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AtomicList Lists of Atomic Vectors in Natural and Rle Form

Description

An extension of List that holds only atomic vectors in either a natural or run-length encoded form.

Details

The lists of atomic vectors are LogicalList, IntegerList, NumericList, ComplexList, CharacterList,
and RawList. There is also an RleList class for run-length encoded versions of these atomic vector
types.

Each of the above mentioned classes is virtual with Compressed* and Simple* non-virtual repre-
sentations.

Constructors

LogicalList(..., compress = TRUE): Concatenates the logical vectors in ... into a new LogicalList.
If compress, the internal storage of the data is compressed.

IntegerList(..., compress = TRUE): Concatenates the integer vectors in ... into a new IntegerList.
If compress, the internal storage of the data is compressed.

NumericList(..., compress = TRUE): Concatenates the numeric vectors in ... into a new NumericList.
If compress, the internal storage of the data is compressed.

ComplexList(..., compress = TRUE): Concatenates the complex vectors in ... into a new ComplexList.
If compress, the internal storage of the data is compressed.

CharacterList(..., compress = TRUE): Concatenates the character vectors in ... into a new
CharacterList. If compress, the internal storage of the data is compressed.

RawList(..., compress = TRUE): Concatenates the raw vectors in ... into a new RawList. If
compress, the internal storage of the data is compressed.
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RleList(..., compress = TRUE): Concatenates the run-length encoded atomic vectors in ...
into a new RleList. If compress, the internal storage of the data is compressed.

FactorList(..., compress = TRUE): Concatenates the factor objects in ... into a new FactorList.
If compress, the internal storage of the data is compressed.

Coercion

as(from, "CompressedSplitDataFrameList"), as(from, "SimpleSplitDataFrameList"): Cre-
ates a CompressedSplitDataFrameList/SimpleSplitDataFrameList instance from an Atomi-
cList instance.

as(from, "IRangesList"), as(from, "CompressedIRangesList"), as(from, "SimpleIRangesList"):
Creates a CompressedIRangesList/SimpleIRangesList instance from a LogicalList or logical
RleList instance. Note that the elements of this instance are guaranteed to be normal.

as(from, "NormalIRangesList"), as(from, "CompressedNormalIRangesList"), as(from, "SimpleNormalIRangesList"):
Creates a CompressedNormalIRangesList/SimpleNormalIRangesList instance from a Logi-
calList or logical RleList instance.

as(from, "CharacterList"), as(from, "ComplexList"), as(from, "IntegerList"), as(from,
"LogicalList"), as(from, "NumericList"), as(from, "RawList"), as(from, "RleList"):
Coerces an AtomicList from to another derivative of AtomicList.

as(from, "AtomicList"): If from is a vector, converts it to an AtomicList of the appropriate
type.

drop(x): Checks if every element of x is of length one, and, if so, unlists x. Otherwise, an error
is thrown.

as(from, "RleViews"): Creates an RleViews where each view corresponds to an element of
from. The subject is unlist(from).

as.matrix(x, col.names=NULL): Maps the elements of the list to rows of a matrix. The col-
umn mapping depends on whether there are inner names (either on the object or provided via
col.names as a List object). If there are no inner names, each row is padded with NAs to reach
the length of the longest element. If there are inner names, there is a column for each unique
name and the mapping is by name. To provide inner names, the col.names argument should
be a List, usually a CharacterList or FactorList (which is particularly efficient). If col.names
is a character vector, it names the columns of the result, but does not imply inner names.

Compare, Order, Tabulate

The following methods are provided for element-wise comparison of 2 AtomicList objects, and
ordering or tabulating of each list element of an AtomicList object: is.na, duplicated, unique,
match, %in%, table, order, sort.

RleList Methods

RleList has a number of methods that are not shared by other AtomicList derivatives.

runLength(x): Gets the run lengths of each element of the list, as an IntegerList.

runValue(x), runValue(x) <- value: Gets or sets the run values of each element of the list, as
an AtomicList.

ranges(x): Gets the run ranges as a IntegerRangesList.
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Author(s)

P. Aboyoun

See Also

• AtomicList-utils for common operations on AtomicList objects.

• List objects in the S4Vectors package for the parent class.

Examples

int1 <- c(1L,2L,3L,5L,2L,8L)
int2 <- c(15L,45L,20L,1L,15L,100L,80L,5L)
collection <- IntegerList(int1, int2)

## names
names(collection) <- c("one", "two")
names(collection)
names(collection) <- NULL # clear names
names(collection)
names(collection) <- "one"
names(collection) # c("one", NA)

## extraction
collection[[1]] # range1
collection[["1"]] # NULL, does not exist
collection[["one"]] # range1
collection[[NA_integer_]] # NULL

## subsetting
collection[numeric()] # empty
collection[NULL] # empty
collection[] # identity
collection[c(TRUE, FALSE)] # first element
collection[2] # second element
collection[c(2,1)] # reversed
collection[-1] # drop first
collection$one

## replacement
collection$one <- int2
collection[[2]] <- int1

## concatenating
col1 <- IntegerList(one = int1, int2)
col2 <- IntegerList(two = int2, one = int1)
col3 <- IntegerList(int2)
append(col1, col2)
append(col1, col2, 0)
col123 <- c(col1, col2, col3)
col123

## revElements
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revElements(col123)
revElements(col123, 4:5)

AtomicList-utils Common operations on AtomicList objects

Description

Common operations on AtomicList objects.

Group Generics

AtomicList objects have support for S4 group generic functionality to operate within elements
across objects:

Arith "+", "-", "*", "^", "%%", "%/%", "/"
Compare "==", ">", "<", "!=", "<=", ">="
Logic "&", "|"
Ops "Arith", "Compare", "Logic"
Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod",

"cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan",
"atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh", "gamma", "lgamma",
"digamma", "trigamma"

Math2 "round", "signif"
Summary "max", "min", "range", "prod", "sum", "any", "all"
Complex "Arg", "Conj", "Im", "Mod", "Re"

See S4groupGeneric for more details.

Other Methods

The AtomicList objects also support a large number of basic methods. Like the group generics
above, these methods perform the corresponding operation on each element of the list separately.
The methods are:

Logical !, which, which.max, which.min
Numeric diff, pmax, pmax.int, pmin, pmin.int, mean, var, cov, cor, sd, median, quantile,

mad, IQR
Running Window smoothEnds, runmed. runmean, runsum, runwtsum, runq
Character nchar, chartr, tolower, toupper, sub, gsub, startsWith, endsWith

The which.min and which.max functions have an extra argument, global=FALSE, which controls
whether the returned subscripts are global (compatible with the unlisted form of the input) or local
(compatible with the corresponding list element).

The rank method only supports tie methods “average”, “first”, “min” and “max”.

Since ifelse relies on non-standard evaluation for arguments that need to be in the generic signa-
ture, we provide ifelse2, which has eager but otherwise equivalent semantics.
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Specialized Methods

unstrsplit(x, sep=""): A fast sapply(x, paste0, collapse=sep). See ?unstrsplit for the
details.

Author(s)

P. Aboyoun

See Also

• AtomicList objects.

Examples

## group generics
int1 <- c(1L,2L,3L,5L,2L,8L)
int2 <- c(15L,45L,20L,1L,15L,100L,80L,5L)
col1 <- IntegerList(one = int1, int2)
2 * col1
col1 + col1
col1 > 2
sum(col1) # equivalent to (but faster than) 'sapply(col1, sum)'
mean(col1) # equivalent to 'sapply(col1, mean)'

CompressedHitsList-class

CompressedHitsList objects

Description

An efficient representation of HitsList objects. See ?HitsList for more information about HitsList
objects.

Note

This class is highly experimental. It has not been well tested and may disappear at any time.

Author(s)

Michael Lawrence

See Also

HitsList objects.
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CompressedList-class CompressedList objects

Description

Like the SimpleList class defined in the S4Vectors package, the CompressedList class extends the
List virtual class.

Details

Unlike the SimpleList class, CompressedList is virtual, that is, it cannot be instantiated. Many con-
crete (i.e. non-virtual) CompressedList subclasses are defined and documented in this package (e.g.
CompressedIntegerList, CompressedCharacterList, CompressedRleList, etc...), as well as in other
packages (e.g. GRangesList in the GenomicRanges package, GAlignmentsList in the Genomi-
cAlignments package, etc...). It’s easy for developers to extend CompressedList to create a new
CompressedList subclass and there is generally very little work involved to make this new subclass
fully operational.

In a CompressedList object the list elements are concatenated together in a single vector-like object.
The partitioning of this single vector-like object (i.e. the information about where each original list
element starts and ends) is also kept in the CompressedList object. This internal representation is
generally more memory efficient than SimpleList, especially if the object has many list elements
(e.g. thousands or millions). Also it makes it possible to implement many basic list operations very
efficiently.

Many objects like LogicalList, IntegerList, CharacterList, RleList, etc... exist in 2 flavors: Com-
pressedList and SimpleList. Each flavor is incarnated by a concrete subclass: CompressedLogical-
List and SimpleLogicalList for virtual class LogicalList, CompressedIntegerList and SimpleInte-
gerList for virtual class IntegerList, etc... It’s easy to switch from one representation to the other
with as(x, "CompressedList") and as(x, "SimpleList"). Also the constructor function for
those virtual classes have a switch that lets the user choose the representation at construction time
e.g. CharacterList(..., compress=TRUE) or CharacterList(..., compress=FALSE). See be-
low for more information.

Constructor

See the List man page in the S4Vectors package for a quick overview of how to construct List
objects in general.

Unlike for SimpleList objects, there is no CompressedList constructor function.

However, many constructor functions for List derivatives provide the compress argument that lets
the user choose between the CompressedList and SimpleList representations at construction time.
For example, depending on whether the compress argument of the CharacterList() constructor is
set to TRUE or FALSE, a CompressedCharacterList or SimpleCharacterList instance will be returned.

Finally let’s mention that the most efficient way to construct a CompressedList derivative is with

relist(unlisted, partitioning)
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where unlisted is a vector-like object and partitioning a PartitioningByEnd object describing
a partitioning of unlisted. The cost of this relist operation is virtually zero because unlisted and
partitioning get stored as-is in the returned object.

Accessors

Same as for List objects. See the List man page in the S4Vectors package for more information.

Coercion

All the coercions documented in the List man page apply to CompressedList objects.

Subsetting

Same as for List objects. See the List man page for more information.

Looping and functional programming

Same as for List objects. See ?`List-utils` in the S4Vectors package for more information.

Displaying

When a CompressedList object is displayed, the "Compressed" prefix is removed from the real class
name of the object. See classNameForDisplay in the S4Vectors package for more information
about this.

See Also

• List in the S4Vectors package for an introduction to List objects and their derivatives (Com-
pressedList is a direct subclass of List which makes CompressedList objects List derivatives).

• The SimpleList class defined and documented in the S4Vectors package for an alternative to
CompressedList.

• relist and extractList for efficiently constructing a List derivative from a vector-like object.

• The CompressedNumericList class for an example of a concrete CompressedList subclass.

• PartitioningByEnd objects. These objects are used inside CompressedList derivatives to keep
track of the partitioning of the single vector-like object made of all the list elements concate-
nated together.

Examples

## Fastest way to construct a CompressedList object:
unlisted <- runif(12)
partitioning <- PartitioningByEnd(c(5, 5, 10, 12), names=LETTERS[1:4])
partitioning

x1 <- relist(unlisted, partitioning)
x1

stopifnot(identical(lengths(partitioning), lengths(x1)))
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## Note that the class of the CompressedList derivative returned by
## relist() is determined by relistToClass():
relistToClass(unlisted)
stopifnot(relistToClass(unlisted) == class(x1))

## Displaying a CompressedList object:
x2 <- IntegerList(11:12, integer(0), 3:-2, compress=TRUE)
class(x2)

## The "Simple" prefix is removed from the real class name of the
## object:
x2

## This is controlled by internal helper classNameForDisplay():
classNameForDisplay(x2)
classNameForDisplay(x1)

coverage-methods Coverage of a set of ranges

Description

For each position in the space underlying a set of ranges, counts the number of ranges that cover it.

Usage

coverage(x, shift=0L, width=NULL, weight=1L, ...)

## S4 method for signature 'IntegerRanges'
coverage(x, shift=0L, width=NULL, weight=1L,

method=c("auto", "sort", "hash", "naive"))

## S4 method for signature 'IntegerRangesList'
coverage(x, shift=0L, width=NULL, weight=1L,

method=c("auto", "sort", "hash", "naive"))

Arguments

x A IntegerRanges, Views, or IntegerRangesList object. See ?`coverage-methods`
in the GenomicRanges package for coverage methods for other objects.

shift, weight shift specifies how much each range in x should be shifted before the coverage
is computed. A positive shift value will shift the corresponding range in x to the
right, and a negative value to the left. NAs are not allowed.
weight assigns a weight to each range in x.

• If x is an IntegerRanges or Views object: each of these arguments must
be an integer or numeric vector parallel to x (will get recycled if neces-
sary). Alternatively, each of these arguments can also be specified as a
single string naming a metadata column in x (i.e. a column in mcols(x))
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to be used as the shift (or weight) vector. Note that when x is an IPos
object, each of these arguments can only be a single number.

• If x is an IntegerRangesList object: each of these arguments must be a nu-
meric vector or list-like object of the same length as x (will get recycled if
necessary). If it’s a numeric vector, it’s first turned into a list with as.list.
After recycling, each list element shift[[i]] (or weight[[i]]) must be
an integer or numeric vector parallel to x[[i]] (will get recycled if neces-
sary).

If weight is an integer vector or list-like object of integer vectors, the coverage
vector(s) will be returned as integer-Rle object(s). If it’s a numeric vector or
list-like object of numeric vectors, the coverage vector(s) will be returned as
numeric-Rle object(s).

width Specifies the length of the returned coverage vector(s).

• If x is an IntegerRanges object: width must be NULL (the default), an NA,
or a single non-negative integer. After being shifted, the ranges in x are
always clipped on the left to keep only their positive portion i.e. their inter-
section with the [1, +inf) interval. If width is a single non-negative integer,
then they’re also clipped on the right to keep only their intersection with
the [1, width] interval. In that case coverage returns a vector of length
width. Otherwise, it returns a vector that extends to the last position in the
underlying space covered by the shifted ranges.

• If x is a Views object: Same as for a IntegerRanges object, except that, if
width is NULL then it’s treated as if it was length(subject(x)).

• If x is a IntegerRangesList object: width must be NULL or an integer vector
parallel to x (i.e. with one element per list element in x). If not NULL, the
vector must contain NAs or non-negative integers and it will get recycled
to the length of x if necessary. If NULL, it is replaced with NA and recycled
to the length of x. Finally width[i] is used to compute the coverage vec-
tor for x[[i]] and is therefore treated like explained above (when x is a
IntegerRanges object).

method If method is set to "sort", then x is sorted previous to the calculation of the
coverage. If method is set to "hash" or "naive", then x is hashed directly to a
vector of length width without previous sorting.
The "hash" method is faster than the "sort" method when x is large (i.e. con-
tains a lot of ranges). When x is small and width is big (e.g. x represents a
small set of reads aligned to a big chromosome), then method="sort" is faster
and uses less memory than method="hash".
The "naive" method is a slower version of the "hash" method that has the
advantage of avoiding floating point artefacts in the no-coverage regions of the
numeric-Rle object returned by coverage() when the weights are supplied as a
numeric vector of type double. See "FLOATING POINT ARITHMETIC CAN
BRING A SURPRISE" section in the Examples below for more information.
Using method="auto" selects between the "sort" and "hash" methods, pick-
ing the one that is predicted to be faster based on length(x) and width.

... Further arguments to be passed to or from other methods.
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Value

If x is a IntegerRanges or Views object: An integer- or numeric-Rle object depending on whether
weight is an integer or numeric vector.

If x is a IntegerRangesList object: An RleList object with one coverage vector per list element in x,
and with x names propagated to it. The i-th coverage vector can be either an integer- or numeric-Rle
object, depending on the type of weight[[i]] (after weight has gone thru as.list and recycling,
like described previously).

Author(s)

H. Pagès and P. Aboyoun

See Also

• coverage-methods in the GenomicRanges package for more coverage methods.

• The slice function for slicing the Rle or RleList object returned by coverage.

• IntegerRanges, IPos, IntegerRangesList, Rle, and RleList objects.

Examples

## ---------------------------------------------------------------------
## A. COVERAGE OF AN IRanges OBJECT
## ---------------------------------------------------------------------
x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),

width=c( 5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))
coverage(x)
coverage(x, shift=7)
coverage(x, shift=7, width=27)
coverage(x, shift=c(-4, 2)) # 'shift' gets recycled
coverage(x, shift=c(-4, 2), width=12)
coverage(x, shift=-max(end(x)))

coverage(restrict(x, 1, 10))
coverage(reduce(x), shift=7)
coverage(gaps(shift(x, 7), start=1, end=27))

## With weights:
coverage(x, weight=as.integer(10^(0:7))) # integer-Rle
coverage(x, weight=c(2.8, -10)) # numeric-Rle, 'shift' gets recycled

## ---------------------------------------------------------------------
## B. FLOATING POINT ARITHMETIC CAN BRING A SURPRISE
## ---------------------------------------------------------------------
## Please be aware that rounding errors in floating point arithmetic can
## lead to some surprising results when computing a weighted coverage:
y <- IRanges(c(4, 10), c(18, 15))
w1 <- 0.958
w2 <- 1e4
cvg <- coverage(y, width=100, weight=c(w1, w2))
cvg # non-zero coverage at positions 19 to 100!
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## This is an artefact of floating point arithmetic and the algorithm
## used to compute the weighted coverage. It can be observed with basic
## floating point arithmetic:
w1 + w2 - w2 - w1 # very small non-zero value!

## Note that this only happens with the "sort" and "hash" methods but
## not with the "naive" method:
coverage(y, width=100, weight=c(w1, w2), method="sort")
coverage(y, width=100, weight=c(w1, w2), method="hash")
coverage(y, width=100, weight=c(w1, w2), method="naive")

## These very small non-zero coverage values in the no-coverage regions
## of the numeric-Rle object returned by coverage() are not always
## present. But when they are, they can cause problems downstream or
## in unit tests. For example downstream code that relies on things
## like 'cvg != 0' to find regions with coverage won't work properly.
## This can be mitigated either by selecting the "naive" method (be aware
## that this can slow down things significantly) or by "cleaning" 'cvg'
## first e.g. with something like 'cvg <- round(cvg, digits)' where
## 'digits' is a carefully chosen number of digits:
cvg <- round(cvg, digits=3)

## Note that this rounding will also have the interesting side effect of
## reducing the memory footprint of the Rle object in general (because
## some runs might get merged into a single run as a consequence of the
## rounding).

## ---------------------------------------------------------------------
## C. COVERAGE OF AN IPos OBJECT
## ---------------------------------------------------------------------
pos_runs <- IRanges(c(1, 5, 9), c(10, 8, 15))
ipos <- IPos(pos_runs)
coverage(ipos)

## ---------------------------------------------------------------------
## D. COVERAGE OF AN IRangesList OBJECT
## ---------------------------------------------------------------------
x <- IRangesList(A=IRanges(3*(4:-1), width=1:3), B=IRanges(2:10, width=5))
cvg <- coverage(x)
cvg

stopifnot(identical(cvg[[1]], coverage(x[[1]])))
stopifnot(identical(cvg[[2]], coverage(x[[2]])))

coverage(x, width=c(50, 9))
coverage(x, width=c(NA, 9))
coverage(x, width=9) # 'width' gets recycled

## Each list element in 'shift' and 'weight' gets recycled to the length
## of the corresponding element in 'x'.
weight <- list(as.integer(10^(0:5)), -0.77)
cvg2 <- coverage(x, weight=weight)
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cvg2 # 1st coverage vector is an integer-Rle, 2nd is a numeric-Rle

identical(mapply(coverage, x=x, weight=weight), as.list(cvg2))

## ---------------------------------------------------------------------
## E. SOME MATHEMATICAL PROPERTIES OF THE coverage() FUNCTION
## ---------------------------------------------------------------------

## PROPERTY 1: The coverage vector is not affected by reordering the
## input ranges:
set.seed(24)
x <- IRanges(sample(1000, 40, replace=TRUE), width=17:10)
cvg0 <- coverage(x)
stopifnot(identical(coverage(sample(x)), cvg0))

## Of course, if the ranges are shifted and/or assigned weights, then
## this doesn't hold anymore, unless the 'shift' and/or 'weight'
## arguments are reordered accordingly.

## PROPERTY 2: The coverage of the concatenation of 2 IntegerRanges
## objects 'x' and 'y' is the sum of the 2 individual coverage vectors:
y <- IRanges(sample(-20:280, 36, replace=TRUE), width=28)
stopifnot(identical(coverage(c(x, y), width=100),

coverage(x, width=100) + coverage(y, width=100)))

## Note that, because adding 2 vectors in R recycles the shortest to
## the length of the longest, the following is generally FALSE:
identical(coverage(c(x, y)), coverage(x) + coverage(y)) # FALSE

## It would only be TRUE if the 2 coverage vectors that we add had the
## same length, which would only happen by chance. By using the same
## 'width' value when we computed the 2 coverages previously, we made
## sure they had the same length.

