinder14.289 0.40114.730
runScranSNN0.5520.0080.561
runScrublet0.0200.0030.023
runSeuratFindClusters0.0180.0020.021
runSeuratFindHVG0.4730.0100.483
runSeuratHeatmap0.0730.0650.139
runSeuratICA0.0240.0370.067
runSeuratJackStraw0.0230.0030.025
runSeuratNormalizeData0.0230.0040.026
runSeuratPCA0.0200.0020.023
runSeuratSCTransform3.1700.1003.297
runSeuratScaleData0.0280.0070.036
runSeuratUMAP0.0230.0070.030
runSingleR0.0370.0030.039
runSoupX0.1590.0050.164
runTSCAN1.4120.0241.446
runTSCANClusterDEAnalysis1.4950.0241.528
runTSCANDEG1.3370.0151.357
runTSNE0.7900.0160.811
runUMAP5.4310.0765.513
runVAM0.4840.0090.495
runZINBWaVE0.0020.0010.004
sampleSummaryStats0.2460.0070.256
scaterCPM0.1210.0020.128
scaterPCA0.4000.0110.414
scaterlogNormCounts0.2200.0040.225
sce0.0200.0050.026
sctkListGeneSetCollections0.0660.0040.071
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0010.0000.000
setRowNames0.0840.0080.092
setSCTKDisplayRow0.3580.0080.368
singleCellTK000
subDiffEx0.4890.0280.518
subsetSCECols0.1640.0090.173
subsetSCERows0.3290.0100.340
summarizeSCE0.0500.0010.053
trimCounts0.2290.0130.247