Contents

1 Introduction

Here, we explain the way to generate CCI simulation data. scTensor has a function cellCellSimulate to generate the simulation data.

The simplest way to generate such data is cellCellSimulate with default parameters.

suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

This function internally generate the parameter sets by newCCSParams, and the values of the parameter can be changed, and specified as the input of cellCellSimulate by users as follows.

# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
##   ..@ nGene  : num 1000
##   ..@ nCell  : num [1:3] 50 50 50
##   ..@ cciInfo:List of 4
##   .. ..$ nPair: num 500
##   .. ..$ CCI1 :List of 4
##   .. .. ..$ LPattern: num [1:3] 1 0 0
##   .. .. ..$ RPattern: num [1:3] 0 1 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI2 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 1 0
##   .. .. ..$ RPattern: num [1:3] 0 0 1
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI3 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 0 1
##   .. .. ..$ RPattern: num [1:3] 1 0 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   ..@ lambda : num 1
##   ..@ seed   : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
    nPair=500, # Total number of L-R pairs
    # 1st CCI
    CCI1=list(
        LPattern=c(1,0,0), # Only 1st cell type has this pattern
        RPattern=c(0,1,0), # Only 2nd cell type has this pattern
        nGene=50, # 50 pairs are generated as CCI1
        fc="E10"), # Degree of differential expression (Fold Change)
    # 2nd CCI
    CCI2=list(
        LPattern=c(0,1,0),
        RPattern=c(0,0,1),
        nGene=30,
        fc="E100")
    )
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123

# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

The output object sim has some attributes as follows.

Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.

dim(sim$input)
## [1] 1000   60
sim$input[1:2,1:3]
##       Cell1 Cell2 Cell3
## Gene1  9105     2     0
## Gene2     4    37   850

Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.

dim(sim$LR)
## [1] 500   2
sim$LR[1:10,]
##    GENEID_L GENEID_R
## 1     Gene1   Gene81
## 2     Gene2   Gene82
## 3     Gene3   Gene83
## 4     Gene4   Gene84
## 5     Gene5   Gene85
## 6     Gene6   Gene86
## 7     Gene7   Gene87
## 8     Gene8   Gene88
## 9     Gene9   Gene89
## 10   Gene10   Gene90
sim$LR[46:55,]
##    GENEID_L GENEID_R
## 46   Gene46  Gene126
## 47   Gene47  Gene127
## 48   Gene48  Gene128
## 49   Gene49  Gene129
## 50   Gene50  Gene130
## 51   Gene51  Gene131
## 52   Gene52  Gene132
## 53   Gene53  Gene133
## 54   Gene54  Gene134
## 55   Gene55  Gene135
sim$LR[491:500,]
##     GENEID_L GENEID_R
## 491  Gene571  Gene991
## 492  Gene572  Gene992
## 493  Gene573  Gene993
## 494  Gene574  Gene994
## 495  Gene575  Gene995
## 496  Gene576  Gene996
## 497  Gene577  Gene997
## 498  Gene578  Gene998
## 499  Gene579  Gene999
## 500  Gene580 Gene1000

Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.

length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 
##   "Cell1"   "Cell2"   "Cell3"   "Cell4"   "Cell5"   "Cell6"
table(names(sim$celltypes))
## 
## Celltype1 Celltype2 Celltype3 
##        20        20        20