## Because of properties 1 & 2, we have:
x1 <- x[c(TRUE, FALSE)] # pick up 1st, 3rd, 5th, etc... ranges
x2 <- x[c(FALSE, TRUE)] # pick up 2nd, 4th, 6th, etc... ranges
cvg1 <- coverage(x1, width=100)
cvg2 <- coverage(x2, width=100)
stopifnot(identical(coverage(x, width=100), cvg1 + cvg2))

## PROPERTY 3: Multiplying the weights by a scalar has the effect of
## multiplying the coverage vector by the same scalar:
weight <- runif(40)
cvg3 <- coverage(x, weight=weight)
stopifnot(all.equal(coverage(x, weight=-2.68 * weight), -2.68 * cvg3))

## Because of properties 1 & 2 & 3, we have:
stopifnot(identical(coverage(x, width=100, weight=c(5L, -11L)),

5L * cvg1 - 11L * cvg2))

## PROPERTY 4: Using the sum of 2 weight vectors produces the same
## result as using the 2 weight vectors separately and summing the
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## 2 results:
weight2 <- 10 * runif(40) + 3.7
stopifnot(all.equal(coverage(x, weight=weight + weight2),

cvg3 + coverage(x, weight=weight2)))

## PROPERTY 5: Repeating any input range N number of times is
## equivalent to multiplying its assigned weight by N:
times <- sample(0:10L, length(x), replace=TRUE)
stopifnot(all.equal(coverage(rep(x, times), weight=rep(weight, times)),

coverage(x, weight=weight * times)))

## In particular, if 'weight' is not supplied:
stopifnot(identical(coverage(rep(x, times)), coverage(x, weight=times)))

## PROPERTY 6: If none of the input range actually gets clipped during
## the "shift and clip" process, then:
##
## sum(cvg) = sum(width(x) * weight)
##
stopifnot(sum(cvg3) == sum(width(x) * weight))

## In particular, if 'weight' is not supplied:
stopifnot(sum(cvg0) == sum(width(x)))

## Note that this property is sometimes used in the context of a
## ChIP-Seq analysis to estimate "the number of reads in a peak", that
## is, the number of short reads that belong to a peak in the coverage
## vector computed from the genomic locations (a.k.a. genomic ranges)
## of the aligned reads. Because of property 6, the number of reads in
## a peak is approximately the area under the peak divided by the short
## read length.

## PROPERTY 7: If 'weight' is not supplied, then disjoining or reducing
## the ranges before calling coverage() has the effect of "shaving" the
## coverage vector at elevation 1:
table(cvg0)
shaved_cvg0 <- cvg0
runValue(shaved_cvg0) <- pmin(runValue(cvg0), 1L)
table(shaved_cvg0)

stopifnot(identical(coverage(disjoin(x)), shaved_cvg0))
stopifnot(identical(coverage(reduce(x)), shaved_cvg0))

## ---------------------------------------------------------------------
## F. SOME SANITY CHECKS
## ---------------------------------------------------------------------
dummy_coverage <- function(x, shift=0L, width=NULL)
{

y <- IRanges:::unlist_as_integer(shift(x, shift))
if (is.null(width))

width <- max(c(0L, y))
Rle(tabulate(y, nbins=width))

}
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check_real_vs_dummy <- function(x, shift=0L, width=NULL)
{

res1 <- coverage(x, shift=shift, width=width)
res2 <- dummy_coverage(x, shift=shift, width=width)
stopifnot(identical(res1, res2))

}
check_real_vs_dummy(x)
check_real_vs_dummy(x, shift=7)
check_real_vs_dummy(x, shift=7, width=27)
check_real_vs_dummy(x, shift=c(-4, 2))
check_real_vs_dummy(x, shift=c(-4, 2), width=12)
check_real_vs_dummy(x, shift=-max(end(x)))

## With a set of distinct single positions:
x3 <- IRanges(sample(50000, 20000), width=1)
stopifnot(identical(sort(start(x3)), which(coverage(x3) != 0L)))

DataFrameList-class List of DataFrames

Description

Represents a list of DataFrame objects. The SplitDataFrameList class contains the additional
restriction that all the columns be of the same name and type. Internally it is stored as a list of
DataFrame objects and extends List.

Accessors

In the following code snippets, x is a DataFrameList.

dims(x): Get the two-column matrix indicating the number of rows and columns over the entire
dataset.

dimnames(x): Get the list of two CharacterLists, the first holding the rownames (possibly NULL)
and the second the column names.

In the following code snippets, x is a SplitDataFrameList.

commonColnames(x): Get the character vector of column names present in the individual DataFrames
in x.

commonColnames(x) <- value: Set the column names of the DataFrames in x.

columnMetadata(x): Get the DataFrame of metadata along the columns, i.e., where each column
in x is represented by a row in the metadata. The metadata is common across all elements of
x. Note that calling mcols(x) returns the metadata on the DataFrame elements of x.

columnMetadata(x) <- value: Set the DataFrame of metadata for the columns.
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Subsetting

In the following code snippets, x is a SplitDataFrameList. In general x follows the conventions
of SimpleList/CompressedList with the following addition:

x[i,j,drop]: If matrix subsetting is used, i selects either the list elements or the rows within the
list elements as determined by the [ method for SimpleList/CompressedList, j selects the
columns, and drop is used when one column is selected and output can be coerced into an
AtomicList or IntegerRangesList subclass.

x[i,j] <- value: If matrix subsetting is used, i selects either the list elements or the rows within
the list elements as determined by the [<- method for SimpleList/CompressedList, j selects
the columns and value is the replacement value for the selected region.

Constructor

DataFrameList(...): Concatenates the DataFrame objects in ... into a new DataFrameList.

SplitDataFrameList(..., compress = TRUE, cbindArgs = FALSE): If cbindArgs is FALSE, the
... arguments are coerced to DataFrame objects and concatenated to form the result. The
arguments must have the same number and names of columns. If cbindArgs is TRUE, the
arguments are combined as columns. The arguments must then be the same length, with each
element of an argument mapping to an element in the result. If compress = TRUE, returns a
CompressedSplitDataFrameList; else returns a SimpleSplitDataFrameList.

Combining

In the following code snippets, objects in ... are of class DataFrameList.

rbind(...): Creates a new DataFrameList containing the element-by-element row concatena-
tion of the objects in ....

cbind(...): Creates a new DataFrameList containing the element-by-element column concate-
nation of the objects in ....

Transformation

transform(`_data`, ...): Transforms a SplitDataFrame in a manner analogous to the base
transform, where the columns are List objects adhering to the structure of _data.

Coercion

In the following code snippets, x is a DataFrameList.

as(from, "DataFrame"): Coerces a SplitDataFrameList to a DataFrame, which has a column
for every column in from, except each column is a List with the same structure as from.

as(from, "SplitDataFrameList"): By default, simply calls the SplitDataFrameList con-
structor on from. If from is a List, each element of from is passed as an argument to
SplitDataFrameList, like calling as.list on a vector. If from is a DataFrame, each row
becomes an element in the list.

stack(x, index.var = "name"): Unlists x and adds a column named index.var to the result,
indicating the element of x from which each row was obtained.
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as.data.frame(x, row.names = NULL, optional = FALSE, ..., value.name = "value", use.outer.mcols
= FALSE, group_name.as.factor = FALSE): Coerces x to a data.frame. See as.data.frame
on the List man page for details (?List).

Author(s)

Michael Lawrence, with contributions from Aaron Lun

See Also

DataFrame

Examples

# Making a DataFrameList, which has different columns.
out <- DataFrameList(DataFrame(X=1, Y=2), DataFrame(A=1:2, B=3:4))
out[[1]]

# A more interesting SplitDataFrameList, which is guaranteed
# to have the same columns.
out <- SplitDataFrameList(DataFrame(X=1, Y=2), DataFrame(X=1:2, Y=3:4))
out[[1]]
out[,"X"]
out[,"Y"]

commonColnames(out)
commonColnames(out) <- c("x", "y")
out[[1]]

# We can also create these split objects using various split() functions:
out <- splitAsList(DataFrame(X=runif(100), Y=rpois(100, 5)),

sample(letters, 100, replace=TRUE))
out[['a']]

extractList Group elements of a vector-like object into a list-like object

Description

relist and split are 2 common ways of grouping the elements of a vector-like object into a list-
like object. The IRanges and S4Vectors packages define relist and split methods that operate
on a Vector object and return a List object.

Because relist and split both impose restrictions on the kind of grouping that they support (e.g.
every element in the input object needs to go in a group and can only go in one group), the IRanges
package introduces the extractList generic function for performing arbitrary groupings.
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Usage

## relist()
## --------

## S4 method for signature 'ANY,List'
relist(flesh, skeleton)

## S4 method for signature 'Vector,list'
relist(flesh, skeleton)

## extractList()
## -------------

extractList(x, i)

## regroup()
## ---------

regroup(x, g)

Arguments

flesh, x A vector-like object.

skeleton A list-like object. Only the "shape" (i.e. element lengths) of skeleton matters.
Its exact content is ignored.

i A list-like object. Unlike for skeleton, the content here matters (see Details
section below). Note that i can be a IntegerRanges object (a particular type
of list-like object), and, in that case, extractList is particularly fast (this is a
common use case).

g A Grouping or an object coercible to one. For regroup, g groups the elements
of x.

Details

Like split, relist and extractList have in common that they return a list-like object where all
the list elements have the same class as the original vector-like object.

Methods that return a List derivative return an object of class relistToClass(x).

By default, extractList(x, i) is equivalent to:

relist(x[unlist(i)], i)

An exception is made when x is a data-frame-like object. In that case x is subsetted along the rows,
that is, extractList(x, i) is equivalent to:

relist(x[unlist(i), ], i)
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This is more or less how the default method is implemented, except for some optimizations when i
is a IntegerRanges object.

relist and split can be seen as special cases of extractList:

relist(flesh, skeleton) is equivalent to
extractList(flesh, PartitioningByEnd(skeleton))

split(x, f) is equivalent to
extractList(x, split(seq_along(f), f))

It is good practise to use extractList only for cases not covered by relist or split. Whenever
possible, using relist or split is preferred as they will always perform more efficiently. In
addition their names carry meaning and are familiar to most R users/developers so they’ll make
your code easier to read/understand.

Note that the transformation performed by relist or split is always reversible (via unlist and
unsplit, respectively), but not the transformation performed by extractList (in general).

The regroup function splits the elements of unlist(x) into a list according to the grouping g.
Each element of unlist(x) inherits its group from its parent element of x. regroup is different
from relist and split, because x is already grouped, and the goal is to combine groups.

Value

The relist methods behave like utils::relist except that they return a List object. If skeleton
has names, then they are propagated to the returned value.

extractList returns a list-like object parallel to i and with the same "shape" as i (i.e. same
element lengths). If i has names, then they are propagated to the returned value.

All these functions return a list-like object where the list elements have the same class as x. relistToClass
gives the exact class of the returned object.

Author(s)

Hervé Pagès

See Also

• The relistToClass function and split methods defined in the S4Vectors package.

• The unlist and relist functions in the base and utils packages, respectively.

• The split and unsplit functions in the base package.

• PartitioningByEnd objects. These objects are used inside CompressedList derivatives to keep
track of the partitioning of the single vector-like object made of all the list elements concate-
nated together.

• Vector, List, Rle, and DataFrame objects implemented in the S4Vectors package.

• IntegerRanges objects.
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Examples

## On an Rle object:
x <- Rle(101:105, 6:2)
i <- IRanges(6:10, 16:12, names=letters[1:5])
extractList(x, i)

## On a DataFrame object:
df <- DataFrame(X=x, Y=LETTERS[1:20])
extractList(df, i)

extractListFragments Extract list fragments from a list-like object

Description

Utilities for extracting list fragments from a list-like object.

Usage

extractListFragments(x, aranges, use.mcols=FALSE,
msg.if.incompatible=INCOMPATIBLE_ARANGES_MSG)

equisplit(x, nchunk, chunksize, use.mcols=FALSE)

Arguments

x The list-like object from which to extract the list fragments.
Can be any List derivative for extractListFragments. Can also be an ordinary
list if extractListFragments is called with use.mcols=TRUE.
Can be any List derivative that supports relist() for equisplit.

aranges An IntegerRanges derivative containing the absolute ranges (i.e. the ranges
along unlist(x)) of the list fragments to extract.
The ranges in aranges must be compatible with the cumulated length of all the
list elements in x, that is, start(aranges) and end(aranges) must be >= 1
and <= sum(elementNROWS(x)), respectively.
Also please note that only IntegerRanges objects that are disjoint and sorted are
supported at the moment.

use.mcols Whether to propagate the metadata columns on x (if any) or not.
Must be TRUE or FALSE (the default). If set to FALSE, instead of having the meta-
data columns propagated from x, the object returned by extractListFragments
has metadata columns revmap and revmap2, and the object returned by equisplit
has metadata column revmap. Note that this is the default.

msg.if.incompatible

The error message to use if aranges is not compatible with the cumulated length
of all the list elements in x.
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nchunk The number of chunks. Must be a single positive integer.

chunksize The size of the chunks (last chunk might be smaller). Must be a single positive
integer.

Details

A list fragment of list-like object x is a window in one of its list elements.

extractListFragments is a low-level utility that extracts list fragments from list-like object x
according to the absolute ranges in aranges.

equisplit fragments and splits list-like object x into a specified number of partitions with equal
(total) width. This is useful for instance to ensure balanced loading of workers in parallel evaluation.
For example, if x is a GRanges object, each partition is also a GRanges object and the set of all
partitions is returned as a GRangesList object.

Value

An object of the same class as x for extractListFragments.

An object of class relistToClass(x) for equisplit.

Author(s)

Hervé Pagès

See Also

• IRanges and IRangesList objects.

• Partitioning objects.

• IntegerList objects.

• breakInChunks from breaking a vector-like object in chunks.

• GRanges and GRangesList objects defined in the GenomicRanges package.

• List objects defined in the S4Vectors package.

• intra-range-methods and inter-range-methods for intra range and inter range transformations.

Examples

## ---------------------------------------------------------------------
## A. extractListFragments()
## ---------------------------------------------------------------------

x <- IntegerList(a=101:109, b=5:-5)
x

aranges <- IRanges(start=c(2, 4, 8, 17, 17), end=c(3, 6, 14, 16, 19))
aranges
extractListFragments(x, aranges)

x2 <- IRanges(c(1, 101, 1001, 10001), width=c(10, 5, 0, 12),
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names=letters[1:4])
mcols(x2)$label <- LETTERS[1:4]
x2

aranges <- IRanges(start=13, end=20)
extractListFragments(x2, aranges)
extractListFragments(x2, aranges, use.mcols=TRUE)

aranges2 <- PartitioningByWidth(c(3, 9, 13, 0, 2))
extractListFragments(x2, aranges2)
extractListFragments(x2, aranges2, use.mcols=TRUE)

x2b <- as(x2, "IntegerList")
extractListFragments(x2b, aranges2)

x2c <- as.list(x2b)
extractListFragments(x2c, aranges2, use.mcols=TRUE)

## ---------------------------------------------------------------------
## B. equisplit()
## ---------------------------------------------------------------------

## equisplit() first calls breakInChunks() internally to create a
## PartitioningByWidth object that contains the absolute ranges of the
## chunks, then calls extractListFragments() on it 'x' to extract the
## fragments of 'x' that correspond to these absolute ranges. Finally
## the IRanges object returned by extractListFragments() is split into
## an IRangesList object where each list element corresponds to a chunk.
equisplit(x2, nchunk=2)
equisplit(x2, nchunk=2, use.mcols=TRUE)

equisplit(x2, chunksize=5)

library(GenomicRanges)
gr <- GRanges(c("chr1", "chr2"), IRanges(1, c(100, 1e5)))
equisplit(gr, nchunk=2)
equisplit(gr, nchunk=1000)

## ---------------------------------------------------------------------
## C. ADVANCED extractListFragments() EXAMPLES
## ---------------------------------------------------------------------

## === D1. Fragment list-like object into length 1 fragments ===

## First we construct a Partitioning object where all the partitions
## have a width of 1:
x2_cumlen <- nobj(PartitioningByWidth(x2)) # Equivalent to

# length(unlist(x2)) except
# that it doesn't unlist 'x2'
# so is much more efficient.

aranges1 <- PartitioningByEnd(seq_len(x2_cumlen))
aranges1
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## Then we use it to fragment 'x2':
extractListFragments(x2, aranges1)
extractListFragments(x2b, aranges1)
extractListFragments(x2c, aranges1, use.mcols=TRUE)

## === D2. Fragment a Partitioning object ===

partitioning2 <- PartitioningByEnd(x2b) # same as PartitioningByEnd(x2)
extractListFragments(partitioning2, aranges2)

## Note that when the 1st arg is a Partitioning derivative, then
## swapping the 1st and 2nd elements in the call to extractListFragments()
## doesn't change the returned partitioning:
extractListFragments(aranges2, partitioning2)

## ---------------------------------------------------------------------
## D. SANITY CHECKS
## ---------------------------------------------------------------------

## If 'aranges' is 'PartitioningByEnd(x)' or 'PartitioningByWidth(x)'
## and 'x' has no zero-length list elements, then
## 'extractListFragments(x, aranges, use.mcols=TRUE)' is a no-op.
check_no_ops <- function(x) {

aranges <- PartitioningByEnd(x)
stopifnot(identical(
extractListFragments(x, aranges, use.mcols=TRUE), x

))
aranges <- PartitioningByWidth(x)
stopifnot(identical(

extractListFragments(x, aranges, use.mcols=TRUE), x
))

}

check_no_ops(x2[lengths(x2) != 0])
check_no_ops(x2b[lengths(x2b) != 0])
check_no_ops(x2c[lengths(x2c) != 0])
check_no_ops(gr)

findOverlaps-methods Finding overlapping ranges

Description

Various methods for finding/counting interval overlaps between two "range-based" objects: a query
and a subject.

NOTE: This man page describes the methods that operate on IntegerRanges and IntegerRanges-
List derivatives. See ?`findOverlaps,GenomicRanges,GenomicRanges-method` in the Genom-
icRanges package for methods that operate on GenomicRanges or GRangesList objects.
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Usage

findOverlaps(query, subject, maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
select=c("all", "first", "last", "arbitrary"),
...)

countOverlaps(query, subject, maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
...)

overlapsAny(query, subject, maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
...)

query %over% subject
query %within% subject
query %outside% subject

subsetByOverlaps(x, ranges, maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
invert=FALSE,
...)

overlapsRanges(query, subject, hits=NULL, ...)

poverlaps(query, subject, maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end", "within", "equal"),
...)

mergeByOverlaps(query, subject, ...)

findOverlapPairs(query, subject, ...)

Arguments

query, subject, x, ranges

Each of them can be an IntegerRanges (e.g. IRanges, Views) or IntegerRanges-
List (e.g. IRangesList, ViewsList) derivative. In addition, if subject or ranges
is an IntegerRanges object, query or x can be an integer vector to be converted
to length-one ranges.
If query (or x) is an IntegerRangesList object, then subject (or ranges) must
also be an IntegerRangesList object.
If both arguments are list-like objects with names, each list element from the 2nd
argument is paired with the list element from the 1st argument with the matching
name, if any. Otherwise, list elements are paired by position. The overlap is then
computed between the pairs as described below.
If subject is omitted, query is queried against itself. In this case, and only this
case, the drop.self and drop.redundant arguments are allowed. By default,
the result will contain hits for each range against itself, and if there is a hit from
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A to B, there is also a hit for B to A. If drop.self is TRUE, all self matches are
dropped. If drop.redundant is TRUE, only one of A->B and B->A is returned.

maxgap A single integer >= -1.
If type is set to "any", maxgap is interpreted as the maximum gap that is al-
lowed between 2 ranges for the ranges to be considered as overlapping. The
gap between 2 ranges is the number of positions that separate them. The gap
between 2 adjacent ranges is 0. By convention when one range has its start or
end strictly inside the other (i.e. non-disjoint ranges), the gap is considered to
be -1.
If type is set to anything else, maxgap has a special meaning that depends on
the particular type. See type below for more information.

minoverlap A single non-negative integer.
Only ranges with a minimum of minoverlap overlapping positions are consid-
ered to be overlapping.
When type is "any", at least one of maxgap and minoverlap must be set to its
default value.

type By default, any overlap is accepted. By specifying the type parameter, one can
select for specific types of overlap. The types correspond to operations in Allen’s
Interval Algebra (see references). If type is start or end, the intervals are
required to have matching starts or ends, respectively. Specifying equal as the
type returns the intersection of the start and end matches. If type is within,
the query interval must be wholly contained within the subject interval. Note
that all matches must additionally satisfy the minoverlap constraint described
above.
The maxgap parameter has special meaning with the special overlap types. For
start, end, and equal, it specifies the maximum difference in the starts, ends or
both, respectively. For within, it is the maximum amount by which the subject
may be wider than the query. If maxgap is set to -1 (the default), it’s replaced
internally by 0.

select If query is an IntegerRanges derivative: When select is "all" (the default),
the results are returned as a Hits object. Otherwise the returned value is an
integer vector parallel to query (i.e. same length) containing the first, last, or
arbitrary overlapping interval in subject, with NA indicating intervals that did
not overlap any intervals in subject.
If query is an IntegerRangesList derivative: When select is "all" (the de-
fault), the results are returned as a HitsList object. Otherwise the returned
value depends on the drop argument. When select != "all" && !drop, an
IntegerList is returned, where each element of the result corresponds to a space
in query. When select != "all" && drop, an integer vector is returned con-
taining indices that are offset to align with the unlisted query.

invert If TRUE, keep only the ranges in x that do not overlap ranges.

hits The Hits or HitsList object returned by findOverlaps, or NULL. If NULL then
hits is computed by calling findOverlaps(query, subject, ...) internally
(the extra arguments passed to overlapsRanges are passed to findOverlaps).

... Further arguments to be passed to or from other methods:
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• drop: Supported only when query is an IntegerRangesList derivative. FALSE
by default. See select argument above for the details.

• drop.self, drop.redundant: When subject is omitted, the drop.self
and drop.redundant arguments (both FALSE by default) are allowed. See
query and subject arguments above for the details.

Details

A common type of query that arises when working with intervals is finding which intervals in one
set overlap those in another.

The simplest approach is to call the findOverlaps function on a IntegerRanges or other object with
range information (aka "range-based object").

Value

For findOverlaps: see select argument above.

For countOverlaps: the overlap hit count for each range in query using the specified findOverlaps
parameters. For IntegerRangesList objects, it returns an IntegerList object.

overlapsAny finds the ranges in query that overlap any of the ranges in subject. For Inte-
gerRanges derivatives, it returns a logical vector of length equal to the number of ranges in query.
For IntegerRangesList derivatives, it returns a LogicalList object where each element of the result
corresponds to a space in query.

%over% and %within% are convenience wrappers for the 2 most common use cases. Currently de-
fined as `%over%` <- function(query, subject) overlapsAny(query, subject) and `%within%`
<- function(query, subject) overlapsAny(query, subject, type="within"). %outside% is
simply the inverse of %over%.

subsetByOverlaps returns the subset of x that has an overlap hit with a range in ranges using the
specified findOverlaps parameters.

