cellCellSimulate
functionscTensor 2.15.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.4.0 RC (2024-04-16 r86468)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.19.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.19.1
## [5] GO.db_3.19.1
## [6] OrganismDbi_1.47.0
## [7] GenomicFeatures_1.57.0
## [8] AnnotationDbi_1.67.0
## [9] SingleCellExperiment_1.27.0
## [10] SummarizedExperiment_1.35.0
## [11] Biobase_2.65.0
## [12] GenomicRanges_1.57.0
## [13] GenomeInfoDb_1.41.0
## [14] IRanges_2.39.0
## [15] S4Vectors_0.43.0
## [16] MatrixGenerics_1.17.0
## [17] matrixStats_1.3.0
## [18] scTensor_2.15.0
## [19] RSQLite_2.3.6
## [20] LRBaseDbi_2.15.0
## [21] AnnotationHub_3.13.0
## [22] BiocFileCache_2.13.0
## [23] dbplyr_2.5.0
## [24] BiocGenerics_0.51.0
## [25] BiocStyle_2.33.0
##
## loaded via a namespace (and not attached):
## [1] fs_1.6.4 bitops_1.0-7 enrichplot_1.25.0
## [4] HDO.db_0.99.1 httr_1.4.7 webshot_0.5.5
## [7] RColorBrewer_1.1-3 Rgraphviz_2.49.0 tools_4.4.0
## [10] backports_1.4.1 utf8_1.2.4 R6_2.5.1
## [13] lazyeval_0.2.2 withr_3.0.0 prettyunits_1.2.0
## [16] graphite_1.51.0 gridExtra_2.3 schex_1.19.0
## [19] fdrtool_1.2.17 cli_3.6.2 TSP_1.2-4
## [22] scatterpie_0.2.2 entropy_1.3.1 sass_0.4.9
## [25] genefilter_1.87.0 meshr_2.11.0 Rsamtools_2.21.0
## [28] yulab.utils_0.1.4 txdbmaker_1.1.0 gson_0.1.0
## [31] DOSE_3.31.0 MeSHDbi_1.41.0 AnnotationForge_1.47.0
## [34] nnTensor_1.2.0 plotrix_3.8-4 maps_3.4.2
## [37] visNetwork_2.1.2 generics_0.1.3 gridGraphics_0.5-1
## [40] GOstats_2.71.0 BiocIO_1.15.0 dplyr_1.1.4
## [43] dendextend_1.17.1 Matrix_1.7-0 fansi_1.0.6
## [46] abind_1.4-5 lifecycle_1.0.4 yaml_2.3.8
## [49] qvalue_2.37.0 SparseArray_1.5.0 grid_4.4.0
## [52] blob_1.2.4 misc3d_0.9-1 crayon_1.5.2
## [55] lattice_0.22-6 msigdbr_7.5.1 cowplot_1.1.3
## [58] annotate_1.83.0 KEGGREST_1.45.0 magick_2.8.3
## [61] pillar_1.9.0 knitr_1.46 fgsea_1.31.0
## [64] tcltk_4.4.0 rjson_0.2.21 codetools_0.2-20
## [67] fastmatch_1.1-4 glue_1.7.0 outliers_0.15
## [70] ggfun_0.1.4 data.table_1.15.4 vctrs_0.6.5
## [73] png_0.1-8 treeio_1.29.0 spam_2.10-0
## [76] rTensor_1.4.8 gtable_0.3.5 assertthat_0.2.1
## [79] cachem_1.0.8 xfun_0.43 S4Arrays_1.5.0
## [82] mime_0.12 tidygraph_1.3.1 survival_3.6-4
## [85] seriation_1.5.5 iterators_1.0.14 tinytex_0.50
## [88] fields_15.2 nlme_3.1-164 Category_2.71.0
## [91] ggtree_3.13.0 bit64_4.0.5 progress_1.2.3
## [94] filelock_1.0.3 bslib_0.7.0 colorspace_2.1-0
## [97] DBI_1.2.2 tidyselect_1.2.1 bit_4.0.5
## [100] compiler_4.4.0 curl_5.2.1 httr2_1.0.1
## [103] graph_1.83.0 xml2_1.3.6 DelayedArray_0.31.0
## [106] plotly_4.10.4 bookdown_0.39 shadowtext_0.1.3
## [109] rtracklayer_1.65.0 checkmate_2.3.1 scales_1.3.0
## [112] hexbin_1.28.3 RBGL_1.81.0 plot3D_1.4.1
## [115] rappdirs_0.3.3 stringr_1.5.1 digest_0.6.35
## [118] rmarkdown_2.26 ca_0.71.1 XVector_0.45.0
## [121] htmltools_0.5.8.1 pkgconfig_2.0.3 highr_0.10
## [124] fastmap_1.1.1 rlang_1.1.3 htmlwidgets_1.6.4
## [127] UCSC.utils_1.1.0 farver_2.1.1 jquerylib_0.1.4
## [130] jsonlite_1.8.8 BiocParallel_1.39.0 GOSemSim_2.31.0
## [133] RCurl_1.98-1.14 magrittr_2.0.3 GenomeInfoDbData_1.2.12
## [136] ggplotify_0.1.2 dotCall64_1.1-1 patchwork_1.2.0
## [139] munsell_0.5.1 Rcpp_1.0.12 babelgene_22.9
## [142] ape_5.8 viridis_0.6.5 stringi_1.8.3
## [145] tagcloud_0.6 ggraph_2.2.1 zlibbioc_1.51.0
## [148] MASS_7.3-60.2 plyr_1.8.9 parallel_4.4.0
## [151] ggrepel_0.9.5 Biostrings_2.73.0 graphlayouts_1.1.1
## [154] splines_4.4.0 hms_1.1.3 igraph_2.0.3
## [157] biomaRt_2.61.0 reshape2_1.4.4 BiocVersion_3.20.0
## [160] XML_3.99-0.16.1 evaluate_0.23 BiocManager_1.30.22
## [163] foreach_1.5.2 tweenr_2.0.3 tidyr_1.3.1
## [166] purrr_1.0.2 polyclip_1.10-6 heatmaply_1.5.0
## [169] ggplot2_3.5.1 ReactomePA_1.49.0 ggforce_0.4.2
## [172] xtable_1.8-4 restfulr_0.0.15 reactome.db_1.88.0
## [175] tidytree_0.4.6 viridisLite_0.4.2 tibble_3.2.1
## [178] aplot_0.2.2 ccTensor_1.0.2 GenomicAlignments_1.41.0
## [181] memoise_2.0.1 registry_0.5-1 cluster_2.1.6
## [184] concaveman_1.1.0 GSEABase_1.67.0