Session information

## R version 4.4.0 RC (2024-04-16 r86468)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] scTGIF_1.19.0                          
##  [2] Homo.sapiens_1.3.1                     
##  [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [4] org.Hs.eg.db_3.19.1                    
##  [5] GO.db_3.19.1                           
##  [6] OrganismDbi_1.47.0                     
##  [7] GenomicFeatures_1.57.0                 
##  [8] AnnotationDbi_1.67.0                   
##  [9] SingleCellExperiment_1.27.0            
## [10] SummarizedExperiment_1.35.0            
## [11] Biobase_2.65.0                         
## [12] GenomicRanges_1.57.0                   
## [13] GenomeInfoDb_1.41.0                    
## [14] IRanges_2.39.0                         
## [15] S4Vectors_0.43.0                       
## [16] MatrixGenerics_1.17.0                  
## [17] matrixStats_1.3.0                      
## [18] scTensor_2.15.0                        
## [19] RSQLite_2.3.6                          
## [20] LRBaseDbi_2.15.0                       
## [21] AnnotationHub_3.13.0                   
## [22] BiocFileCache_2.13.0                   
## [23] dbplyr_2.5.0                           
## [24] BiocGenerics_0.51.0                    
## [25] BiocStyle_2.33.0                       
## 
## loaded via a namespace (and not attached):
##   [1] fs_1.6.4                 bitops_1.0-7             enrichplot_1.25.0       
##   [4] HDO.db_0.99.1            httr_1.4.7               webshot_0.5.5           
##   [7] RColorBrewer_1.1-3       Rgraphviz_2.49.0         tools_4.4.0             
##  [10] backports_1.4.1          utf8_1.2.4               R6_2.5.1                
##  [13] lazyeval_0.2.2           withr_3.0.0              prettyunits_1.2.0       
##  [16] graphite_1.51.0          gridExtra_2.3            schex_1.19.0            
##  [19] fdrtool_1.2.17           cli_3.6.2                TSP_1.2-4               
##  [22] scatterpie_0.2.2         entropy_1.3.1            sass_0.4.9              
##  [25] genefilter_1.87.0        meshr_2.11.0             Rsamtools_2.21.0        
##  [28] yulab.utils_0.1.4        txdbmaker_1.1.0          gson_0.1.0              
##  [31] DOSE_3.31.0              MeSHDbi_1.41.0           AnnotationForge_1.47.0  
##  [34] nnTensor_1.2.0           plotrix_3.8-4            maps_3.4.2              
##  [37] visNetwork_2.1.2         generics_0.1.3           gridGraphics_0.5-1      
##  [40] GOstats_2.71.0           BiocIO_1.15.0            dplyr_1.1.4             
##  [43] dendextend_1.17.1        Matrix_1.7-0             fansi_1.0.6             
##  [46] abind_1.4-5              lifecycle_1.0.4          yaml_2.3.8              
##  [49] qvalue_2.37.0            SparseArray_1.5.0        grid_4.4.0              
##  [52] blob_1.2.4               misc3d_0.9-1             crayon_1.5.2            
##  [55] lattice_0.22-6           msigdbr_7.5.1            cowplot_1.1.3           
##  [58] annotate_1.83.0          KEGGREST_1.45.0          magick_2.8.3            
##  [61] pillar_1.9.0             knitr_1.46               fgsea_1.31.0            
##  [64] tcltk_4.4.0              rjson_0.2.21             codetools_0.2-20        
##  [67] fastmatch_1.1-4          glue_1.7.0               outliers_0.15           
##  [70] ggfun_0.1.4              data.table_1.15.4        vctrs_0.6.5             
##  [73] png_0.1-8                treeio_1.29.0            spam_2.10-0             
##  [76] rTensor_1.4.8            gtable_0.3.5             assertthat_0.2.1        
##  [79] cachem_1.0.8             xfun_0.43                S4Arrays_1.5.0          
##  [82] mime_0.12                tidygraph_1.3.1          survival_3.6-4          
##  [85] seriation_1.5.5          iterators_1.0.14         tinytex_0.50            
##  [88] fields_15.2              nlme_3.1-164             Category_2.71.0         
##  [91] ggtree_3.13.0            bit64_4.0.5              progress_1.2.3          
##  [94] filelock_1.0.3           bslib_0.7.0              colorspace_2.1-0        
##  [97] DBI_1.2.2                tidyselect_1.2.1         bit_4.0.5               
## [100] compiler_4.4.0           curl_5.2.1               httr2_1.0.1             
## [103] graph_1.83.0             xml2_1.3.6               DelayedArray_0.31.0     
## [106] plotly_4.10.4            bookdown_0.39            shadowtext_0.1.3        
## [109] rtracklayer_1.65.0       checkmate_2.3.1          scales_1.3.0            
## [112] hexbin_1.28.3            RBGL_1.81.0              plot3D_1.4.1            
## [115] rappdirs_0.3.3           stringr_1.5.1            digest_0.6.35           
## [118] rmarkdown_2.26           ca_0.71.1                XVector_0.45.0          
## [121] htmltools_0.5.8.1        pkgconfig_2.0.3          highr_0.10              
## [124] fastmap_1.1.1            rlang_1.1.3              htmlwidgets_1.6.4       
## [127] UCSC.utils_1.1.0         farver_2.1.1             jquerylib_0.1.4         
## [130] jsonlite_1.8.8           BiocParallel_1.39.0      GOSemSim_2.31.0         
## [133] RCurl_1.98-1.14          magrittr_2.0.3           GenomeInfoDbData_1.2.12 
## [136] ggplotify_0.1.2          dotCall64_1.1-1          patchwork_1.2.0         
## [139] munsell_0.5.1            Rcpp_1.0.12              babelgene_22.9          
## [142] ape_5.8                  viridis_0.6.5            stringi_1.8.3           
## [145] tagcloud_0.6             ggraph_2.2.1             zlibbioc_1.51.0         
## [148] MASS_7.3-60.2            plyr_1.8.9               parallel_4.4.0          
## [151] ggrepel_0.9.5            Biostrings_2.73.0        graphlayouts_1.1.1      
## [154] splines_4.4.0            hms_1.1.3                igraph_2.0.3            
## [157] biomaRt_2.61.0           reshape2_1.4.4           BiocVersion_3.20.0      
## [160] XML_3.99-0.16.1          evaluate_0.23            BiocManager_1.30.22     
## [163] foreach_1.5.2            tweenr_2.0.3             tidyr_1.3.1             
## [166] purrr_1.0.2              polyclip_1.10-6          heatmaply_1.5.0         
## [169] ggplot2_3.5.1            ReactomePA_1.49.0        ggforce_0.4.2           
## [172] xtable_1.8-4             restfulr_0.0.15          reactome.db_1.88.0      
## [175] tidytree_0.4.6           viridisLite_0.4.2        tibble_3.2.1            
## [178] aplot_0.2.2              ccTensor_1.0.2           GenomicAlignments_1.41.0
## [181] memoise_2.0.1            registry_0.5-1           cluster_2.1.6           
## [184] concaveman_1.1.0         GSEABase_1.67.0