When hits is a Hits (or HitsList) object, overlapsRanges(query, subject, hits) returns a Inte-
gerRanges (or IntegerRangesList) object of the same shape as hits holding the regions of intersec-
tion between the overlapping ranges in objects query and subject, which should be the same query
and subject used in the call to findOverlaps that generated hits. Same shape means same length
when hits is a Hits object, and same length and same elementNROWS when hits is a HitsList
object.

poverlaps compares query and subject in parallel (like e.g., pmin) and returns a logical vector
indicating whether each pair of ranges overlaps. Integer vectors are treated as width-one ranges.

mergeByOverlaps computes the overlap between query and subject according to the arguments in
.... It then extracts the corresponding hits from each object and returns a DataFrame containing
one column for the query and one for the subject, as well as any mcols that were present on either
object. The query and subject columns are named by quoting and deparsing the corresponding
argument.

findOverlapPairs is like mergeByOverlaps, except it returns a formal Pairs object that provides
useful downstream conveniences, such as finding the intersection of the overlapping ranges with
pintersect.
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Author(s)

Michael Lawrence and Hervé Pagès

References

Allen’s Interval Algebra: James F. Allen: Maintaining knowledge about temporal intervals. In:
Communications of the ACM. 26/11/1983. ACM Press. S. 832-843, ISSN 0001-0782

See Also

• Hits and HitsList objects in the S4Vectors package for representing a set of hits between 2
vector-like or list-like objects.

• findOverlaps,GenomicRanges,GenomicRanges-method in the GenomicRanges package for
methods that operate on GRanges or GRangesList objects.

• The NCList class and constructor.

• The IntegerRanges, Views, IntegerRangesList, and ViewsList classes.

• The IntegerList and LogicalList classes.

Examples

## ---------------------------------------------------------------------
## findOverlaps()
## ---------------------------------------------------------------------

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))

findOverlaps(query, subject)

## at most one hit per query
findOverlaps(query, subject, select="first")
findOverlaps(query, subject, select="last")
findOverlaps(query, subject, select="arbitrary")

## including adjacent ranges in the result
findOverlaps(query, subject, maxgap=0L)

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2), c(5, 4))

## one IRanges object with itself
findOverlaps(query)

## single points as query
subject <- IRanges(c(1, 6, 13), c(4, 9, 14))
findOverlaps(c(3L, 7L, 10L), subject, select="first")

## special overlap types
query <- IRanges(c(1, 5, 3, 4), width=c(2, 2, 4, 6))
subject <- IRanges(c(1, 3, 5, 6), width=c(4, 4, 5, 4))
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findOverlaps(query, subject, type="start")
findOverlaps(query, subject, type="start", maxgap=1L)
findOverlaps(query, subject, type="end", select="first")
ov <- findOverlaps(query, subject, type="within", maxgap=1L)
ov

## Using pairs to find intersection of overlapping ranges
hits <- findOverlaps(query, subject)
p <- Pairs(query, subject, hits=hits)
pintersect(p)

## Shortcut
p <- findOverlapPairs(query, subject)
pintersect(p)

## ---------------------------------------------------------------------
## overlapsAny()
## ---------------------------------------------------------------------

overlapsAny(query, subject, type="start")
overlapsAny(query, subject, type="end")
query %over% subject # same as overlapsAny(query, subject)
query %within% subject # same as overlapsAny(query, subject,

# type="within")

## ---------------------------------------------------------------------
## overlapsRanges()
## ---------------------------------------------------------------------

## Extract the regions of intersection between the overlapping ranges:
overlapsRanges(query, subject, ov)

## ---------------------------------------------------------------------
## Using IntegerRangesList objects
## ---------------------------------------------------------------------

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
qpartition <- factor(c("a","a","b"))
qlist <- split(query, qpartition)

subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
spartition <- factor(c("a","a","b"))
slist <- split(subject, spartition)

## at most one hit per query
findOverlaps(qlist, slist, select="first")
findOverlaps(qlist, slist, select="last")
findOverlaps(qlist, slist, select="arbitrary")

query <- IRanges(c(1, 5, 3, 4), width=c(2, 2, 4, 6))
qpartition <- factor(c("a","a","b","b"))
qlist <- split(query, qpartition)
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subject <- IRanges(c(1, 3, 5, 6), width=c(4, 4, 5, 4))
spartition <- factor(c("a","a","b","b"))
slist <- split(subject, spartition)

overlapsAny(qlist, slist, type="start")
overlapsAny(qlist, slist, type="end")
qlist

subsetByOverlaps(qlist, slist)
countOverlaps(qlist, slist)

Grouping-class Grouping objects

Description

We call grouping an arbitrary mapping from a collection of NO objects to a collection of NG groups,
or, more formally, a bipartite graph between integer sets [1, NO] and [1, NG]. Objects mapped to
a given group are said to belong to, or to be assigned to, or to be in that group. Additionally,
the objects in each group are ordered. So for example the 2 following groupings are considered
different:

Grouping 1: NG = 3, NO = 5
group objects

1 : 4, 2
2 :
3 : 4

Grouping 2: NG = 3, NO = 5
group objects

1 : 2, 4
2 :
3 : 4

There are no restriction on the mapping e.g. any object can be mapped to 0, 1, or more groups, and
can be mapped twice to the same group. Also some or all the groups can be empty.

The Grouping class is a virtual class that formalizes the most general kind of grouping. More
specific groupings (e.g. many-to-one groupings or block-groupings) are formalized via specific
Grouping subclasses.

This man page documents the core Grouping API, and 3 important Grouping subclasses: Many-
ToOneGrouping, GroupingRanges, and Partitioning (the last one deriving from the 2 first).

The core Grouping API

Let’s give a formal description of the core Grouping API:

Groups G_i are indexed from 1 to NG (1 <= i <= NG).
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Objects O_j are indexed from 1 to NO (1 <= j <= NO).
Given that empty groups are allowed, NG can be greater than NO.
If x is a Grouping object:

length(x): Returns the number of groups (NG).
names(x): Returns the names of the groups.
nobj(x): Returns the number of objects (NO).

Going from groups to objects:

x[[i]]: Returns the indices of the objects (the j’s) that belong to G_i. This provides the mapping
from groups to objects.

grouplengths(x, i=NULL): Returns the number of objects in G_i. Works in a vectorized fashion
(unlike x[[i]]). grouplengths(x) is equivalent to grouplengths(x, seq_len(length(x))).
If i is not NULL, grouplengths(x, i) is equivalent to sapply(i, function(ii) length(x[[ii]])).

Note to developers: Given that length, names and [[ are expected to work on any Grouping object,
those objects can be seen as List objects. More precisely, the Grouping class actually extends the
IntegerList class. In particular, many other "list" operations like as.list, elementNROWS, and
unlist, etc... should work out-of-the-box on any Grouping object.

ManyToOneGrouping objects

The ManyToOneGrouping class is a virtual subclass of Grouping for representing many-to-one
groupings, that is, groupings where each object in the original collection of objects belongs to
exactly one group.
The grouping of an empty collection of objects in an arbitrary number of (necessarily empty) groups
is a valid ManyToOneGrouping object.
Note that, for a ManyToOneGrouping object, if NG is 0 then NO must also be 0.
The ManyToOneGrouping API extends the core Grouping API by adding a couple more operations
for going from groups to objects:

members(x, i): Equivalent to x[[i]] if i is a single integer. Otherwise, if i is an integer vector
of arbitrary length, it’s equivalent to sort(unlist(sapply(i, function(ii) x[[ii]]))).

vmembers(x, L): A version of members that works in a vectorized fashion with respect to the L
argument (L must be a list of integer vectors). Returns lapply(L, function(i) members(x,
i)).

And also by adding operations for going from objects to groups:

togroup(x, j=NULL): Returns the index i of the group that O_j belongs to. This provides the
mapping from objects to groups (many-to-one mapping). Works in a vectorized fashion.
togroup(x) is equivalent to togroup(x, seq_len(nobj(x))): both return the entire map-
ping in an integer vector of length NO. If j is not NULL, togroup(x, j) is equivalent to y <-
togroup(x); y[j].

togrouplength(x, j=NULL): Returns the number of objects that belong to the same group as O_j
(including O_j itself). Equivalent to grouplengths(x, togroup(x, j)).

One important property of any ManyToOneGrouping object x is that unlist(as.list(x)) is al-
ways a permutation of seq_len(nobj(x)). This is a direct consequence of the fact that every object
in the grouping belongs to one group and only one.
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2 ManyToOneGrouping concrete subclasses: H2LGrouping, Dups and SimpleManyToOneGroup-
ing

DOCUMENT ME Constructors:

H2LGrouping(high2low=integer()): [DOCUMENT ME]

Dups(high2low=integer()): [DOCUMENT ME]

ManyToOneGrouping(..., compress=TRUE): Collect ... into a ManyToOneGrouping. The ar-
guments will be coerced to integer vectors and combined into a list, unless there is a single
list argument, which is taken to be an integer list. The resulting integer list should have a
structure analogous to that of Grouping itself: each element represents a group in terms of the
subscripts of the members. If compress is TRUE, the representation uses a CompressedList,
otherwise a SimpleList.

ManyToManyGrouping objects

The ManyToManyGrouping class is a virtual subclass of Grouping for representing many-to-many
groupings, that is, groupings where each object in the original collection of objects belongs to any
number of groups.

Constructors:

ManyToManyGrouping(x, compress=TRUE): Collect ... into a ManyToManyGrouping. The ar-
guments will be coerced to integer vectors and combined into a list, unless there is a single
list argument, which is taken to be an integer list. The resulting integer list should have a
structure analogous to that of Grouping itself: each element represents a group in terms of the
subscripts of the members. If compress is TRUE, the representation uses a CompressedList,
otherwise a SimpleList.

GroupingRanges objects

The GroupingRanges class is a virtual subclass of Grouping for representing block-groupings, that
is, groupings where each group is a block of adjacent elements in the original collection of objects.
GroupingRanges objects support the IntegerRanges API (e.g. start, end, width, etc...) in addition
to the Grouping API. See ?IntegerRanges for a description of the IntegerRanges API.

Partitioning objects

The Partitioning class is a virtual subclass of GroupingRanges for representing block-groupings
where the blocks fully cover the original collection of objects and don’t overlap. Since this makes
them many-to-one groupings, the Partitioning class is also a subclass of ManyToOneGrouping. An
additional constraint of Partitioning objects is that the blocks must be ordered by ascending position
with respect to the original collection of objects.

The Partitioning virtual class itself has 3 concrete subclasses: PartitioningByEnd (only stores the
end of the groups, allowing fast mapping from groups to objects), and PartitioningByWidth (only
stores the width of the groups), and PartitioningMap which contains PartitioningByEnd and two
additional slots to re-order and re-list the object to a related mapping.

Constructors:
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PartitioningByEnd(x=integer(), NG=NULL, names=NULL): x must be either a list-like object
or a sorted integer vector. NG must be either NULL or a single integer. names must be either
NULL or a character vector of length NG (if supplied) or length(x) (if NG is not supplied).
Returns the following PartitioningByEnd object y:

• If x is a list-like object, then the returned object y has the same length as x and is such
that width(y) is identical to elementNROWS(x).

• If x is an integer vector and NG is not supplied, then x must be sorted (checked) and
contain non-NA non-negative values (NOT checked). The returned object y has the same
length as x and is such that end(y) is identical to x.

• If x is an integer vector and NG is supplied, then x must be sorted (checked) and contain
values >= 1 and <= NG (checked). The returned object y is of length NG and is such that
togroup(y) is identical to x.

If the names argument is supplied, it is used to name the partitions.

PartitioningByWidth(x=integer(), NG=NULL, names=NULL): x must be either a list-like ob-
ject or an integer vector. NG must be either NULL or a single integer. names must be either NULL
or a character vector of length NG (if supplied) or length(x) (if NG is not supplied).
Returns the following PartitioningByWidth object y:

• If x is a list-like object, then the returned object y has the same length as x and is such
that width(y) is identical to elementNROWS(x).

• If x is an integer vector and NG is not supplied, then x must contain non-NA non-negative
values (NOT checked). The returned object y has the same length as x and is such that
width(y) is identical to x.

• If x is an integer vector and NG is supplied, then x must be sorted (checked) and contain
values >= 1 and <= NG (checked). The returned object y is of length NG and is such that
togroup(y) is identical to x.

If the names argument is supplied, it is used to name the partitions.

PartitioningMap(x=integer(), mapOrder=integer()): x is a list-like object or a sorted in-
teger vector used to construct a PartitioningByEnd object. mapOrder numeric vector of the
mapped order.
Returns a PartitioningMap object.

Note that these constructors don’t recycle their names argument (to remain consistent with what
`names<-` does on standard vectors).

Coercions to Grouping objects

These types can be coerced to different derivatives of Grouping objects:

factor Analogous to calling split with the factor. Returns a ManyToOneGrouping if there are no
NAs, otherwise a ManyToManyGrouping. If a factor is explicitly converted to a ManytoOne-
Grouping, then any NAs are placed in the last group.

vector A vector is effectively treated as a factor, but more efficiently. The order of the groups is
not defined.

FactorList Same as the factor coercion, except using the interaction of every factor in the list. The
interaction has an NA wherever any of the elements has one. Every element must have the
same length.
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DataFrame Effectively converted via a FactorList by coercing each column to a factor.

grouping Equivalent Grouping representation of the base R grouping object.

Hits Returns roughly the same object as as(x, "List"), except it is a ManyToManyGrouping,
i.e., it knows the number of right nodes.

Author(s)

Hervé Pagès, Michael Lawrence

See Also

IntegerList-class, IntegerRanges-class, IRanges-class, successiveIRanges, cumsum, diff

Examples

showClass("Grouping") # shows (some of) the known subclasses

## ---------------------------------------------------------------------
## A. H2LGrouping OBJECTS
## ---------------------------------------------------------------------
high2low <- c(NA, NA, 2, 2, NA, NA, NA, 6, NA, 1, 2, NA, 6, NA, NA, 2)
h2l <- H2LGrouping(high2low)
h2l

## The core Grouping API:
length(h2l)
nobj(h2l) # same as 'length(h2l)' for H2LGrouping objects
h2l[[1]]
h2l[[2]]
h2l[[3]]
h2l[[4]]
h2l[[5]]
grouplengths(h2l) # same as 'unname(sapply(h2l, length))'
grouplengths(h2l, 5:2)
members(h2l, 5:2) # all the members are put together and sorted
togroup(h2l)
togroup(h2l, 5:2)
togrouplength(h2l) # same as 'grouplengths(h2l, togroup(h2l))'
togrouplength(h2l, 5:2)

## The List API:
as.list(h2l)
sapply(h2l, length)

## ---------------------------------------------------------------------
## B. Dups OBJECTS
## ---------------------------------------------------------------------
dups1 <- as(h2l, "Dups")
dups1
duplicated(dups1) # same as 'duplicated(togroup(dups1))'

### The purpose of a Dups object is to describe the groups of duplicated
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### elements in a vector-like object:
x <- c(2, 77, 4, 4, 7, 2, 8, 8, 4, 99)
x_high2low <- high2low(x)
x_high2low # same length as 'x'
dups2 <- Dups(x_high2low)
dups2
togroup(dups2)
duplicated(dups2)
togrouplength(dups2) # frequency for each element
table(x)

## ---------------------------------------------------------------------
## C. Partitioning OBJECTS
## ---------------------------------------------------------------------
pbe1 <- PartitioningByEnd(c(4, 7, 7, 8, 15), names=LETTERS[1:5])
pbe1 # the 3rd partition is empty

## The core Grouping API:
length(pbe1)
nobj(pbe1)
pbe1[[1]]
pbe1[[2]]
pbe1[[3]]
grouplengths(pbe1) # same as 'unname(sapply(pbe1, length))'

# and 'width(pbe1)'
togroup(pbe1)
togrouplength(pbe1) # same as 'grouplengths(pbe1, togroup(pbe1))'
names(pbe1)

## The IntegerRanges core API:
start(pbe1)
end(pbe1)
width(pbe1)

## The List API:
as.list(pbe1)
sapply(pbe1, length)

## Replacing the names:
names(pbe1)[3] <- "empty partition"
pbe1

## Coercion to an IRanges object:
as(pbe1, "IRanges")

## Other examples:
PartitioningByEnd(c(0, 0, 19), names=LETTERS[1:3])
PartitioningByEnd() # no partition
PartitioningByEnd(integer(9)) # all partitions are empty
x <- c(1L, 5L, 5L, 6L, 8L)
pbe2 <- PartitioningByEnd(x, NG=10L)
stopifnot(identical(togroup(pbe2), x))
pbw2 <- PartitioningByWidth(x, NG=10L)
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stopifnot(identical(togroup(pbw2), x))

## ---------------------------------------------------------------------
## D. RELATIONSHIP BETWEEN Partitioning OBJECTS AND successiveIRanges()
## ---------------------------------------------------------------------
mywidths <- c(4, 3, 0, 1, 7)

## The 3 following calls produce the same ranges:
ir <- successiveIRanges(mywidths) # IRanges instance.
pbe <- PartitioningByEnd(cumsum(mywidths)) # PartitioningByEnd instance.
pbw <- PartitioningByWidth(mywidths) # PartitioningByWidth instance.
stopifnot(identical(as(ir, "PartitioningByEnd"), pbe))
stopifnot(identical(as(ir, "PartitioningByWidth"), pbw))

Hits-class-leftovers Examples of basic manipulation of Hits objects

Description

IMPORTANT NOTE - 4/29/2014: This man page is being refactored. Most of the things that used
to be documented here have been moved to the man page for Hits objects located in the S4Vectors
package.

Details

The as.data.frame method coerces a Hits object to a two column data.frame with one row for
each hit, where the value in the first column is the index of an element in the query and the value in
the second column is the index of an element in the subject.

Coercion

In the code snippets below, x is a Hits object.

as.list(x): Coerces x to a list of integers, grouping the the right node hits for each left node.

as(x, "List"): Analogous to as.list(x).

as(x, "Grouping"): Returns roughly the same object as as(x, "List"), except it is a Many-
ToManyGrouping, i.e., it knows the number of right nodes.

See Also

The Hits class defined and documented in the S4Vectors package.
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Examples

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
hits <- findOverlaps(query, subject)

as.matrix(hits)
as.data.frame(hits)

as.table(hits) # hits per query
as.table(t(hits)) # hits per subject

## Turn a Hits object into an IntegerList object with one list element
## per element in the original query.
as(hits, "IntegerList")
as(hits, "List") # same as as(hits, "IntegerList")

## Turn a Hits object into a PartitioningByEnd object that describes
## the grouping of hits by query.
as(hits, "PartitioningByEnd")
as(hits, "Partitioning") # same as as(hits, "PartitioningByEnd")

## ---------------------------------------------------------------------
## remapHits()
## ---------------------------------------------------------------------

hits2 <- remapHits(hits,
Rnodes.remapping=factor(c("e", "e", "d"), letters[1:5]))

hits2

hits3 <- remapHits(hits,
Rnodes.remapping=c(5, 5, 4), new.nRnode=5)

hits3
stopifnot(identical(hits2, hits3))

IntegerRanges-class IntegerRanges objects

Description

The IntegerRanges virtual class is a general container for storing ranges on the space of integers.

Details

TODO
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IntegerRangesList-class

IntegerRangesList objects

Description

The IntegerRangesList virtual class is a general container for storing a list of IntegerRanges objects.

Most users are probably more interested in the IRangesList container, an IntegerRangesList deriva-
tive for storing a list of IRanges objects.

Details

The place of IntegerRangesList in the Vector class hierarchy:

Vector
^
|
List
^
|

RangesList
^ ^
/ \

/ \
/ \
/ \

/ \
/ \

IntegerRangesList GenomicRangesList
^ ^
| |

IRangesList GRangesList
^ ^ ^ ^

/ \ / \
/ \ / \
/ \ / \

SimpleIRangesList \ SimpleGRangesList \
CompressedIRangesList CompressedGRangesList

Note that the Vector class hierarchy has many more classes. In particular Vector, List, RangesList,
and IntegerRangesList have other subclasses not shown here.

Accessors

In the code snippets below, x is a IntegerRangesList object.

All of these accessors collapse over the spaces:
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start(x), start(x) <- value: Get or set the starts of the ranges. When setting the starts, value
can be an integer vector of length sum(elementNROWS(x)) or an IntegerList object of length
length(x) and names names(x).

end(x), end(x) <- value: Get or set the ends of the ranges. When setting the ends, value
can be an integer vector of length sum(elementNROWS(x)) or an IntegerList object of length
length(x) and names names(x).

width(x), width(x) <- value: Get or set the widths of the ranges. When setting the widths,
value can be an integer vector of length sum(elementNROWS(x)) or an IntegerList object of
length length(x) and names names(x).

space(x): Gets the spaces of the ranges as a character vector. This is equivalent to names(x),
except each name is repeated according to the length of its element.

Coercion

In the code snippet below, x is an IntegerRangesList object.

as.data.frame(x, row.names = NULL, optional = FALSE, ..., value.name = "value", use.outer.mcols
= FALSE, group_name.as.factor = FALSE): Coerces x to a data.frame. See as.data.frame
on the List man page for details (?List).

In the following code snippet, from is something other than a IntegerRangesList:

as(from, "IntegerRangesList"): When from is a IntegerRanges, analogous to as.list on a
vector.

Arithmetic Operations

Any arithmetic operation, such as x + y, x * y, etc, where x is a IntegerRangesList, is performed
identically on each element. Currently, IntegerRanges supports only the * operator, which zooms
the ranges by a numeric factor.

Author(s)

M. Lawrence & H. Pagès

See Also

• IRangesList objects.

• IntegerRanges and IRanges objects.

