Showcases the use of sechm to plot annotated heatmaps from SummarizedExperiment objects.
sechm 1.14.0
The sechm package is a wrapper around the ComplexHeatmap package to facilitate the creation of annotated heatmaps from objects of the Bioconductor class SummarizedExperiment (and extensions thereof).
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("sechm")
To showcase the main functions, we will use an example object which contains (a subset of) RNAseq of mouse hippocampi after Forskolin-induced long-term potentiation:
suppressPackageStartupMessages({
library(SummarizedExperiment)
library(sechm)
})
data("Chen2017", package="sechm")
SE <- Chen2017
This is taken from Chen et al., 2017.
The sechm
function simplifies the generation of heatmaps from
SummarizedExperiment
. It minimally requires, as input, a
SummarizedExperiment
object and a set of genes (or features, i.e. rows of
sechm
) to plot:
g <- c("Egr1", "Nr4a1", "Fos", "Egr2", "Sgk1", "Arc", "Dusp1", "Fosb", "Sik1")
sechm(SE, features=g)
## Using assay 'logFC'
# with row scaling:
sechm(SE, features=g, do.scale=TRUE)
## Using assay 'logFC'
The assay can be selected, and any rowData
or colData
columns can be
specified as annotation:
rowData(SE)$meanLogCPM <- rowMeans(assays(SE)$logcpm)
sechm(SE, features=g, assayName="logFC", top_annotation=c("Condition","Time"), left_annotation=c("meanLogCPM"))
Column names are ommitted by default, but can be displayed:
sechm(SE, features=g, do.scale=TRUE, show_colnames=TRUE)
## Using assay 'logFC'
Since sechm
uses the
ComplexHeatmap
engine for plotting, any argument of ComplexHeatmap::Heatmap
can be passed:
sechm(SE, features=g, do.scale=TRUE, row_title="My genes")
## Using assay 'logFC'
When plotting a lot of rows, by default row names are not shown (can be
overriden), but specific genes can be highlighted with the mark
argument:
sechm(SE, features=row.names(SE), mark=g, do.scale=TRUE, top_annotation=c("Condition","Time"))
## Using assay 'logFC'
We can also add gaps using the same columns:
sechm(SE, features=g, do.scale=TRUE, top_annotation="Time", gaps_at="Condition")
## Using assay 'logFC'