Examples

## ---------------------------------------------------------------------
## Basic manipulation
## ---------------------------------------------------------------------

range1 <- IRanges(start=c(1, 2, 3), end=c(5, 2, 8))
range2 <- IRanges(start=c(15, 45, 20, 1), end=c(15, 100, 80, 5))
named <- IRangesList(one = range1, two = range2)
length(named) # 2



40 inter-range-methods

start(named) # same as start(c(range1, range2))
names(named) # "one" and "two"
named[[1]] # range1
unnamed <- IRangesList(range1, range2)
names(unnamed) # NULL

# edit the width of the ranges in the list
edited <- named
width(edited) <- rep(c(3,2), elementNROWS(named))
edited

# same as list(range1, range2)
as.list(IRangesList(range1, range2))

# coerce to data.frame
as.data.frame(named)

IRangesList(range1, range2)

## zoom in 2X
collection <- IRangesList(one = range1, range2)
collection * 2

inter-range-methods Inter range transformations of an IntegerRanges, Views, Inte-
gerRangesList, or MaskCollection object

Description

Range-based transformations are grouped in 2 categories:

1. Intra range transformations (e.g. shift()) transform each range individually (and indepen-
dently of the other ranges). They return an object parallel to the input object, that is, where
the i-th range corresponds to the i-th range in the input. Those transformations are described
in the intra-range-methods man page (see ?`intra-range-methods`).

2. Inter range transformations (e.g. reduce()) transform all the ranges together as a set to
produce a new set of ranges. They return an object that is generally NOT parallel to the input
object. Those transformations are described below.

Usage

## range()
## -------
## S4 method for signature 'IntegerRanges'
range(x, ..., with.revmap=FALSE, na.rm=FALSE)

## S4 method for signature 'IntegerRangesList'
range(x, ..., with.revmap=FALSE, na.rm=FALSE)
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## reduce()
## --------
reduce(x, drop.empty.ranges=FALSE, ...)

## S4 method for signature 'IntegerRanges'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.revmap=FALSE, with.inframe.attrib=FALSE)

## S4 method for signature 'Views'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.revmap=FALSE, with.inframe.attrib=FALSE)

## S4 method for signature 'IntegerRangesList'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.revmap=FALSE, with.inframe.attrib=FALSE)

## gaps()
## ------
gaps(x, start=NA, end=NA)

## disjoin(), isDisjoint(), and disjointBins()
## -------------------------------------------
disjoin(x, ...)

## S4 method for signature 'IntegerRanges'
disjoin(x, with.revmap=FALSE)
## S4 method for signature 'IntegerRangesList'
disjoin(x, with.revmap=FALSE)

isDisjoint(x, ...)
disjointBins(x, ...)

Arguments

x A IntegerRanges or IntegerRangesList object for range, disjoin, isDisjoint,
and disjointBins.
A IntegerRanges, Views, or IntegerRangesList object for reduce and gaps.

... For range, additional IntegerRanges or IntegerRangesList object to consider.

na.rm Ignored.
drop.empty.ranges

TRUE or FALSE. Should empty ranges be dropped?

min.gapwidth Ranges separated by a gap of at least min.gapwidth positions are not merged.

with.revmap TRUE or FALSE. Should the mapping from output to input ranges be stored in
the returned object? If yes, then it is stored as metadata column revmap of type
IntegerList.

with.inframe.attrib

TRUE or FALSE. For internal use.
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start, end • If x is a IntegerRanges or Views object: A single integer or NA. Use these ar-
guments to specify the interval of reference i.e. which interval the returned
gaps should be relative to.

• If x is a IntegerRangesList object: Integer vectors containing the coordinate
bounds for each IntegerRangesList top-level element.

Details

Unless specified otherwise, when x is a IntegerRangesList object, any transformation described here
is equivalent to applying the transformation to each IntegerRangesList top-level element separately.

reduce:
reduce first orders the ranges in x from left to right, then merges the overlapping or adjacent ones.

range:
range first concatenates x and the objects in ... together. If the IRanges object resulting from
this concatenation contains at least 1 range, then range returns an IRanges instance with a single
range, from the minimum start to the maximum end of the concatenated object. Otherwise (i.e.
if the concatenated object contains no range), IRanges() is returned (i.e. an IRanges instance of
length 0).
When passing more than 1 IntegerRangesList object to range(), they are first merged into a single
IntegerRangesList object: by name if all objects have names, otherwise, if they are all of the same
length, by position. Else, an exception is thrown.

gaps:
gaps returns the "normal" IRanges object representing the set of integers that remain after the set
of integers represented by x has been removed from the interval specified by the start and end
arguments.
If x is a Views object, then start=NA and end=NA are interpreted as start=1 and end=length(subject(x)),
respectively, so, if start and end are not specified, then gaps are extracted with respect to the en-
tire subject.

isDisjoint:
An IntegerRanges object x is considered to be "disjoint" if its ranges are non-overlapping. isDisjoint
tests whether the object is "disjoint" or not.
Note that a "normal" IntegerRanges object is always "disjoint" but the opposite is not true. See
?isNormal for more information about normal IntegerRanges objects.
About empty ranges. isDisjoint handles empty ranges (a.k.a. zero-width ranges) as follow:
single empty range A is considered to overlap with single range B iff it’s contained in B without
being on the edge of B (in which case it would be ambiguous whether A is contained in or adjacent
to B). More precisely, single empty range A is considered to overlap with single range B iff

start(B) < start(A) and end(A) < end(B)

Because A is an empty range it verifies end(A) = start(A) - 1 so the above is equivalent to:

start(B) < start(A) <= end(B)

and also equivalent to:

start(B) <= end(A) < end(B)
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Finally, it is also equivalent to:

pcompare(A, B) == 2

See ?`IPosRanges-comparison` for the meaning of the codes returned by the pcompare func-
tion.

disjoin:
disjoin returns a disjoint object, by finding the union of the end points in x. In other words, the
result consists of a range for every interval, of maximal length, over which the set of overlapping
ranges in x is the same and at least of size 1.

disjointBins:
disjointBins segregates x into a set of bins so that the ranges in each bin are disjoint. Lower-
indexed bins are filled first. The method returns an integer vector indicating the bin index for each
range.

Value

If x is an IntegerRanges object:

• range, reduce, gaps, and disjoin return an IRanges instance.

• isDisjoint returns TRUE or FALSE.

• disjointBins returns an integer vector parallel to x, that is, where the i-th element corre-
sponds to the i-th element in x.

If x is a Views object: reduce and gaps return a Views object on the same subject as x but with
modified views.

If x is a IntegerRangesList object:

• range, reduce, gaps, and disjoin return a IntegerRangesList object parallel to x.

• isDisjoint returns a logical vector parallel to x.

• disjointBins returns an IntegerList object parallel to x.

Author(s)

H. Pagès, M. Lawrence, and P. Aboyoun

See Also

• intra-range-methods for intra range transformations.

• The IntegerRanges, Views, IntegerRangesList, and MaskCollection classes.

• The inter-range-methods man page in the GenomicRanges package for inter range transfor-
mations of genomic ranges.

• setops-methods for set operations on IRanges objects.

• endoapply in the S4Vectors package.
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Examples

## ---------------------------------------------------------------------
## range()
## ---------------------------------------------------------------------

## On an IntegerRanges object:
x <- IRanges(start=c(-2, 6, 9, -4, 1, 0, -6, 3, 10),

width=c( 5, 0, 6, 1, 4, 3, 2, 0, 3))
range(x)

## On an IntegerRangesList object (XVector package required):
range1 <- IRanges(start=c(1, 2, 3), end=c(5, 2, 8))
range2 <- IRanges(start=c(15, 45, 20, 1), end=c(15, 100, 80, 5))
range3 <- IRanges(start=c(-2, 6, 7), width=c(8, 0, 0)) # with empty ranges
collection <- IRangesList(one=range1, range2, range3)
if (require(XVector)) {

range(collection)
}

irl1 <- IRangesList(a=IRanges(c(1, 2),c(4, 3)), b=IRanges(c(4, 6),c(10, 7)))
irl2 <- IRangesList(c=IRanges(c(0, 2),c(4, 5)), a=IRanges(c(4, 5),c(6, 7)))
range(irl1, irl2) # matched by names
names(irl2) <- NULL
range(irl1, irl2) # now by position

## ---------------------------------------------------------------------
## reduce()
## ---------------------------------------------------------------------

## On an IntegerRanges object:
reduce(x)
y <- reduce(x, with.revmap=TRUE)
mcols(y)$revmap # an IntegerList

reduce(x, drop.empty.ranges=TRUE)
y <- reduce(x, drop.empty.ranges=TRUE, with.revmap=TRUE)
mcols(y)$revmap

## Use the mapping from reduced to original ranges to split the DataFrame
## of original metadata columns by reduced range:
ir0 <- IRanges(c(11:13, 2, 7:6), width=3)
mcols(ir0) <- DataFrame(id=letters[1:6], score=1:6)
ir <- reduce(ir0, with.revmap=TRUE)
ir
revmap <- mcols(ir)$revmap
revmap
relist(mcols(ir0)[unlist(revmap), ], revmap) # a SplitDataFrameList

## On an IntegerRangesList object. These 4 are the same:
res1 <- reduce(collection)
res2 <- IRangesList(one=reduce(range1), reduce(range2), reduce(range3))
res3 <- do.call(IRangesList, lapply(collection, reduce))
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res4 <- endoapply(collection, reduce)

stopifnot(identical(res2, res1))
stopifnot(identical(res3, res1))
stopifnot(identical(res4, res1))

reduce(collection, drop.empty.ranges=TRUE)

## ---------------------------------------------------------------------
## gaps()
## ---------------------------------------------------------------------

## On an IntegerRanges object:
x0 <- IRanges(start=c(-2, 6, 9, -4, 1, 0, -6, 10),

width=c( 5, 0, 6, 1, 4, 3, 2, 3))
gaps(x0)
gaps(x0, start=-6, end=20)

## On a Views object:
subject <- Rle(1:-3, 6:2)
v <- Views(subject, start=c(8, 3), end=c(14, 4))
gaps(v)

## On an IntegerRangesList object. These 4 are the same:
res1 <- gaps(collection)
res2 <- IRangesList(one=gaps(range1), gaps(range2), gaps(range3))
res3 <- do.call(IRangesList, lapply(collection, gaps))
res4 <- endoapply(collection, gaps)

stopifnot(identical(res2, res1))
stopifnot(identical(res3, res1))
stopifnot(identical(res4, res1))

## On a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
mymasks
gaps(mymasks)

## ---------------------------------------------------------------------
## disjoin()
## ---------------------------------------------------------------------

## On an IntegerRanges object:
ir <- IRanges(c(1, 1, 4, 10), c(6, 3, 8, 10))
disjoin(ir) # IRanges(c(1, 4, 7, 10), c(3, 6, 8, 10))
disjoin(ir, with.revmap=TRUE)

## On an IntegerRangesList object:
disjoin(collection)
disjoin(collection, with.revmap=TRUE)
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## ---------------------------------------------------------------------
## isDisjoint()
## ---------------------------------------------------------------------

## On an IntegerRanges object:
isDisjoint(IRanges(c(2,5,1), c(3,7,3))) # FALSE
isDisjoint(IRanges(c(2,9,5), c(3,9,6))) # TRUE
isDisjoint(IRanges(1, 5)) # TRUE

## Handling of empty ranges:
x <- IRanges(c(11, 16, 11, -2, 11), c(15, 29, 10, 10, 10))
stopifnot(isDisjoint(x))

## Sliding an empty range along a non-empty range:
sapply(11:17,

function(i) pcompare(IRanges(i, width=0), IRanges(12, 15)))

sapply(11:17,
function(i) isDisjoint(c(IRanges(i, width=0), IRanges(12, 15))))

## On an IntegerRangesList object:
isDisjoint(collection)

## ---------------------------------------------------------------------
## disjointBins()
## ---------------------------------------------------------------------

## On an IntegerRanges object:
disjointBins(IRanges(1, 5)) # 1L
disjointBins(IRanges(c(3, 1, 10), c(5, 12, 13))) # c(2L, 1L, 2L)

## On an IntegerRangesList object:
disjointBins(collection)

intra-range-methods Intra range transformations of an IRanges, IPos, Views, RangesList,
or MaskCollection object

Description

Range-based transformations are grouped in 2 categories:

1. Intra range transformations (e.g. shift()) transform each range individually (and indepen-
dently of the other ranges). They return an object parallel to the input object, that is, where
the i-th range corresponds to the i-th range in the input. Those transformations are described
below.

2. Inter range transformations (e.g. reduce()) transform all the ranges together as a set to
produce a new set of ranges. They return an object that is generally NOT parallel to the
input object. Those transformations are described in the inter-range-methods man page (see
?`inter-range-methods`).
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Except for threebands(), all the transformations described in this man page are endomorphisms
that operate on a single "range-based" object, that is, they transform the ranges contained in the
input object and return them in an object of the same class as the input object.

Usage

shift(x, shift=0L, use.names=TRUE)

narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)

resize(x, width, fix="start", use.names=TRUE, ...)

flank(x, width, start=TRUE, both=FALSE, use.names=TRUE, ...)

promoters(x, upstream=2000, downstream=200, use.names=TRUE, ...)

reflect(x, bounds, use.names=TRUE)

restrict(x, start=NA, end=NA, keep.all.ranges=FALSE, use.names=TRUE)

threebands(x, start=NA, end=NA, width=NA)

Arguments

x An IRanges, IPos, Views, RangesList, or MaskCollection object.
shift An integer vector containing the shift information. Recycled as necessary so

that each element corresponds to a range in x.
Can also be a list-like object parallel to x if x is a RangesList object.

use.names TRUE or FALSE. Should names be preserved?
start, end If x is an IRanges, IPos or Views object: A vector of integers for all functions

except for flank. For restrict, the supplied start and end arguments must be
vectors of integers, eventually with NAs, that specify the restriction interval(s).
Recycled as necessary so that each element corresponds to a range in x. Same
thing for narrow and threebands, except that here start and end must contain
coordinates relative to the ranges in x. See the Details section below. For flank,
start is a logical indicating whether x should be flanked at the start (TRUE) or
the end (FALSE). Recycled as necessary so that each element corresponds to a
range in x.
Can also be list-like objects parallel to x if x is a RangesList object.

width If x is an IRanges, IPos or Views object: For narrow and threebands, a vector
of integers, eventually with NAs. See the SEW (Start/End/Width) interface for
the details (?solveUserSEW). For resize and flank, the width of the resized or
flanking regions. Note that if both is TRUE, this is effectively doubled. Recycled
as necessary so that each element corresponds to a range in x.
Can also be a list-like object parallel to x if x is a RangesList object.

fix If x is an IRanges, IPos or Views object: A character vector or character-Rle
of length 1 or length(x) containing the values "start", "end", and "center"
denoting what to use as an anchor for each element in x.



48 intra-range-methods

Can also be a list-like object parallel to x if x is a RangesList object.
... Additional arguments for methods.
both If TRUE, extends the flanking region width positions into the range. The resulting

range thus straddles the end point, with width positions on either side.
upstream, downstream

Vectors of non-NA non-negative integers. Recycled as necessary so that each
element corresponds to a range in x. Can also be list-like objects parallel to x if
x is a RangesList object.
upstream defines the number of nucleotides toward the 5’ end and downstream
defines the number toward the 3’ end, relative to the transcription start site.
Promoter regions are formed by merging the upstream and downstream ranges.
Default values for upstream and downstream were chosen based on our current
understanding of gene regulation. On average, promoter regions in the mam-
malian genome are 5000 bp upstream and downstream of the transcription start
site.

bounds An IRanges object to serve as the reference bounds for the reflection, see below.
keep.all.ranges

TRUE or FALSE. Should ranges that don’t overlap with the restriction interval(s)
be kept? Note that "don’t overlap" means that they end strictly before start -
1 or start strictly after end + 1. Ranges that end at start - 1 or start at end + 1
are always kept and their width is set to zero in the returned IRanges object.

Details

Unless specified otherwise, when x is a RangesList object, any transformation described here is
equivalent to applying the transformation to each list element in x.

shift:
shift shifts all the ranges in x by the amount specified by the shift argument.

narrow:
narrow narrows the ranges in x i.e. each range in the returned IntegerRanges object is a sub-
range of the corresponding range in x. The supplied start/end/width values are solved by a call to
solveUserSEW(width(x), start=start, end=end, width=width) and therefore must be com-
pliant with the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW for the details).
Then each subrange is derived from the original range according to the solved start/end/width
values for this range. Note that those solved values are interpreted relatively to the original range.

resize:
resize resizes the ranges to the specified width where either the start, end, or center is used as an
anchor.

flank:
flank generates flanking ranges for each range in x. If start is TRUE for a given range, the
flanking occurs at the start, otherwise the end. The widths of the flanks are given by the width
parameter. The widths can be negative, in which case the flanking region is reversed so that it
represents a prefix or suffix of the range in x. The flank operation is illustrated below for a call of
the form flank(x, 3, TRUE), where x indicates a range in x and - indicates the resulting flanking
region:
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---xxxxxxx

If start were FALSE:

xxxxxxx---

For negative width, i.e. flank(x, -3, FALSE), where * indicates the overlap between x and the
result:

xxxx***

If both is TRUE, then, for all ranges in x, the flanking regions are extended into (or out of, if width
is negative) the range, so that the result straddles the given endpoint and has twice the width given
by width. This is illustrated below for flank(x, 3, both=TRUE):

---***xxxx

promoters:
promoters generates promoter ranges for each range in x relative to the transcription start site
(TSS), where TSS is start(x). The promoter range is expanded around the TSS according to the
upstream and downstream arguments. upstream represents the number of nucleotides in the 5’
direction and downstream the number in the 3’ direction. The full range is defined as, (start(x) -
upstream) to (start(x) + downstream - 1). For documentation for using promoters on a GRanges
object see ?`promoters,GenomicRanges-method` in the GenomicRanges package.

reflect:
reflect "reflects" or reverses each range in x relative to the corresponding range in bounds,
which is recycled as necessary. Reflection preserves the width of a range, but shifts it such the
distance from the left bound to the start of the range becomes the distance from the end of the
range to the right bound. This is illustrated below, where x represents a range in x and [ and ]
indicate the bounds:

[..xxx.....]
becomes
[.....xxx..]

restrict:
restrict restricts the ranges in x to the interval(s) specified by the start and end arguments.

threebands:
threebands extends the capability of narrow by returning the 3 ranges objects associated to the
narrowing operation. The returned value y is a list of 3 ranges objects named "left", "middle"
and "right". The middle component is obtained by calling narrow with the same arguments
(except that names are dropped). The left and right components are also instances of the same
class as x and they contain what has been removed on the left and right sides (respectively) of the
original ranges during the narrowing.
Note that original object x can be reconstructed from the left and right bands with punion(y$left,
y$right, fill.gap=TRUE).

Author(s)

H. Pagès, M. Lawrence, and P. Aboyoun
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See Also

• inter-range-methods for inter range transformations.

• The IRanges, IPos, Views, RangesList, and MaskCollection classes.

• The intra-range-methods man page in the GenomicRanges package for intra range transfor-
mations of genomic ranges.

• setops-methods for set operations on IRanges objects.

• endoapply in the S4Vectors package.

Examples

## ---------------------------------------------------------------------
## shift()
## ---------------------------------------------------------------------

## On an IRanges object:
ir1 <- successiveIRanges(c(19, 5, 0, 8, 5))
ir1
shift(ir1, shift=-3)

## On an IRangesList object:
range1 <- IRanges(start=c(1, 2, 3), end=c(5, 2, 8))
range2 <- IRanges(start=c(15, 45, 20, 1), end=c(15, 100, 80, 5))
range3 <- IRanges(start=c(-2, 6, 7), width=c(8, 0, 0)) # with empty ranges
collection <- IRangesList(one=range1, range2, range3)
shift(collection, shift=5) # same as endoapply(collection, shift, shift=5)

## Sanity check:
res1 <- shift(collection, shift=5)
res2 <- endoapply(collection, shift, shift=5)
stopifnot(identical(res1, res2))

## ---------------------------------------------------------------------
## narrow()
## ---------------------------------------------------------------------

## On an IRanges object:
ir2 <- ir1[width(ir1) != 0]
narrow(ir2, start=4, end=-2)
narrow(ir2, start=-4, end=-2)
narrow(ir2, end=5, width=3)
narrow(ir2, start=c(3, 4, 2, 3), end=c(12, 5, 7, 4))

## On an IRangesList object:
narrow(collection[-3], start=2)
narrow(collection[-3], end=-2)

## On a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
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mymasks <- append(append(mask1, mask2), mask3)
mymasks
narrow(mymasks, start=8)

## ---------------------------------------------------------------------
## resize()
## ---------------------------------------------------------------------

## On an IRanges object:
resize(ir2, 200)
resize(ir2, 2, fix="end")

## On an IRangesList object:
resize(collection, width=200)

## ---------------------------------------------------------------------
## flank()
## ---------------------------------------------------------------------

## On an IRanges object:
ir3 <- IRanges(c(2,5,1), c(3,7,3))
flank(ir3, 2)
flank(ir3, 2, start=FALSE)
flank(ir3, 2, start=c(FALSE, TRUE, FALSE))
flank(ir3, c(2, -2, 2))
flank(ir3, 2, both = TRUE)
flank(ir3, 2, start=FALSE, both=TRUE)
flank(ir3, -2, start=FALSE, both=TRUE)

## On an IRangesList object:
flank(collection, width=10)

## ---------------------------------------------------------------------
## promoters()
## ---------------------------------------------------------------------

## On an IRanges object:
ir4 <- IRanges(20:23, width=3)
promoters(ir4, upstream=0, downstream=0) ## no change
promoters(ir4, upstream=0, downstream=1) ## start value only
promoters(ir4, upstream=1, downstream=0) ## single upstream nucleotide

## On an IRangesList object:
promoters(collection, upstream=5, downstream=2)

## ---------------------------------------------------------------------
## reflect()
## ---------------------------------------------------------------------

## On an IRanges object:
bounds <- IRanges(c(0, 5, 3), c(10, 6, 9))
reflect(ir3, bounds)
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## reflect() does not yet support IRangesList objects!

## ---------------------------------------------------------------------
## restrict()
## ---------------------------------------------------------------------

## On an IRanges object:
restrict(ir1, start=12, end=34)
restrict(ir1, start=20)
restrict(ir1, start=21)
restrict(ir1, start=21, keep.all.ranges=TRUE)

## On an IRangesList object:
restrict(collection, start=2, end=8)
restrict(collection, start=2, end=8, keep.all.ranges=TRUE)

## ---------------------------------------------------------------------
## threebands()
## ---------------------------------------------------------------------

## On an IRanges object:
z <- threebands(ir2, start=4, end=-2)
ir2b <- punion(z$left, z$right, fill.gap=TRUE)
stopifnot(identical(ir2, ir2b))
threebands(ir2, start=-5)

## threebands() does not support IRangesList objects.

IPos-class IPos objects

Description

The IPos class is a container for storing a set of integer positions. It exists in 2 flavors: UnstitchedI-
Pos and StitchedIPos. Each flavor uses a particular internal representation:

• In an UnstitchedIPos instance the positions are stored as an integer vector.

• In a StitchedIPos instance the positions are stored as an IRanges object where each range
represents a run of consecutive positions (i.e. a run of positions that are adjacent and in
ascending order). This storage is particularly memory-efficient when the vector of positions
contains long runs of consecutive positions.

Because integer positions can be seen as integer ranges of width 1, the IPos class extends the
IntegerRanges virtual class.

Usage

IPos(pos=integer(0), names=NULL, ..., stitch=NA) # constructor function
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Arguments

pos An integer or numeric vector, or an IRanges object (or other IntegerRanges
derivative). If pos is anything else, IPos() will first try to coerce it to an IRanges
object with as(pos, "IRanges").
When pos is an IRanges object (or other IntegerRanges derivative), each range
in it is interpreted as a run of consecutive positions.

names A character vector or NULL.

... Metadata columns to set on the IPos object. All the metadata columns must be
vector-like objects of the same length as the object to construct.

stitch TRUE, FALSE, or NA (the default).
Controls which internal representation should be used: StitchedIPos (when stitch
is TRUE) or UnstitchedIPos (when stitch is FALSE).
When stitch is NA (the default), which internal representation will be used
depends on the type of pos: UnstitchedIPos if pos is an integer or numeric
vector, and StitchedIPos otherwise.

Details

Even though an IRanges object can be used for storing integer positions, using an IPos object is
more efficient. In particular the memory footprint of an UnstitchedIPos object is half that of an
IRanges object.

OTOH the memory footprint of a StitchedIPos object can vary a lot but will never be worse than
that of an IRanges object. However it will reduce dramatically if the vector of positions contains
long runs of consecutive positions. In the worst case scenario (i.e. when the object contains no
consecutive positions) its memory footprint will be the same as that of an IRanges object.

Like for any Vector derivative, the length of an IPos object cannot exceed .Machine$integer.max
(i.e. 2^31 on most platforms). IPos() will return an error if pos contains too many positions.

Value

An UnstitchedIPos or StitchedIPos object. If the input object pos is itself an IPos derivative, its
metadata columns are propagated.

Accessors

Getters: IPos objects support the same set of getters as other IntegerRanges derivatives (i.e.
length(), start(), end(), names(), mcols(), etc...), plus the pos() getter which is equivalent
to start() and end(). See ?IntegerRanges for the list of getters supported by IntegerRanges
derivatives.

Setters: IPos derivatives support the names(), mcols() and metadata() setters only.
In particular there is no pos() setter for IPos derivatives at the moment (although one might be
added in the future).
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Coercion

From UnstitchedIPos to StitchedIPos and vice-versa: coercion back and forth between UnstitchedI-
Pos and StitchedIPos is supported via as(x, "StitchedIPos") and as(x, "UnstitchedIPos").
This is the most efficient and recommended way to switch between the 2 internal representations.
Note that this switch can have dramatic consequences on memory usage so is for advanced users
only. End users should almost never need to do this switch when following a typical workflow.

From IntegerRanges to UnstitchedIPos, StitchedIPos, or IPos: An IntegerRanges derivative x in
which all the ranges have a width of 1 can be coerced to an UnstitchedIPos or StitchedIPos ob-
ject with as(x, "UnstitchedIPos") or as(x, "StitchedIPos"), respectively. For convenience
as(x, "IPos") is supported and is equivalent to as(x, "UnstitchedIPos").

From IPos to IRanges: An IPos derivative x can be coerced to an IRanges object with as(x,
"IRanges"). However be aware that if x is a StitchedIPos instance, the memory footprint of the
resulting object can be thousands times (or more) than that of x! See "MEMORY USAGE" in the
Examples section below.

From IPos to ordinary R objects: Like with any other IntegerRanges derivative, as.character(),
as.factor(), and as.data.frame() work on an IPos derivative x. Note however that as.data.frame(x)
returns a data frame with a pos column (containing pos(x)) instead of the start, end, and width
columns that one gets with other IntegerRanges derivatives.

Subsetting

An IPos derivative can be subsetted exactly like an IRanges object.

Concatenation

IPos derivatives can be concatenated with c() or append(). See ?c in the S4Vectors package for
more information about concatenating Vector derivatives.

Splitting and Relisting

Like with an IRanges object, split() and relist() work on an IPos derivative.

Author(s)

Hervé Pagès; based on ideas borrowed from Georg Stricker <georg.stricker@in.tum.de> and
Julien Gagneur <gagneur@in.tum.de>

See Also

• The GPos class in the GenomicRanges package for representing a set of genomic positions
(i.e. genomic ranges of width 1, a.k.a. genomic loci).

• The IRanges class for storing a set of integer ranges of arbitrary width.

• IPosRanges-comparison for comparing and ordering integer ranges and/or positions.

• findOverlaps-methods for finding overlapping integer ranges and/or positions.

• intra-range-methods and inter-range-methods for intra range and inter range transformations.

• coverage-methods for computing the coverage of a set of ranges and/or positions.

• nearest-methods for finding the nearest integer range/position neighbor.



IPos-class 55

Examples

showClass("IPos") # shows the known subclasses

## ---------------------------------------------------------------------
## BASIC EXAMPLES
## ---------------------------------------------------------------------

## Example 1:
ipos1a <- IPos(c(44:53, 5:10, 2:5))
ipos1a # unstitched

length(ipos1a)
pos(ipos1a) # same as 'start(ipos1a)' and 'end(ipos1a)'
as.character(ipos1a)
as.data.frame(ipos1a)
as(ipos1a, "IRanges")
as.data.frame(as(ipos1a, "IRanges"))
ipos1a[9:17]

ipos1b <- IPos(c(44:53, 5:10, 2:5), stitch=TRUE)
ipos1b # stitched

## 'ipos1a' and 'ipos1b' are semantically equivalent, only their
## internal representations differ:
all(ipos1a == ipos1b)

ipos1c <- IPos(c("44-53", "5-10", "2-5"))
ipos1c # stitched

identical(ipos1b, ipos1c)

## Example 2:
my_pos <- IRanges(c(1, 6, 12, 17), c(5, 10, 16, 20))
ipos2 <- IPos(my_pos)
ipos2 # stitched

## Example 3:
ipos3A <- ipos3B <- IPos(c("1-15000", "15400-88700"))
npos <- length(ipos3A)

mcols(ipos3A)$sample <- Rle("sA")
sA_counts <- sample(10, npos, replace=TRUE)
mcols(ipos3A)$counts <- sA_counts

mcols(ipos3B)$sample <- Rle("sB")
sB_counts <- sample(10, npos, replace=TRUE)
mcols(ipos3B)$counts <- sB_counts

ipos3 <- c(ipos3A, ipos3B)
ipos3

## ---------------------------------------------------------------------



56 IPos-class

## MEMORY USAGE
## ---------------------------------------------------------------------

## Coercion to IRanges works on a StitchedIPos object...
ipos4 <- IPos(c("1-125000", "135000-575000"))
ir4 <- as(ipos4, "IRanges")
ir4
## ... but is generally not a good idea:
object.size(ipos4)
object.size(ir4) # 1652 times bigger than the StitchedIPos object!

## Shuffling the order of the positions impacts memory usage:
ipos4r <- rev(ipos4)
object.size(ipos4r)
ipos4s <- sample(ipos4)
object.size(ipos4s)

## If one anticipates a lot of shuffling of the positions,
## then an UnstitchedIPos object should be used instead:
ipos4b <- as(ipos4, "UnstitchedIPos")
object.size(ipos4b) # initial size is bigger than stitched version
object.size(rev(ipos4b)) # size didn't change
object.size(sample(ipos4b)) # size didn't change

## AN IMPORTANT NOTE: In the worst situations, IPos still performs
## as good as an IRanges object.
object.size(as(ipos4r, "IRanges")) # same size as 'ipos4r'
object.size(as(ipos4s, "IRanges")) # same size as 'ipos4s'

## Best case scenario is when the object is strictly sorted (i.e.
## positions are in strict ascending order).
## This can be checked with:
is.unsorted(ipos4, strict=TRUE) # 'ipos4' is strictly sorted

## ---------------------------------------------------------------------
## USING MEMORY-EFFICIENT METADATA COLUMNS
## ---------------------------------------------------------------------
## In order to keep memory usage as low as possible, it is recommended
## to use a memory-efficient representation of the metadata columns that
## we want to set on the object. Rle's are particularly well suited for
## this, especially if the metadata columns contain long runs of
## identical values. This is the case for example if we want to use an
## IPos object to represent the coverage of sequencing reads along a
## chromosome.

## Example 5:
library(pasillaBamSubset)
library(Rsamtools) # for the BamFile() constructor function
bamfile1 <- BamFile(untreated1_chr4())
bamfile2 <- BamFile(untreated3_chr4())
ipos5 <- IPos(IRanges(1, seqlengths(bamfile1)[["chr4"]]))
library(GenomicAlignments) # for "coverage" method for BamFile objects
cvg1 <- coverage(bamfile1)$chr4
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cvg2 <- coverage(bamfile2)$chr4
mcols(ipos5) <- DataFrame(cvg1, cvg2)
ipos5

object.size(ipos5) # lightweight

## Keep only the positions where coverage is at least 10 in one of the
## 2 samples:
ipos5[mcols(ipos5)$cvg1 >= 10 | mcols(ipos5)$cvg2 >= 10]

IPosRanges-class IPosRanges objects

Description

The IPosRanges virtual class is a general container for storing a vector of ranges of integer positions.

Details

An IPosRanges object is a vector-like object where each element describes a "range of integer
positions".

A "range of integer values" is a finite set of consecutive integer values. Each range can be fully
described with exactly 2 integer values which can be arbitrarily picked up among the 3 following
values: its "start" i.e. its smallest (or first, or leftmost) value; its "end" i.e. its greatest (or last, or
rightmost) value; and its "width" i.e. the number of integer values in the range. For example the set
of integer values that are greater than or equal to -20 and less than or equal to 400 is the range that
starts at -20 and has a width of 421. In other words, a range is a closed, one-dimensional interval
with integer end points and on the domain of integers.

The starting point (or "start") of a range can be any integer (see start below) but its "width" must
be a non-negative integer (see width below). The ending point (or "end") of a range is equal to its
"start" plus its "width" minus one (see end below). An "empty" range is a range that contains no
value i.e. a range that has a null width. Depending on the context, it can be interpreted either as just
the empty set of integers or, more precisely, as the position between its "end" and its "start" (note
that for an empty range, the "end" equals the "start" minus one).

The length of an IPosRanges object is the number of ranges in it, not the number of integer values
in its ranges.

An IPosRanges object is considered empty iff all its ranges are empty.

IPosRanges objects have a vector-like semantic i.e. they only support single subscript subsetting
(unlike, for example, standard R data frames which can be subsetted by row and by column).

The IPosRanges class itself is a virtual class. The following classes derive directly from it: IRanges,
IPos, NCList, and GroupingRanges.
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Methods

In the code snippets below, x, y and object are IPosRanges objects. Not all the functions described
below will necessarily work with all kinds of IPosRanges derivatives but they should work at least
for IRanges objects.

Note that many more operations on IPosRanges objects are described in other man pages of the
IRanges package. See for example the man page for intra range transformations (e.g. shift(), see
?`intra-range-methods`), or the man page for inter range transformations (e.g. reduce(), see
?`inter-range-methods`), or the man page for findOverlaps methods (see ?`findOverlaps-methods`),
or the man page for IntegerRangesList objects where the split method for IntegerRanges deriva-
tives is documented.

length(x): The number of ranges in x.

start(x): The start values of the ranges. This is an integer vector of the same length as x.

width(x): The number of integer values in each range. This is a vector of non-negative integers
of the same length as x.

end(x): start(x) + width(x) - 1L

mid(x): returns the midpoint of the range, start(x) + floor((width(x) - 1)/2).

names(x): NULL or a character vector of the same length as x.

tile(x, n, width, ...): Splits each range in x into subranges as specified by n (number of
ranges) or width. Only one of n or width can be specified. The return value is a IRangesList
the same length as x. IPosRanges with a width less than the width argument are returned
unchanged.

slidingWindows(x, width, step=1L): Generates sliding windows within each range of x, of
width width, and starting every step positions. The return value is a IRangesList the same
length as x. IPosRanges with a width less than the width argument are returned unchanged.
If the sliding windows do not exactly cover x, the last window is partial.

isEmpty(x): Return a logical value indicating whether x is empty or not.

as.matrix(x, ...): Convert x into a 2-column integer matrix containing start(x) and width(x).
Extra arguments (...) are ignored.

as.data.frame(x, row.names=NULL, optional=FALSE): Convert x into a standard R data frame
object. row.names must be NULL or a character vector giving the row names for the data frame,
and optional is ignored. See ?as.data.frame for more information about these arguments.

x[[i]]: Return integer vector start(x[i]):end(x[i]) denoted by i. Subscript i can be a single
integer or a character string.

x[i]: Return a new IPosRanges object (of the same type as x) made of the selected ranges. i can
be a numeric vector, a logical vector, NULL or missing. If x is a NormalIRanges object and i
a positive numeric subscript (i.e. a numeric vector of positive values), then i must be strictly
increasing.

rep(x, times, length.out, each): Repeats the values in x through one of the following con-
ventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the IPosRanges elements if of length 1.

length.out Non-negative integer. The desired length of the output vector.
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each Non-negative integer. Each element of x is repeated each times.

c(x, ..., ignore.mcols=FALSE): Concatenate IPosRanges object x and the IPosRanges objects
in ... together. See ?c in the S4Vectors package for more information about concatenating
Vector derivatives.

x * y: The arithmetic operation x * y is for centered zooming. It symmetrically scales the width
of x by 1/y, where y is a numeric vector that is recycled as necessary. For example, x * 2
results in ranges with half their previous width but with approximately the same midpoint.
The ranges have been “zoomed in”. If y is negative, it is equivalent to x * (1/abs(y)). Thus,
x * -2 would double the widths in x. In other words, x has been “zoomed out”.

x + y: Expands the ranges in x on either side by the corresponding value in the numeric vector y.

show(x): By default the show method displays 5 head and 5 tail lines. The number of lines can be
altered by setting the global options showHeadLines and showTailLines. If the object length
is less than the sum of the options, the full object is displayed. These options affect display of
IRanges, IPos, Hits, GRanges, GPos, GAlignments, XStringSet objects, and more...

Normality

An IPosRanges object x is implicitly representing an arbitrary finite set of integers (that are not
necessarily consecutive). This set is the set obtained by taking the union of all the values in all the
ranges in x. This representation is clearly not unique: many different IPosRanges objects can be
used to represent the same set of integers. However one and only one of them is guaranteed to be
normal.

By definition an IPosRanges object is said to be normal when its ranges are: (a) not empty (i.e. they
have a non-null width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e.
there must be a non empty gap between 2 consecutive ranges).

Here is a simple algorithm to determine whether x is normal: (1) if length(x) == 0, then x is
normal; (2) if length(x) == 1, then x is normal iff width(x) >= 1; (3) if length(x) >= 2, then x is
normal iff:

start(x)[i] <= end(x)[i] < start(x)[i+1] <= end(x)[i+1]

for every 1 <= i < length(x).

The obvious advantage of using a normal IPosRanges object to represent a given finite set of integers
is that it is the smallest in terms of number of ranges and therefore in terms of storage space. Also the
fact that we impose its ranges to be ordered from left to right makes it unique for this representation.

A special container (NormalIRanges) is provided for holding a normal IRanges object: a NormalI-
Ranges object is just an IRanges object that is guaranteed to be normal.

Here are some methods related to the notion of normal IPosRanges:

isNormal(x): Return TRUE or FALSE indicating whether x is normal or not.

whichFirstNotNormal(x): Return NA if x is normal, or the smallest valid indice i in x for which
x[1:i] is not normal.

Author(s)

H. Pagès and M. Lawrence
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See Also

• The IRanges class, a concrete IPosRanges direct subclass for storing a set of integer ranges.

• The IPos class, an IPosRanges direct subclass for representing a set of integer positions (i.e.
integer ranges of width 1).

• IPosRanges-comparison for comparing and ordering ranges.

• findOverlaps-methods for finding/counting overlapping ranges.

• intra-range-methods and inter-range-methods for intra range and inter range transformations
of IntegerRanges derivatives.

• coverage-methods for computing the coverage of a set of ranges.

• setops-methods for set operations on ranges.

• nearest-methods for finding the nearest range neighbor.

Examples

## ---------------------------------------------------------------------
## Basic manipulation
## ---------------------------------------------------------------------
x <- IRanges(start=c(2:-1, 13:15), width=c(0:3, 2:0))
x
length(x)
start(x)
width(x)
end(x)
isEmpty(x)
as.matrix(x)
as.data.frame(x)

## Subsetting:
x[4:2] # 3 ranges
x[-1] # 6 ranges
x[FALSE] # 0 range
x0 <- x[width(x) == 0] # 2 ranges
isEmpty(x0)

## Use the replacement methods to resize the ranges:
width(x) <- width(x) * 2 + 1
x
end(x) <- start(x) # equivalent to width(x) <- 0
x
width(x) <- c(2, 0, 4)
x
start(x)[3] <- end(x)[3] - 2 # resize the 3rd range
x

## Name the elements:
names(x)
names(x) <- c("range1", "range2")
x
x[is.na(names(x))] # 5 ranges
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x[!is.na(names(x))] # 2 ranges

ir <- IRanges(c(1,5), c(3,10))
ir*1 # no change
ir*c(1,2) # zoom second range by 2X
ir*-2 # zoom out 2X

IPosRanges-comparison Comparing and ordering ranges

Description

Methods for comparing and/or ordering the ranges in IPosRanges derivatives (e.g. IRanges, IPos,
or NCList objects).

Usage

## match() & selfmatch()
## ---------------------

## S4 method for signature 'IPosRanges,IPosRanges'
match(x, table, nomatch=NA_integer_, incomparables=NULL,

method=c("auto", "quick", "hash"))

## S4 method for signature 'IPosRanges'
selfmatch(x, method=c("auto", "quick", "hash"))

## order() and related methods
## ----------------------------

## S4 method for signature 'IPosRanges'
is.unsorted(x, na.rm=FALSE, strictly=FALSE)

## S4 method for signature 'IPosRanges'
order(..., na.last=TRUE, decreasing=FALSE,

method=c("auto", "shell", "radix"))

## Generalized parallel comparison of 2 IPosRanges derivatives
## -----------------------------------------------------------

## S4 method for signature 'IPosRanges,IPosRanges'
pcompare(x, y)

rangeComparisonCodeToLetter(code)
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Arguments

x, table, y IPosRanges derivatives e.g. IRanges, IPos, or NCList objects.

nomatch The value to be returned in the case when no match is found. It is coerced to an
integer.

incomparables Not supported.

method For match and selfmatch: Use a Quicksort-based (method="quick") or a
hash-based (method="hash") algorithm. The latter tends to give better perfor-
mance, except maybe for some pathological input that we’ve not encountered
so far. When method="auto" is specified, the most efficient algorithm will
be used, that is, the hash-based algorithm if length(x) <= 2^29, otherwise the
Quicksort-based algorithm.
For order: The method argument is ignored.

na.rm Ignored.

strictly Logical indicating if the check should be for strictly increasing values.

... One or more IPosRanges derivatives. The 2nd and following objects are used to
break ties.

na.last Ignored.

decreasing TRUE or FALSE.

code A vector of codes as returned by pcompare.

Details

Two ranges of an IPosRanges derivative are considered equal iff they share the same start and width.
duplicated() and unique() on an IPosRanges derivative are conforming to this.

Note that with this definition, 2 empty ranges are generally not equal (they need to share the same
start to be considered equal). This means that, when it comes to comparing ranges, an empty range
is interpreted as a position between its end and start. For example, a typical usecase is comparison
of insertion points defined along a string (like a DNA sequence) and represented as empty ranges.

The "natural order" for the elements of an IPosRanges derivative is to order them (a) first by start
and (b) then by width. This way, the space of integer ranges is totally ordered.

pcompare(), ==, !=, <=, >=, < and > on IPosRanges derivatives behave accordingly to this "natural
order".

is.unsorted(), order(), sort(), rank() on IPosRanges derivatives also behave accordingly to
this "natural order".

Finally, note that some inter range transformations like reduce or disjoin also use this "natural
order" implicitly when operating on IPosRanges derivatives.

pcompare(x, y): Performs element-wise (aka "parallel") comparison of 2 IPosRanges objects of
x and y, that is, returns an integer vector where the i-th element is a code describing how x[i]
is qualitatively positioned with respect to y[i].
Here is a summary of the 13 predefined codes (and their letter equivalents) and their meanings:
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-6 a: x[i]: .oooo....... 6 m: x[i]: .......oooo.
y[i]: .......oooo. y[i]: .oooo.......

-5 b: x[i]: ..oooo...... 5 l: x[i]: ......oooo..
y[i]: ......oooo.. y[i]: ..oooo......

-4 c: x[i]: ...oooo..... 4 k: x[i]: .....oooo...
y[i]: .....oooo... y[i]: ...oooo.....

-3 d: x[i]: ...oooooo... 3 j: x[i]: .....oooo...
y[i]: .....oooo... y[i]: ...oooooo...

-2 e: x[i]: ..oooooooo.. 2 i: x[i]: ....oooo....
y[i]: ....oooo.... y[i]: ..oooooooo..

-1 f: x[i]: ...oooo..... 1 h: x[i]: ...oooooo...
y[i]: ...oooooo... y[i]: ...oooo.....

0 g: x[i]: ...oooooo...
y[i]: ...oooooo...

Note that this way of comparing ranges is a refinement over the standard ranges comparison
defined by the ==, !=, <=, >=, < and > operators. In particular a code that is < 0, = 0, or > 0,
corresponds to x[i] < y[i], x[i] == y[i], or x[i] > y[i], respectively.
The pcompare method for IPosRanges derivatives is guaranteed to return predefined codes
only but methods for other objects (e.g. for GenomicRanges objects) can return non-predefined
codes. Like for the predefined codes, the sign of any non-predefined code must tell whether
x[i] is less than, or greater than y[i].

rangeComparisonCodeToLetter(x): Translate the codes returned by pcompare. The 13 prede-
fined codes are translated as follow: -6 -> a; -5 -> b; -4 -> c; -3 -> d; -2 -> e; -1 -> f; 0 -> g;
1 -> h; 2 -> i; 3 -> j; 4 -> k; 5-> l; 6 -> m. Any non-predefined code is translated to X. The
translated codes are returned in a factor with 14 levels: a, b, ..., l, m, X.

match(x, table, nomatch=NA_integer_, method=c("auto", "quick", "hash")): Returns an
integer vector of the length of x, containing the index of the first matching range in table (or
nomatch if there is no matching range) for each range in x.

selfmatch(x, method=c("auto", "quick", "hash")): Equivalent to, but more efficient than,
match(x, x, method=method).

duplicated(x, fromLast=FALSE, method=c("auto", "quick", "hash")): Determines which
elements of x are equal to elements with smaller subscripts, and returns a logical vector in-
dicating which elements are duplicates. duplicated(x) is equivalent to, but more efficient
than, duplicated(as.data.frame(x)) on an IPosRanges derivative. See duplicated in the
base package for more details.

unique(x, fromLast=FALSE, method=c("auto", "quick", "hash")): Removes duplicate ranges
from x. unique(x) is equivalent to, but more efficient than, unique(as.data.frame(x)) on
an IPosRanges derivative. See unique in the base package for more details.

x %in% table: A shortcut for finding the ranges in x that match any of the ranges in table. Returns
a logical vector of length equal to the number of ranges in x.
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findMatches(x, table, method=c("auto", "quick", "hash")): An enhanced version of match
that returns all the matches in a Hits object.

countMatches(x, table, method=c("auto", "quick", "hash")): Returns an integer vector of
the length of x containing the number of matches in table for each element in x.

order(...): Returns a permutation which rearranges its first argument (an IPosRanges derivative)
into ascending order, breaking ties by further arguments (also IPosRanges derivatives).

sort(x): Sorts x. See sort in the base package for more details.

rank(x, na.last=TRUE, ties.method=c("average", "first", "random", "max", "min")): Re-
turns the sample ranks of the ranges in x. See rank in the base package for more details.

Author(s)

Hervé Pagès

See Also

• The IPosRanges class.

• Vector-comparison in the S4Vectors package for general information about comparing, order-
ing, and tabulating vector-like objects.

• GenomicRanges-comparison in the GenomicRanges package for comparing and ordering ge-
nomic ranges.

• findOverlaps for finding overlapping ranges.

• intra-range-methods and inter-range-methods for intra range and inter range transformations.

• setops-methods for set operations on IRanges objects.

Examples

## ---------------------------------------------------------------------
## A. ELEMENT-WISE (AKA "PARALLEL") COMPARISON OF 2 IPosRanges
## DERIVATIVES
## ---------------------------------------------------------------------
x0 <- IRanges(1:11, width=4)
x0
y0 <- IRanges(6, 9)
pcompare(x0, y0)
pcompare(IRanges(4:6, width=6), y0)
pcompare(IRanges(6:8, width=2), y0)
pcompare(x0, y0) < 0 # equivalent to 'x0 < y0'
pcompare(x0, y0) == 0 # equivalent to 'x0 == y0'
pcompare(x0, y0) > 0 # equivalent to 'x0 > y0'

rangeComparisonCodeToLetter(-10:10)
rangeComparisonCodeToLetter(pcompare(x0, y0))

## Handling of zero-width ranges (a.k.a. empty ranges):
x1 <- IRanges(11:17, width=0)
x1
pcompare(x1, x1[4])
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pcompare(x1, IRanges(12, 15))

## Note that x1[2] and x1[6] are empty ranges on the edge of non-empty
## range IRanges(12, 15). Even though -1 and 3 could also be considered
## valid codes for describing these configurations, pcompare()
## considers x1[2] and x1[6] to be *adjacent* to IRanges(12, 15), and
## thus returns codes -5 and 5:
pcompare(x1[2], IRanges(12, 15)) # -5
pcompare(x1[6], IRanges(12, 15)) # 5

x2 <- IRanges(start=c(20L, 8L, 20L, 22L, 25L, 20L, 22L, 22L),
width=c( 4L, 0L, 11L, 5L, 0L, 9L, 5L, 0L))

x2

which(width(x2) == 0) # 3 empty ranges
x2[2] == x2[2] # TRUE
x2[2] == x2[5] # FALSE
x2 == x2[4]
x2 >= x2[3]

## ---------------------------------------------------------------------
## B. match(), selfmatch(), %in%, duplicated(), unique()
## ---------------------------------------------------------------------
table <- x2[c(2:4, 7:8)]
match(x2, table)

x2 %in% table

duplicated(x2)
unique(x2)

## ---------------------------------------------------------------------
## C. findMatches(), countMatches()
## ---------------------------------------------------------------------
findMatches(x2, table)
countMatches(x2, table)

x2_levels <- unique(x2)
countMatches(x2_levels, x2)

## ---------------------------------------------------------------------
## D. order() AND RELATED METHODS
## ---------------------------------------------------------------------
is.unsorted(x2)
order(x2)
sort(x2)
rank(x2, ties.method="first")

IRanges-class IRanges and NormalIRanges objects



66 IRanges-class

Description

The IRanges class is a simple implementation of the IntegerRanges container where 2 integer vec-
tors of the same length are used to store the start and width values. See the IntegerRanges virtual
class for a formal definition of IntegerRanges objects and for their methods (all of them should work
for IRanges objects).

Some subclasses of the IRanges class are: NormalIRanges, Views, etc...

A NormalIRanges object is just an IRanges object that is guaranteed to be "normal". See the Nor-
mality section in the man page for IntegerRanges objects for the definition and properties of "nor-
mal" IntegerRanges objects.

Constructor

See ?`IRanges-constructor`.

Coercion

ranges(x, use.names=FALSE, use.mcols=FALSE): Squeeze the ranges out of IntegerRanges ob-
ject x and return them in an IRanges object parallel to x (i.e. same length as x).

as(from, "IRanges"): Creates an IRanges instance from an IntegerRanges derivative, or from a
logical or integer vector. When from is a logical vector, the resulting IRanges object contains
the indices for the runs of TRUE values. When from is an integer vector, the elements are either
singletons or "increase by 1" sequences.

as(from, "NormalIRanges"): Creates a NormalIRanges instance from a logical or integer vector.
When from is an integer vector, the elements must be strictly increasing.

Concatenation

c(x, ..., ignore.mcols=FALSE): Concatenate IRanges object x and the IRanges objects in ...
together. See ?c in the S4Vectors package for more information about concatenating Vector
derivatives.

Methods for NormalIRanges objects

max(x): The maximum value in the finite set of integers represented by x.

min(x): The minimum value in the finite set of integers represented by x.

Author(s)

Hervé Pagès

See Also

• The GRanges class in the GenomicRanges package for storing a set of genomic ranges.

• The IPos class for representing a set of integer positions (i.e. integer ranges of width 1).

• IPosRanges-comparison for comparing and ordering integer ranges and/or positions.

• IRanges-utils for some utility functions for creating or modifying IRanges objects.

• findOverlaps-methods for finding overlapping integer ranges and/or positions.
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• intra-range-methods and inter-range-methods for intra range and inter range transformations.

• coverage-methods for computing the coverage of a set of ranges and/or positions.

• setops-methods for set operations on IRanges objects.

• nearest-methods for finding the nearest integer range/position neighbor.

Examples

showClass("IRanges") # shows the known subclasses

## ---------------------------------------------------------------------
## A. MANIPULATING IRanges OBJECTS
## ---------------------------------------------------------------------
## All the methods defined for IntegerRanges objects work on IRanges
## objects.
## See ?IntegerRanges for some examples.
## Also see ?`IRanges-utils` and ?`setops-methods` for additional
## operations on IRanges objects.

## Concatenating IRanges objects
ir1 <- IRanges(c(1, 10, 20), width=5)
mcols(ir1) <- DataFrame(score=runif(3))
ir2 <- IRanges(c(101, 110, 120), width=10)
mcols(ir2) <- DataFrame(score=runif(3))
ir3 <- IRanges(c(1001, 1010, 1020), width=20)
mcols(ir3) <- DataFrame(value=runif(3))
some.iranges <- c(ir1, ir2)
## all.iranges <- c(ir1, ir2, ir3) ## This will raise an error
all.iranges <- c(ir1, ir2, ir3, ignore.mcols=TRUE)
stopifnot(is.null(mcols(all.iranges)))

## ---------------------------------------------------------------------
## B. A NOTE ABOUT PERFORMANCE
## ---------------------------------------------------------------------
## Using an IRanges object for storing a big set of ranges is more
## efficient than using a standard R data frame:
N <- 2000000L # nb of ranges
W <- 180L # width of each range
start <- 1L
end <- 50000000L
set.seed(777)
range_starts <- sort(sample(end-W+1L, N))
range_widths <- rep.int(W, N)
## Instantiation is faster
system.time(x <- IRanges(start=range_starts, width=range_widths))
system.time(y <- data.frame(start=range_starts, width=range_widths))
## Subsetting is faster
system.time(x16 <- x[c(TRUE, rep.int(FALSE, 15))])
system.time(y16 <- y[c(TRUE, rep.int(FALSE, 15)), ])
## Internal representation is more compact
object.size(x16)
object.size(y16)
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IRanges-constructor The IRanges constructor and supporting functions

Description

The IRanges function is a constructor that can be used to create IRanges instances.

solveUserSEW is a low-level utility function for solving a set of user-supplied start/end/width
triplets.

Usage

## IRanges constructor:
IRanges(start=NULL, end=NULL, width=NULL, names=NULL, ...)

## Supporting functions (not for the end user):
solveUserSEW(refwidths, start=NA, end=NA, width=NA,

rep.refwidths=FALSE,
translate.negative.coord=TRUE,
allow.nonnarrowing=FALSE)

Arguments

start, end, width

For IRanges: NULL or vector of integers.
For solveUserSEW: vector of integers (eventually with NAs).

names A character vector or NULL.

... Metadata columns to set on the IRanges object. All the metadata columns must
be vector-like objects of the same length as the object to construct.

refwidths Vector of non-NA non-negative integers containing the reference widths.

rep.refwidths TRUE or FALSE. Use of rep.refwidths=TRUE is supported only when refwidths
is of length 1.

translate.negative.coord, allow.nonnarrowing

TRUE or FALSE.

IRanges constructor

Return the IRanges object containing the ranges specified by start, end and width. Input falls into
one of two categories:

Category 1 start, end and width are numeric vectors (or NULLs). If necessary they are recycled
to the length of the longest (NULL arguments are filled with NAs). After this recycling, each
row in the 3-column matrix obtained by binding those 3 vectors together is "solved" i.e. NAs
are treated as unknown in the equation end = start + width - 1. Finally, the solved matrix is
returned as an IRanges instance.
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Category 2 The start argument is a logical vector or logical Rle object and IRanges(start)
produces the same result as as(start, "IRanges"). Note that, in that case, the returned
IRanges instance is guaranteed to be normal.

Note that the names argument is never recycled (to remain consistent with what `names<-` does on
standard vectors).

Supporting functions

solveUserSEW(refwidths, start=NA, end=NA, width=NA, rep.refwidths=FALSE, translate.negative.coord=TRUE,
allow.nonnarrowing=FALSE): Use of rep.refwidths=TRUE is supported only when refwidths
is of length 1. If rep.refwidths=FALSE (the default) then start, end and width are recycled
to the length of refwidths (it’s an error if one of them is longer than refwidths, or is of zero
length while refwidths is not). If rep.refwidths=TRUE then refwidths is first replicated
L times where L is the length of the longest of start, end and width. After this replication,
start, end and width are recycled to the new length of refwidths (L) (it’s an error if one of
them is of zero length while L is != 0).

From now, refwidths, start, end and width are integer vectors of equal lengths. Each
row in the 3-column matrix obtained by binding those 3 vectors together must contain at
least one NA (otherwise an error is returned). Then each row is "solved" i.e. the 2 following
transformations are performed (i is the indice of the row): (1) if translate.negative.coord
is TRUE then a negative value of start[i] or end[i] is considered to be a -refwidths[i]-
based coordinate so refwidths[i]+1 is added to it to make it 1-based; (2) the NAs in the row
are treated as unknowns which values are deduced from the known values in the row and from
refwidths[i].

The exact rules for (2) are the following. Rule (2a): if the row contains at least 2 NAs, then
width[i] must be one of them (otherwise an error is returned), and if start[i] is one of
them it is replaced by 1, and if end[i] is one of them it is replaced by refwidths[i], and
finally width[i] is replaced by end[i] - start[i] + 1. Rule (2b): if the row contains only 1
NA, then it is replaced by the solution of the width[i] == end[i] - start[i] + 1 equation.

Finally, the set of solved rows is returned as an IRanges object of the same length as refwidths
(after replication if rep.refwidths=TRUE).

Note that an error is raised if either (1) the set of user-supplied start/end/width values is
invalid or (2) allow.nonnarrowing is FALSE and the ranges represented by the solved
start/end/width values are not narrowing the ranges represented by the user-supplied start/end/width
values.

Author(s)

Hervé Pagès

See Also

• IRanges-class for the IRanges class.

• narrow
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Examples

## ---------------------------------------------------------------------
## A. USING THE IRanges() CONSTRUCTOR
## ---------------------------------------------------------------------
IRanges(start=11, end=rep.int(20, 5))
IRanges(start=11, width=rep.int(20, 5))
IRanges(-2, 20) # only one range
IRanges(start=c(2, 0, NA), end=c(NA, NA, 14), width=11:0)
IRanges() # IRanges instance of length zero
IRanges(names=character())

## With ranges specified as strings:
IRanges(c("11-20", "15-14", "-4--2"))

## With logical input:
x <- IRanges(c(FALSE, TRUE, TRUE, FALSE, TRUE)) # logical vector input
isNormal(x) # TRUE
x <- IRanges(Rle(1:30) %% 5 <= 2) # logical Rle input
isNormal(x) # TRUE

## ---------------------------------------------------------------------
## B. USING solveUserSEW()
## ---------------------------------------------------------------------
refwidths <- c(5:3, 6:7)
refwidths

solveUserSEW(refwidths)
solveUserSEW(refwidths, start=4)
solveUserSEW(refwidths, end=3, width=2)
solveUserSEW(refwidths, start=-3)
solveUserSEW(refwidths, start=-3, width=2)
solveUserSEW(refwidths, end=-4)

## The start/end/width arguments are recycled:
solveUserSEW(refwidths, start=c(3, -4, NA), end=c(-2, NA))

## Using 'rep.refwidths=TRUE':
solveUserSEW(10, start=-(1:6), rep.refwidths=TRUE)
solveUserSEW(10, end=-(1:6), width=3, rep.refwidths=TRUE)

IRanges-utils IRanges utility functions

Description

Utility functions for creating or modifying IRanges objects.
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Usage

## Create an IRanges instance:
successiveIRanges(width, gapwidth=0, from=1)
breakInChunks(totalsize, nchunk, chunksize)

## Turn a logical vector into a set of ranges:
whichAsIRanges(x)

## Coercion:
asNormalIRanges(x, force=TRUE)

Arguments

width A vector of non-negative integers (with no NAs) specifying the widths of the
ranges to create.

gapwidth A single integer or an integer vector with one less element than the width vector
specifying the widths of the gaps separating one range from the next one.

from A single integer specifying the starting position of the first range.

totalsize A single non-negative integer. The total size of the object to break.

nchunk A single positive integer. The number of chunks.

chunksize A single positive integer. The size of the chunks (last chunk might be smaller).

x A logical vector for whichAsIRanges.
An IRanges object for asNormalIRanges.

force TRUE or FALSE. Should x be turned into a NormalIRanges object even if isNormal(x)
is FALSE?

Details

successiveIRanges returns an IRanges instance containing the ranges that have the widths speci-
fied in the width vector and are separated by the gaps specified in gapwidth. The first range starts
at position from. When gapwidth=0 and from=1 (the defaults), the returned IRanges can be seen
as a partitioning of the 1:sum(width) interval. See ?Partitioning for more details on this.

breakInChunks returns a PartitioningByEnd object describing the "chunks" that result from break-
ing a vector-like object of length totalsize in the chunks described by nchunk or chunksize.

whichAsIRanges returns an IRanges instance containing all of the ranges where x is TRUE.

If force=TRUE (the default), then asNormalIRanges will turn x into a NormalIRanges instance by
reordering and reducing the set of ranges if necessary (i.e. only if isNormal(x) is FALSE, otherwise
the set of ranges will be untouched). If force=FALSE, then asNormalIRanges will turn x into a
NormalIRanges instance only if isNormal(x) is TRUE, otherwise it will raise an error. Note that
when force=FALSE, the returned object is guaranteed to contain exactly the same set of ranges than
x. as(x, "NormalIRanges") is equivalent to asNormalIRanges(x, force=TRUE).

Author(s)

Hervé Pagès
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See Also

• IRanges objects.

• Partitioning objects.

• equisplit for splitting a list-like object into a specified number of partitions.

• intra-range-methods and inter-range-methods for intra range and inter range transformations.

• setops-methods for performing set operations on IRanges objects.

• solveUserSEW

• successiveViews

Examples

vec <- as.integer(c(19, 5, 0, 8, 5))

successiveIRanges(vec)

breakInChunks(600999, chunksize=50000) # chunks of size 50000 (last
# chunk is smaller)

whichAsIRanges(vec >= 5)

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),
width=c( 5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))

asNormalIRanges(x) # 3 non-empty ranges ordered from left to right and
# separated by gaps of width >= 1.

## More on normality:
example(`IRanges-class`)
isNormal(x16) # FALSE
if (interactive())

x16 <- asNormalIRanges(x16) # Error!
whichFirstNotNormal(x16) # 57
isNormal(x16[1:56]) # TRUE
xx <- asNormalIRanges(x16[1:56])
class(xx)
max(xx)
min(xx)

IRangesList-class List of IRanges and NormalIRanges

Description

IRangesList and NormalIRangesList objects for storing IRanges and NormalIRanges objects
respectively.
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Constructor

IRangesList(..., compress=TRUE): The ... argument accepts either a comma-separated list
of IRanges objects, or a single LogicalList / logical RleList object, or 2 elements named
start and end each of them being either a list of integer vectors or an IntegerList object. When
IRanges objects are supplied, each of them becomes an element in the new IRangesList, in
the same order, which is analogous to the list constructor. If compress, the internal storage
of the data is compressed.

Coercion

In the code snippets below, from is a list-like object.

as(from, "SimpleIRangesList"): Coerces from, to a SimpleIRangesList, requiring that all
IntegerRanges elements are coerced to internal IRanges elements. This is a convenient way
to ensure that all IntegerRanges have been imported into R (and that there is no unwanted
overhead when accessing them).

as(from, "CompressedIRangesList"): Coerces from, to a CompressedIRangesList, requiring
that all IntegerRanges elements are coerced to internal IRanges elements. This is a conve-
nient way to ensure that all IntegerRanges have been imported into R (and that there is no
unwanted overhead when accessing them).

as(from, "SimpleNormalIRangesList"): Coerces from, to a SimpleNormalIRangesList, re-
quiring that all IntegerRanges elements are coerced to internal NormalIRanges elements.

as(from, "CompressedNormalIRangesList"): Coerces from, to a CompressedNormalIRangesList,
requiring that all IntegerRanges elements are coerced to internal NormalIRanges elements.

In the code snippet below, x is an IRangesList object.

unlist(x): Unlists x, an IRangesList, by concatenating all of the ranges into a single IRanges
instance. If the length of x is zero, an empty IRanges is returned.

Methods for NormalIRangesList objects

max(x): An integer vector containing the maximum values of each of the elements of x.

min(x): An integer vector containing the minimum values of each of the elements of x.

Author(s)

Michael Lawrence and Hervé Pagès

See Also

• IntegerRangesList, the parent of this class, for more functionality.

• intra-range-methods and inter-range-methods for intra range and inter range transformations.

• setops-methods for set operations on IRangesList objects.
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Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
named <- IRangesList(one = range1, two = range2)
length(named) # 2
names(named) # "one" and "two"
named[[1]] # range1
unnamed <- IRangesList(range1, range2)
names(unnamed) # NULL

x <- IRangesList(start=list(c(1,2,3), c(15,45,20,1)),
end=list(c(5,2,8), c(15,100,80,5)))

as.list(x)

MaskCollection-class MaskCollection objects

Description

The MaskCollection class is a container for storing a collection of masks that can be used to mask
regions in a sequence.

Details

In the context of the Biostrings package, a mask is a set of regions in a sequence that need to be ex-
cluded from some computation. For example, when calling alphabetFrequency or matchPattern
on a chromosome sequence, you might want to exclude some regions like the centromere or the
repeat regions. This can be achieved by putting one or several masks on the sequence before calling
alphabetFrequency on it.

A MaskCollection object is a vector-like object that represents such set of masks. Like standard
R vectors, it has a "length" which is the number of masks contained in it. But unlike standard R
vectors, it also has a "width" which determines the length of the sequences it can be "put on". For
example, a MaskCollection object of width 20000 can only be put on an XString object of 20000
letters.

Each mask in a MaskCollection object x is just a finite set of integers that are >= 1 and <= width(x).
When "put on" a sequence, these integers indicate the positions of the letters to mask. Internally,
each mask is represented by a NormalIRanges object.

Basic accessor methods

In the code snippets below, x is a MaskCollection object.

length(x): The number of masks in x.

width(x): The common with of all the masks in x. This determines the length of the sequences
that x can be "put on".

active(x): A logical vector of the same length as x where each element indicates whether the
corresponding mask is active or not.



MaskCollection-class 75

names(x): NULL or a character vector of the same length as x.

desc(x): NULL or a character vector of the same length as x.

nir_list(x): A list of the same length as x, where each element is a NormalIRanges object
representing a mask in x.

Constructor

Mask(mask.width, start=NULL, end=NULL, width=NULL): Return a single mask (i.e. a MaskCol-
lection object of length 1) of width mask.width (a single integer >= 1) and masking the ranges
of positions specified by start, end and width. See the IRanges constructor (?IRanges) for
how start, end and width can be specified. Note that the returned mask is active and un-
named.

Other methods

In the code snippets below, x is a MaskCollection object.

isEmpty(x): Return a logical vector of the same length as x, indicating, for each mask in x,
whether it’s empty or not.

max(x): The greatest (or last, or rightmost) masked position for each mask. This is a numeric
vector of the same length as x.

min(x): The smallest (or first, or leftmost) masked position for each mask. This is a numeric
vector of the same length as x.

maskedwidth(x): The number of masked position for each mask. This is an integer vector of the
same length as x where all values are >= 0 and <= width(x).

maskedratio(x): maskedwidth(x) / width(x)

Subsetting and appending

In the code snippets below, x and values are MaskCollection objects.

x[i]: Return a new MaskCollection object made of the selected masks. Subscript i can be a
numeric, logical or character vector.

x[[i, exact=TRUE]]: Extract the mask selected by i as a NormalIRanges object. Subscript i can
be a single integer or a character string.

append(x, values, after=length(x)): Add masks in values to x.

Other methods

In the code snippets below, x is a MaskCollection object.

collapse(x): Return a MaskCollection object of length 1 obtained by collapsing all the active
masks in x.

Author(s)

Hervé Pagès
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See Also

NormalIRanges-class, read.Mask, MaskedXString-class, reverse, alphabetFrequency, matchPattern

Examples

## Making a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
mymasks
length(mymasks)
width(mymasks)
collapse(mymasks)

## Names and descriptions:
names(mymasks) <- c("A", "B", "C") # names should be short and unique...
mymasks
mymasks[c("C", "A")] # ...to make subsetting by names easier
desc(mymasks) <- c("you can be", "more verbose", "here")
mymasks[-2]

## Activate/deactivate masks:
active(mymasks)["B"] <- FALSE
mymasks
collapse(mymasks)
active(mymasks) <- FALSE # deactivate all masks
mymasks
active(mymasks)[-1] <- TRUE # reactivate all masks except mask 1
active(mymasks) <- !active(mymasks) # toggle all masks

## Other advanced operations:
mymasks[[2]]
length(mymasks[[2]])
mymasks[[2]][-3]
append(mymasks[-2], gaps(mymasks[2]))

multisplit Split elements belonging to multiple groups

Description

This is like split, except elements can belong to multiple groups, in which case they are repeated
to appear in multiple elements of the return value.

Usage

multisplit(x, f)
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Arguments

x The object to split, like a vector.

f A list-like object of vectors, the same length as x, where each element indicates
the groups to which each element of x belongs.

Value

A list-like object, with an element for each unique value in the unlisted f, containing the elements
in x where the corresponding element in f contained that value. Just try it.

Author(s)

Michael Lawrence

Examples

multisplit(1:3, list(letters[1:2], letters[2:3], letters[2:4]))

NCList-class Nested Containment List objects

Description

The NCList class is a container for storing the Nested Containment List representation of a In-
tegerRanges object. Preprocessing a IntegerRanges object as a Nested Containment List allows
efficient overlap-based operations like findOverlaps.

The NCLists class is a container for storing a collection of NCList objects. An NCLists object
is typically the result of preprocessing each list element of a IntegerRangesList object as a Nested
Containment List. Like with NCList, the NCLists object can then be used for efficient overlap-based
operations.

To preprocess a IntegerRanges or IntegerRangesList object, simply call the NCList or NCLists
constructor function on it.

Usage

NCList(x, circle.length=NA_integer_)
NCLists(x, circle.length=NA_integer_)

Arguments

x The IntegerRanges or IntegerRangesList object to preprocess.

circle.length Use only if the space (or spaces if x is a IntegerRangesList object) on top of
which the ranges in x are defined needs (need) to be considered circular. If
that’s the case, then use circle.length to specify the length(s) of the circular
space(s).
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For NCList, circle.length must be a single positive integer (or NA if the
space is linear).
For NCLists, it must be an integer vector parallel to x (i.e. same length) and
with positive or NA values (NAs indicate linear spaces).

Details

The GenomicRanges package also defines the GNCList constructor and class for preprocessing and
representing a vector of genomic ranges as a data structure based on Nested Containment Lists.

Some important differences between the new findOverlaps/countOverlaps implementation based on
Nested Containment Lists (BioC >= 3.1) and the old implementation based on Interval Trees (BioC
< 3.1):

• With the new implementation, the hits returned by findOverlaps are not fully ordered (i.e.
ordered by queryHits and subject Hits) anymore, but only partially ordered (i.e. ordered by
queryHits only). Other than that, and except for the 2 particular situations mentioned below,
the 2 implementations produce the same output. However, the new implementation is faster
and more memory efficient.

• With the new implementation, either the query or the subject can be preprocessed with NCList
for a IntegerRanges object (replacement for IntervalTree), NCLists for a IntegerRangesList
object (replacement for IntervalForest), and GNCList for a GenomicRanges object (re-
placement for GIntervalTree). However, for a one-time use, it is NOT advised to explicitely
preprocess the input. This is because findOverlaps or countOverlaps will take care of it
and do a better job at it (by preprocessing only what’s needed when it’s needed, and releasing
memory as they go).

• With the new implementation, countOverlaps on IntegerRanges or GenomicRanges objects
doesn’t call findOverlaps in order to collect all the hits in a growing Hits object and count
them only at the end. Instead, the counting happens at the C level and the hits are not kept.
This reduces memory usage considerably when there is a lot of hits.

• When minoverlap=0, zero-width ranges are now interpreted as insertion points and consid-
ered to overlap with ranges that contain them. With the old alogrithm, zero-width ranges were
always ignored. This is the 1st situation where the new and old implementations produce
different outputs.

• When using select="arbitrary", the new implementation will generally not select the same
hits as the old implementation. This is the 2nd situation where the new and old implementa-
tions produce different outputs.

• The new implementation supports preprocessing of a GenomicRanges object with ranges de-
fined on circular sequences (e.g. on the mitochnodrial chromosome). See GNCList in the
GenomicRanges package for some examples.

• Objects preprocessed with NCList, NCLists, and GNCList are serializable (with save) for
later use. Not a typical thing to do though, because preprocessing is very cheap (i.e. very fast
and memory efficient).

Value

An NCList object for the NCList constructor and an NCLists object for the NCLists constructor.
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Author(s)

Hervé Pagès

References

Alexander V. Alekseyenko and Christopher J. Lee – Nested Containment List (NCList): a new al-
gorithm for accelerating interval query of genome alignment and interval databases. Bioinformatics
(2007) 23 (11): 1386-1393. doi: 10.1093/bioinformatics/btl647

See Also

• The GNCList constructor and class defined in the GenomicRanges package.

• findOverlaps for finding/counting interval overlaps between two range-based objects.

• IntegerRanges and IntegerRangesList objects.

Examples

## The example below is for illustration purpose only and does NOT
## reflect typical usage. This is because, for a one-time use, it is
## NOT advised to explicitely preprocess the input for findOverlaps()
## or countOverlaps(). These functions will take care of it and do a
## better job at it (by preprocessing only what's needed when it's
## needed, and release memory as they go).

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))

## Either the query or the subject of findOverlaps() can be preprocessed:

ppsubject <- NCList(subject)
hits1 <- findOverlaps(query, ppsubject)
hits1

ppquery <- NCList(query)
hits2 <- findOverlaps(ppquery, subject)
hits2

## Note that 'hits1' and 'hits2' contain the same hits but not in the
## same order.
stopifnot(identical(sort(hits1), sort(hits2)))

nearest-methods Finding the nearest range/position neighbor

Description

The nearest, precede, follow, distance and distanceToNearest methods for IntegerRanges
objects and subclasses.
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Usage

## S4 method for signature 'IntegerRanges,IntegerRanges_OR_missing'
nearest(x, subject, select = c("arbitrary", "all"))

## S4 method for signature 'IntegerRanges,IntegerRanges_OR_missing'
precede(x, subject, select = c("first", "all"))

## S4 method for signature 'IntegerRanges,IntegerRanges_OR_missing'
follow(x, subject, select = c("last", "all"))

## S4 method for signature 'IntegerRanges,IntegerRanges_OR_missing'
distanceToNearest(x, subject, select = c("arbitrary", "all"))

## S4 method for signature 'IntegerRanges,IntegerRanges'
distance(x, y)
## S4 method for signature 'Pairs,missing'
distance(x, y)

Arguments

x The query IntegerRanges object, or (for distance()) a Pairs containing both
the query (first) and subject (second).

subject The subject IntegerRanges object, within which the nearest neighbors are
found. Can be missing, in which case x is also the subject.

select Logic for handling ties. By default, all the methods select a single interval (ar-
bitrary for nearest,the first by order in subject for precede, and the last for
follow). To get all matchings, as a Hits object, use “all”.

y For the distance method, a IntegerRanges object. Cannot be missing. If x
and y are not the same length, the shortest will be recycled to match the length
of the longest.

hits The hits between x and subject

... Additional arguments for methods

Details

• nearest: The conventional nearest neighbor finder. Returns an integer vector containing the
index of the nearest neighbor range in subject for each range in x. If there is no nearest
neighbor (if subject is empty), NA’s are returned.
Here is roughly how it proceeds, for a range xi in x:

1. Find the ranges in subject that overlap xi. If a single range si in subject overlaps xi,
si is returned as the nearest neighbor of xi. If there are multiple overlaps, one of the
overlapping ranges is chosen arbitrarily.

2. If no ranges in subject overlap with xi, then the range in subject with the shortest
distance from its end to the start xi or its start to the end of xi is returned.

• precede: For each range in x, precede returns the index of the interval in subject that is
directly preceded by the query range. Overlapping ranges are excluded. NA is returned when
there are no qualifying ranges in subject.
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• follow: The opposite of precede, this function returns the index of the range in subject that
a query range in x directly follows. Overlapping ranges are excluded. NA is returned when
there are no qualifying ranges in subject.

• distanceToNearest: Returns the distance for each range in x to its nearest neighbor in subject.

• distance: Returns the distance for each range in x to the range in y.
The distance method differs from others documented on this page in that it is symmetric;
y cannot be missing. If x and y are not the same length, the shortest will be recycled to
match the length of the longest. The select argument is not available for distance because
comparisons are made in a pair-wise fashion. The return value is the length of the longest of
x and y.
The distance calculation changed in BioC 2.12 to accommodate zero-width ranges in a con-
sistent and intuitive manner. The new distance can be explained by a block model where a
range is represented by a series of blocks of size 1. Blocks are adjacent to each other and there
is no gap between them. A visual representation of IRanges(4,7) would be

+-----+-----+-----+-----+
4 5 6 7

The distance between two consecutive blocks is 0L (prior to Bioconductor 2.12 it was 1L).
The new distance calculation now returns the size of the gap between two ranges.
This change to distance affects the notion of overlaps in that we no longer say:
x and y overlap <=> distance(x, y) == 0
Instead we say
x and y overlap => distance(x, y) == 0
or
x and y overlap or are adjacent <=> distance(x, y) == 0

• selectNearest: Selects the hits that have the minimum distance within those for each query
range. Ties are possible and can be broken with breakTies.

Value

For nearest, precede and follow, an integer vector of indices in subject, or a Hits if select="all".

For distanceToNearest, a Hits object with an elementMetadata column of the distance between
the pair. Access distance with mcols accessor.

For distance, an integer vector of distances between the ranges in x and y.

For selectNearest, a Hits object, sorted by query.

Author(s)

M. Lawrence

See Also

• The IntegerRanges and Hits classes.

• The GenomicRanges and GRanges classes in the GenomicRanges package.
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• findOverlaps for finding just the overlapping ranges.

• GenomicRanges methods for

– precede

– follow

– nearest

– distance

– distanceToNearest

are documented at ?nearest-methods or ?precede,GenomicRanges,GenomicRanges-method

Examples

## ------------------------------------------
## precede() and follow()
## ------------------------------------------
query <- IRanges(c(1, 3, 9), c(3, 7, 10))
subject <- IRanges(c(3, 2, 10), c(3, 13, 12))

precede(query, subject) # c(3L, 3L, NA)
precede(IRanges(), subject) # integer()
precede(query, IRanges()) # rep(NA_integer_, 3)
precede(query) # c(3L, 3L, NA)

follow(query, subject) # c(NA, NA, 1L)
follow(IRanges(), subject) # integer()
follow(query, IRanges()) # rep(NA_integer_, 3)
follow(query) # c(NA, NA, 2L)

## ------------------------------------------
## nearest()
## ------------------------------------------
query <- IRanges(c(1, 3, 9), c(2, 7, 10))
subject <- IRanges(c(3, 5, 12), c(3, 6, 12))

nearest(query, subject) # c(1L, 1L, 3L)
nearest(query) # c(2L, 1L, 2L)

## ------------------------------------------
## distance()
## ------------------------------------------
## adjacent
distance(IRanges(1,5), IRanges(6,10)) # 0L
## overlap
distance(IRanges(1,5), IRanges(3,7)) # 0L
## zero-width
sapply(-3:3, function(i) distance(shift(IRanges(4,3), i), IRanges(4,3)))
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range-squeezers Squeeze the ranges out of a range-based object

Description

S4 generic functions for squeezing the ranges out of a range-based object.

These are analog to range squeezers granges and grglist defined in the GenomicRanges pack-
age, except that ranges returns the ranges in an IRanges object (instead of a GRanges object for
granges), and rglist returns them in an IRangesList object (instead of a GRangesList object for
grglist).

Usage

ranges(x, use.names=TRUE, use.mcols=FALSE, ...)
rglist(x, use.names=TRUE, use.mcols=FALSE, ...)

Arguments

x An object containing ranges e.g. a IntegerRanges, GenomicRanges, Ranged-
SummarizedExperiment, GAlignments, GAlignmentPairs, or GAlignmentsList
object, or a Pairs object containing ranges.

use.names TRUE (the default) or FALSE. Whether or not the names on x (accessible with
names(x)) should be propagated to the returned object.

use.mcols TRUE or FALSE (the default). Whether or not the metadata columns on x (acces-
sible with mcols(x)) should be propagated to the returned object.

... Additional arguments, for use in specific methods.

Details

Various packages (e.g. IRanges, GenomicRanges, SummarizedExperiment, GenomicAlign-
ments, etc...) define and document various range squeezing methods for various types of objects.

Note that these functions can be seen as object getters or as functions performing coercion.

For some objects (e.g. GAlignments and GAlignmentPairs objects defined in the GenomicAlign-
ments package), as(x, "IRanges") and as(x, "IRangesList"), are equivalent to ranges(x,
use.names=TRUE, use.mcols=TRUE) and rglist(x, use.names=TRUE, use.mcols=TRUE), respec-
tively.

Value

An IRanges object for ranges.

An IRangesList object for rglist.

If x is a vector-like object (e.g. GAlignments), the returned object is expected to be parallel to x,
that is, the i-th element in the output corresponds to the i-th element in the input.

If use.names is TRUE, then the names on x (if any) are propagated to the returned object. If
use.mcols is TRUE, then the metadata columns on x (if any) are propagated to the returned object.
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Author(s)

H. Pagès

See Also

• IRanges and IRangesList objects.

• RangedSummarizedExperiment objects in the SummarizedExperiment packages.

• GAlignments, GAlignmentPairs, and GAlignmentsList objects in the GenomicAlignments
package.

Examples

## See ?GAlignments in the GenomicAlignments package for examples of
## "ranges" and "rglist" methods.

RangedSelection-class Selection of ranges and columns

Description

A RangedSelection represents a query against a table of interval data in terms of ranges and
column names. The ranges select any table row with an overlapping interval. Note that the intervals
are always returned, even if no columns are selected.

Details

Traditionally, tabular data structures have supported the subset function, which allows one to select
a subset of the rows and columns from the table. In that case, the rows and columns are specified by
two separate arguments. As querying interval data sources, especially those external to R, such as
binary indexed files and databases, is increasingly common, there is a need to encapsulate the row
and column specifications into a single data structure, mostly for the sake of interface cleanliness.
The RangedSelection class fills that role.

Constructor

RangedSelection(ranges=IRangesList(), colnames = character()): Constructors a RangedSelection
with the given ranges and colnames.

Coercion

as(from, "RangedSelection"): Coerces from to a RangedSelection object. Typically, from is
a IntegerRangesList, the ranges of which become the ranges in the new RangedSelection.
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Accessors

In the code snippets below, x is always a RangedSelection.

ranges(x), ranges(x) <- value: Gets or sets the ranges, a IntegerRangesList, that select
rows with overlapping intervals.

colnames(x), colnames(x) <- value: Gets the names, a character vector, indicating the columns.

Author(s)

Michael Lawrence

Examples

rl <- IRangesList(chr1 = IRanges(c(1, 5), c(3, 6)))

RangedSelection(rl)
as(rl, "RangedSelection") # same as above

RangedSelection(rl, "score")

read.Mask Read a mask from a file

Description

read.agpMask and read.gapMask extract the AGAPS mask from an NCBI "agp" file or a UCSC
"gap" file, respectively.

read.liftMask extracts the AGAPS mask from a UCSC "lift" file (i.e. a file containing offsets of
contigs within sequences).

read.rmMask extracts the RM mask from a RepeatMasker .out file.

read.trfMask extracts the TRF mask from a Tandem Repeats Finder .bed file.

Usage

read.agpMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.gapMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.liftMask(file, seqname="?", mask.width=NA)
read.rmMask(file, seqname="?", mask.width=NA, use.IDs=FALSE)
read.trfMask(file, seqname="?", mask.width=NA)

Arguments

file Either a character string naming a file or a connection open for reading.
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seqname The name of the sequence for which the mask must be extracted. If no sequence
is specified (i.e. seqname="?") then an error is raised and the sequence names
found in the file are displayed. If the file doesn’t contain any information for
the specified sequence, then a warning is issued and an empty mask of width
mask.width is returned.

mask.width The width of the mask to return i.e. the length of the sequence this mask will be
put on. See ?`MaskCollection-class` for more information about the width
of a MaskCollection object.

gap.types NULL or a character vector containing gap types. Use this argument to filter
the assembly gaps that are to be extracted from the "agp" or "gap" file based
on their type. Most common gap types are "contig", "clone", "centromere",
"telomere", "heterochromatin", "short_arm" and "fragment". With gap.types=NULL,
all the assembly gaps described in the file are extracted. With gap.types="?",
an error is raised and the gap types found in the file for the specified sequence
are displayed.

use.gap.types Whether or not the gap types provided in the "agp" or "gap" file should be used
to name the ranges constituing the returned mask. See ?`IRanges-class` for
more information about the names of an IRanges object.

use.IDs Whether or not the repeat IDs provided in the RepeatMasker .out file should be
used to name the ranges constituing the returned mask. See ?`IRanges-class`
for more information about the names of an IRanges object.

See Also

MaskCollection-class, IRanges-class

Examples

## ---------------------------------------------------------------------
## A. Extract a mask of assembly gaps ("AGAPS" mask) with read.agpMask()
## ---------------------------------------------------------------------
## Note: The hs_b36v3_chrY.agp file was obtained by downloading,
## extracting and renaming the hs_ref_chrY.agp.gz file from
##
## ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/
## hs_ref_chrY.agp.gz 5 KB 24/03/08 04:33:00 PM
##
## on May 9, 2008.

chrY_length <- 57772954
file1 <- system.file("extdata", "hs_b36v3_chrY.agp", package="IRanges")
mask1 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,

use.gap.types=TRUE)
mask1
mask1[[1]]

mask11 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,
gap.types=c("centromere", "heterochromatin"))

mask11[[1]]
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## ---------------------------------------------------------------------
## B. Extract a mask of assembly gaps ("AGAPS" mask) with read.liftMask()
## ---------------------------------------------------------------------
## Note: The hg18liftAll.lft file was obtained by downloading,
## extracting and renaming the liftAll.zip file from
##
## http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/
## liftAll.zip 03-Feb-2006 11:35 5.5K
##
## on May 8, 2008.

file2 <- system.file("extdata", "hg18liftAll.lft", package="IRanges")
mask2 <- read.liftMask(file2, seqname="chr1")
mask2
if (interactive()) {

## contigs 7 and 8 for chrY are adjacent
read.liftMask(file2, seqname="chrY")

## displays the sequence names found in the file
read.liftMask(file2)

## specify an unknown sequence name
read.liftMask(file2, seqname="chrZ", mask.width=300)

}

## ---------------------------------------------------------------------
## C. Extract a RepeatMasker ("RM") or Tandem Repeats Finder ("TRF")
## mask with read.rmMask() or read.trfMask()
## ---------------------------------------------------------------------
## Note: The ce2chrM.fa.out and ce2chrM.bed files were obtained by
## downloading, extracting and renaming the chromOut.zip and
## chromTrf.zip files from
##
## http://hgdownload.cse.ucsc.edu/goldenPath/ce2/bigZips/
## chromOut.zip 21-Apr-2004 09:05 2.6M
## chromTrf.zip 21-Apr-2004 09:07 182K
##
## on May 7, 2008.

## Before you can extract a mask with read.rmMask() or read.trfMask(), you
## need to know the length of the sequence that you're going to put the
## mask on:
if (interactive()) {

library(BSgenome.Celegans.UCSC.ce2)
chrM_length <- seqlengths(Celegans)[["chrM"]]

## Read the RepeatMasker .out file for chrM in ce2:
file3 <- system.file("extdata", "ce2chrM.fa.out", package="IRanges")
RMmask <- read.rmMask(file3, seqname="chrM", mask.width=chrM_length)
RMmask

## Read the Tandem Repeats Finder .bed file for chrM in ce2:
file4 <- system.file("extdata", "ce2chrM.bed", package="IRanges")
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TRFmask <- read.trfMask(file4, seqname="chrM", mask.width=chrM_length)
TRFmask
desc(TRFmask) <- paste(desc(TRFmask), "[period<=12]")
TRFmask

## Put the 2 masks on chrM:
chrM <- Celegans$chrM
masks(chrM) <- RMmask # this would drop all current masks, if any
masks(chrM) <- append(masks(chrM), TRFmask)
chrM

}

reverse reverse

Description

A generic function for reversing vector-like or list-like objects. This man page describes methods
for reversing a character vector, a Views object, or a MaskCollection object. Note that reverse is
similar to but not the same as rev.

Usage

reverse(x, ...)

Arguments

x A vector-like or list-like object.

... Additional arguments to be passed to or from methods.

Details

On a character vector or a Views object, reverse reverses each element individually, without mod-
ifying the top-level order of the elements. More precisely, each individual string of a character
vector is reversed.

Value

An object of the same class and length as the original object.

See Also

reverse-methods, Views-class, MaskCollection-class, endoapply, rev
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Examples

## On a character vector:
reverse(c("Hi!", "How are you?"))
rev(c("Hi!", "How are you?"))

## On a Views object:
v <- successiveViews(Rle(c(-0.5, 12.3, 4.88), 4:2), 1:4)
v
reverse(v)
rev(v)

## On a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
reverse(mymasks)

Rle-class-leftovers Rle objects (old man page)

Description

IMPORTANT NOTE - 7/3/2014: This man page is being refactored. Most of the things that used
to be documented here have been moved to the man page for Rle objects located in the S4Vectors
package.

Coercion

In the code snippets below, from is an Rle object:

as(from, "IRanges"): Creates an IRanges instance from a logical Rle. Note that this instance is
guaranteed to be normal.

as(from, "NormalIRanges"): Creates a NormalIRanges instance from a logical Rle.

General Methods

In the code snippets below, x is an Rle object:

split(x, f, drop=FALSE): Splits x according to f to create a CompressedRleList object. If f is
a list-like object then drop is ignored and f is treated as if it was rep(seq_len(length(f)),
sapply(f, length)), so the returned object has the same shape as f (it also receives the
names of f). Otherwise, if f is not a list-like object, empty list elements are removed from the
returned object if drop is TRUE.

findRange(x, vec): Returns an IRanges object representing the ranges in Rle vec that are refer-
enced by the indices in the integer vector x.

splitRanges(x): Returns a CompressedIRangesList object that contains the ranges for each of
the unique run values.
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See Also

The Rle class defined and documented in the S4Vectors package.

Examples

x <- Rle(10:1, 1:10)
x

RleViews-class The RleViews class

Description

The RleViews class is the basic container for storing a set of views (start/end locations) on the same
Rle object.

Details

An RleViews object contains a set of views (start/end locations) on the same Rle object called "the
subject vector" or simply "the subject". Each view is defined by its start and end locations: both are
integers such that start <= end. An RleViews object is in fact a particular case of a Views object (the
RleViews class contains the Views class) so it can be manipulated in a similar manner: see ?Views
for more information. Note that two views can overlap and that a view can be "out of limits" i.e. it
can start before the first element of the subject or/and end after its last element.

Author(s)

P. Aboyoun

See Also

Views-class, Rle-class, view-summarization-methods

Examples

subject <- Rle(rep(c(3L, 2L, 18L, 0L), c(3,2,1,5)))
myViews <- Views(subject, 3:0, 5:8)
myViews
subject(myViews)
length(myViews)
start(myViews)
end(myViews)
width(myViews)
myViews[[2]]

set.seed(0)
vec <- Rle(sample(0:2, 20, replace = TRUE))
vec
Views(vec, vec > 0)
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RleViewsList-class List of RleViews

Description

An extension of ViewsList that holds only RleViews objects. Useful for storing coverage vectors
over a set of spaces (e.g. chromosomes), each of which requires a separate RleViews object.

Details

For more information on methods available for RleViewsList objects consult the man pages for
ViewsList-class and view-summarization-methods.

Constructor

RleViewsList(..., rleList, rangesList): Either ... or the rleList/rangesList couplet
provide the RleViews for the list. If ... is provided, each of these arguments must be
RleViews objects. Alternatively, rleList and rangesList accept Rle and IntegerRanges
objects respectively that are meshed together for form the RleViewsList.

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): Same as RleViewsList(rleList
= subject, rangesList = start).

Coercion

In the code snippet below, from is an RleViewsList object:

as(from, "IRangesList"): Creates an IRangesList object containing the view locations in
from.

Author(s)

P. Aboyoun

See Also

ViewsList-class, view-summarization-methods

Examples

## Rle objects
subject1 <- Rle(c(3L,2L,18L,0L), c(3,2,1,5))
set.seed(0)
subject2 <- Rle(c(0L,5L,2L,0L,3L), c(8,5,2,7,4))

## Views
rleViews1 <- Views(subject1, 3:0, 5:8)
rleViews2 <- Views(subject2, subject2 > 0)
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## RleList and IntegerRangesList objects
rleList <- RleList(subject1, subject2)
rangesList <- IRangesList(IRanges(3:0, 5:8), IRanges(subject2 > 0))

## methods for construction
method1 <- RleViewsList(rleViews1, rleViews2)
method2 <- RleViewsList(rleList = rleList, rangesList = rangesList)
identical(method1, method2)

## calculation over the views
viewSums(method1)

seqapply 2 methods that should be documented somewhere else

Description

unsplit method for List object and split<- method for Vector object.

Usage

## S4 method for signature 'List'
unsplit(value, f, drop = FALSE)
## S4 replacement method for signature 'Vector'
split(x, f, drop = FALSE, ...) <- value

Arguments

value The List object to unsplit.

f A factor or list of factors

drop Whether to drop empty elements from the returned list

x Like X

... Extra arguments to pass to FUN

Details

unsplit unlists value, where the order of the returned vector is as if value were originally created
by splitting that vector on the factor f.

split(x, f, drop = FALSE) <- value: Virtually splits x by the factor f, replaces the elements of
the resulting list with the elements from the list value, and restores x to its original form. Note that
this works for any Vector, even though split itself is not universally supported.

Author(s)

Michael Lawrence
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setops-methods Set operations on IntegerRanges and IntegerRangesList objects

Description

Performs set operations on IntegerRanges and IntegerRangesList objects.

Usage

## Vector-wise set operations
## --------------------------

## S4 method for signature 'IntegerRanges,IntegerRanges'
union(x, y)
## S4 method for signature 'Pairs,missing'
union(x, y, ...)

## S4 method for signature 'IntegerRanges,IntegerRanges'
intersect(x, y)
## S4 method for signature 'Pairs,missing'
intersect(x, y, ...)

## S4 method for signature 'IntegerRanges,IntegerRanges'
setdiff(x, y)
## S4 method for signature 'Pairs,missing'
setdiff(x, y, ...)

## Element-wise (aka "parallel") set operations
## --------------------------------------------

## S4 method for signature 'IntegerRanges,IntegerRanges'
punion(x, y, fill.gap=FALSE)
## S4 method for signature 'Pairs,missing'
punion(x, y, ...)

## S4 method for signature 'IntegerRanges,IntegerRanges'
pintersect(x, y, resolve.empty=c("none", "max.start", "start.x"))
## S4 method for signature 'Pairs,missing'
pintersect(x, y, ...)

## S4 method for signature 'IntegerRanges,IntegerRanges'
psetdiff(x, y)
## S4 method for signature 'Pairs,missing'
psetdiff(x, y, ...)

## S4 method for signature 'IntegerRanges,IntegerRanges'
pgap(x, y)
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Arguments

x, y Objects representing ranges.

fill.gap Logical indicating whether or not to force a union by using the rule start =
min(start(x), start(y)), end = max(end(x), end(y)).

resolve.empty One of "none", "max.start", or "start.x" denoting how to handle ambiguous
empty ranges formed by intersections. "none" - throw an error if an ambiguous
empty range is formed, "max.start" - associate the maximum start value with
any ambiguous empty range, and "start.x" - associate the start value of x with
any ambiguous empty range. (See Details section below for the definition of an
ambiguous range.)

... The methods for Pairs objects pass any extra argument to the internal call to
punion(first(x), last(x), ...), pintersect(first(x), last(x), ...),
etc...

Details

The union, intersect and setdiff methods for IntegerRanges objects return a "normal" Inte-
gerRanges object representing the union, intersection and (asymmetric!) difference of the sets of
integers represented by x and y.

punion, pintersect, psetdiff and pgap are generic functions that compute the element-wise (aka
"parallel") union, intersection, (asymmetric!) difference and gap between each element in x and its
corresponding element in y. Methods for IntegerRanges objects are defined. For these methods, x
and y must have the same length (i.e. same number of ranges). They return a IntegerRanges object
parallel to x and y i.e. where the i-th range corresponds to the i-th range in x and iny) and represents
the union/intersection/difference/gap of/between the corresponding x[i] and y[i].

If x is a Pairs object, then y should be missing, and the operation is performed between the mem-
bers of each pair.

By default, pintersect will throw an error when an "ambiguous empty range" is formed. An
ambiguous empty range can occur three different ways: 1) when corresponding non-empty ranges
elements x and y have an empty intersection, 2) if the position of an empty range element does
not fall within the corresponding limits of a non-empty range element, or 3) if two corresponding
empty range elements do not have the same position. For example if empty range element [22,21]
is intersected with non-empty range element [1,10], an error will be produced; but if it is intersected
with the range [22,28], it will produce [22,21]. As mentioned in the Arguments section above, this
behavior can be changed using the resolve.empty argument.

Value

On IntegerRanges objects, union, intersect, and setdiff return an IRanges instance that is
guaranteed to be normal (see isNormal) but is NOT promoted to NormalIRanges.

On IntegerRanges objects, punion, pintersect, psetdiff, and pgap return an object of the same
class and length as their first argument.

Author(s)

H. Pagès and M. Lawrence
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See Also

• pintersect is similar to narrow, except the end points are absolute, not relative. pintersect
is also similar to restrict, except ranges outside of the restriction become empty and are not
discarded.

• setops-methods in the GenomicRanges package for set operations on genomic ranges.

• findOverlaps-methods for finding/counting overlapping ranges.

• intra-range-methods and inter-range-methods for intra range and inter range transformations.

• IntegerRanges and IntegerRangesList objects. In particular, normality of an IntegerRanges
object is discussed in the man page for IntegerRanges objects.

• mendoapply in the S4Vectors package.

Examples

x <- IRanges(c(1, 5, -2, 0, 14), c(10, 9, 3, 11, 17))
subject <- Rle(1:-3, 6:2)
y <- Views(subject, start=c(14, 0, -5, 6, 18), end=c(20, 2, 2, 8, 20))

## Vector-wise operations:
union(x, ranges(y))
union(ranges(y), x)

intersect(x, ranges(y))
intersect(ranges(y), x)

setdiff(x, ranges(y))
setdiff(ranges(y), x)

## Element-wise (aka "parallel") operations:
try(punion(x, ranges(y)))
punion(x[3:5], ranges(y)[3:5])
punion(x, ranges(y), fill.gap=TRUE)
try(pintersect(x, ranges(y)))
pintersect(x[3:4], ranges(y)[3:4])
pintersect(x, ranges(y), resolve.empty="max.start")
psetdiff(ranges(y), x)
try(psetdiff(x, ranges(y)))
start(x)[4] <- -99
end(y)[4] <- 99
psetdiff(x, ranges(y))
pgap(x, ranges(y))

## On IntegerRangesList objects:
irl1 <- IRangesList(a=IRanges(c(1,2),c(4,3)), b=IRanges(c(4,6),c(10,7)))
irl2 <- IRangesList(c=IRanges(c(0,2),c(4,5)), a=IRanges(c(4,5),c(6,7)))
union(irl1, irl2)
intersect(irl1, irl2)
setdiff(irl1, irl2)
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slice-methods Slice a vector-like or list-like object

Description

slice is a generic function that creates views on a vector-like or list-like object that contain the
elements that are within the specified bounds.

Usage

slice(x, lower=-Inf, upper=Inf, ...)

## S4 method for signature 'Rle'
slice(x, lower=-Inf, upper=Inf,

includeLower=TRUE, includeUpper=TRUE, rangesOnly=FALSE)

## S4 method for signature 'RleList'
slice(x, lower=-Inf, upper=Inf,

includeLower=TRUE, includeUpper=TRUE, rangesOnly=FALSE)

Arguments

x An Rle or RleList object, or any object coercible to an Rle object.

lower, upper The lower and upper bounds for the slice.
includeLower, includeUpper

Logical indicating whether or not the specified boundary is open or closed.

rangesOnly A logical indicating whether or not to drop the original data from the output.

... Additional arguments to be passed to specific methods.

Details

slice is useful for finding areas of absolute maxima (peaks), absolute minima (troughs), or fluctu-
ations within specified limits. One or more view summarization methods can be used on the result
of slice. See ?`link{view-summarization-methods}`

Value

The method for Rle objects returns an RleViews object if rangesOnly=FALSE or an IRanges object
if rangesOnly=TRUE.

The method for RleList objects returns an RleViewsList object if rangesOnly=FALSE or an IRanges-
List object if rangesOnly=TRUE.

Author(s)

P. Aboyoun
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See Also

• view-summarization-methods for summarizing the views returned by slice.

• slice-methods in the XVector package for more slice methods.

• coverage for computing the coverage across a set of ranges.

• The Rle, RleList, RleViews, and RleViewsList classes.

Examples

## Views derived from coverage
x <- IRanges(start=c(1L, 9L, 4L, 1L, 5L, 10L),

width=c(5L, 6L, 3L, 4L, 3L, 3L))
cvg <- coverage(x)
slice(cvg, lower=2)
slice(cvg, lower=2, rangesOnly=TRUE)

Vector-class-leftovers

Vector objects (old man page)

Description

IMPORTANT NOTE - 4/29/2014: This man page is being refactored. Most of the things that used
to be documented here have been moved to the man page for Vector objects located in the S4Vectors
package.

Evaluation

In the following code snippets, x is a Vector object.

with(x, expr): Evaluates expr within as.env(x) via eval(x).

eval(expr, envir, enclos=parent.frame()): Evaluates expr within envir, where envir is
coerced to an environment with as.env(envir, enclos). The expr is first processed with
bquote, such that any escaped symbols are directly resolved in the calling frame.

Convenience wrappers for common subsetting operations

In the code snippets below, x is a Vector object or regular R vector object. The R vector object
methods for window are defined in this package and the remaining methods are defined in base R.

window(x, start=NA, end=NA, width=NA) <- value: Replace the subsequence window speci-
fied on the left (i.e. the subsequence in x specified by start, end and width) by value.
value must either be of class class(x), belong to a subclass of class(x), or be coercible to
class(x) or a subclass of class(x). The elements of value are repeated to create a Vector
with the same number of elements as the width of the subsequence window it is replacing.
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Looping

In the code snippets below, x is a Vector object.

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE): Like the standard tapply function de-
fined in the base package, the tapply method for Vector objects applies a function to each cell
of a ragged array, that is to each (non-empty) group of values given by a unique combination
of the levels of certain factors.

Coercion

as.list(x): coerce a Vector to a list, where the ith element of the result corresponds to x[i].

See Also

The Vector class defined and documented in the S4Vectors package.

view-summarization-methods

Summarize views on a vector-like object with numeric values

Description

viewApply applies a function on each view of a Views or ViewsList object.

viewMins, viewMaxs, viewSums, viewMeans calculate respectively the minima, maxima, sums, and
means of the views in a Views or ViewsList object.

Usage

viewApply(X, FUN, ..., simplify = TRUE)

viewMins(x, na.rm=FALSE)
## S4 method for signature 'Views'
min(x, ..., na.rm = FALSE)

viewMaxs(x, na.rm=FALSE)
## S4 method for signature 'Views'
max(x, ..., na.rm = FALSE)

viewSums(x, na.rm=FALSE)
## S4 method for signature 'Views'
sum(x, ..., na.rm = FALSE)

viewMeans(x, na.rm=FALSE)
## S4 method for signature 'Views'
mean(x, ...)

viewWhichMins(x, na.rm=FALSE)
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## S4 method for signature 'Views'
which.min(x)

viewWhichMaxs(x, na.rm=FALSE)
## S4 method for signature 'Views'
which.max(x)

viewRangeMins(x, na.rm=FALSE)

viewRangeMaxs(x, na.rm=FALSE)

Arguments

X A Views object.

FUN The function to be applied to each view in X.

... Additional arguments to be passed on.

simplify A logical value specifying whether or not the result should be simplified to a
vector or matrix if possible.

x An RleViews or RleViewsList object.

na.rm Logical indicating whether or not to include missing values in the results.

Details

The viewMins, viewMaxs, viewSums, and viewMeans functions provide efficient methods for cal-
culating the specified numeric summary by performing the looping in compiled code.

The viewWhichMins, viewWhichMaxs, viewRangeMins, and viewRangeMaxs functions provide ef-
ficient methods for finding the locations of the minima and maxima.

Value

For all the functions in this man page (except viewRangeMins and viewRangeMaxs): A numeric
vector of the length of x if x is an RleViews object, or a List object of the length of x if it’s an
RleViewsList object.

For viewRangeMins and viewRangeMaxs: An IRanges object if x is an RleViews object, or an
IRangesList object if it’s an RleViewsList object.

Note

For convenience, methods for min, max, sum, mean, which.min and which.max are provided as
wrappers around the corresponding view* functions (which might be deprecated at some point).

Author(s)

P. Aboyoun
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See Also

• The slice function for slicing an Rle or RleList object.

• view-summarization-methods in the XVector package for more view summarization methods.

• The RleViews and RleViewsList classes.

• The which.min and colSums functions.

Examples

## Views derived from coverage
x <- IRanges(start=c(1L, 9L, 4L, 1L, 5L, 10L),

width=c(5L, 6L, 3L, 4L, 3L, 3L))
cvg <- coverage(x)
cvg_views <- slice(cvg, lower=2)

viewApply(cvg_views, diff)

viewMins(cvg_views)
viewMaxs(cvg_views)

viewSums(cvg_views)
viewMeans(cvg_views)

viewWhichMins(cvg_views)
viewWhichMaxs(cvg_views)

viewRangeMins(cvg_views)
viewRangeMaxs(cvg_views)

Views-class Views objects

Description

The Views virtual class is a general container for storing a set of views on an arbitrary Vector object,
called the "subject".

Its primary purpose is to introduce concepts and provide some facilities that can be shared by the
concrete classes that derive from it.

Some direct subclasses of the Views class are: RleViews, XIntegerViews (defined in the XVector
package), XStringViews (defined in the Biostrings package), etc...

Constructor

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): This constructor is a generic
function with dispatch on argument subject. Specific methods must be defined for the sub-
classes of the Views class. For example a method for XString subjects is defined in the
Biostrings package that returns an XStringViews object. There is no default method.
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The treatment of the start, end and width arguments is the same as with the IRanges con-
structor, except that, in addition, Views allows start to be an IntegerRanges object. With this
feature, Views(subject, IRanges(my_starts, my_ends, my_widths, my_names)) and Views(subject,
my_starts, my_ends, my_widths, my_names) are equivalent (except when my_starts is it-
self a IntegerRanges object).

Coercion

In the code snippets below, from is a Views object:

as(from, "IRanges"): Creates an IRanges object containing the view locations in from.

Accessor-like methods

All the accessor-like methods defined for IRanges objects work on Views objects. In addition, the
following accessors are defined for Views objects:

subject(x): Return the subject of the views.

Subsetting

x[i]: Select the views specified by i.

x[[i]]: Extracts the view selected by i as an object of the same class as subject(x). Subscript
i can be a single integer or a character string. The result is the subsequence of subject(x)
defined by window(subject(x), start=start(x)[i], end=end(x)[i]) or an error if the
view is "out of limits" (i.e. start(x)[i] < 1 or end(x)[i] > length(subject(x))).

Concatenation

c(x, ..., ignore.mcols=FALSE): Concatenate Views objects. They must have the same subject.

Other methods

trim(x, use.names=TRUE): Equivalent to restrict(x, start=1L, end=length(subject(x)),
keep.all.ranges=TRUE, use.names=use.names).

subviews(x, start=NA, end=NA, width=NA, use.names=TRUE): start, end, and width argu-
ments must be vectors of integers, eventually with NAs, that contain coordinates relative to
the current ranges. Equivalent to trim(narrow(x, start=start, end=end, width=width,
use.names=use.names)).

successiveViews(subject, width, gapwidth=0, from=1): Equivalent to Views(subject, successiveIRanges(width,
gapwidth, from)). See ?successiveIRanges for a description of the width, gapwidth and
from arguments.

Author(s)

Hervé Pagès
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See Also

IRanges-class, Vector-class, IRanges-utils, XVector.

Some direct subclasses of the Views class: RleViews-class, XIntegerViews-class, XDoubleViews-
class, XStringViews-class.

findOverlaps.

Examples

showClass("Views") # shows (some of) the known subclasses

## Create a set of 4 views on an XInteger subject of length 10:
subject <- Rle(3:-6)
v1 <- Views(subject, start=4:1, end=4:7)

## Extract the 2nd view:
v1[[2]]

## Some views can be "out of limits"
v2 <- Views(subject, start=4:-1, end=6)
trim(v2)
subviews(v2, end=-2)

## See ?`XIntegerViews-class` in the XVector package for more examples.

ViewsList-class List of Views

Description

An extension of List that holds only Views objects.

Details

ViewsList is a virtual class. Specialized subclasses like e.g. RleViewsList are useful for storing cov-
erage vectors over a set of spaces (e.g. chromosomes), each of which requires a separate RleViews
object.

As a List subclass, ViewsList inherits all the methods available for List objects. It also presents
an API that is very similar to that of Views, where operations are vectorized over the elements and
generally return lists.

Author(s)

P. Aboyoun and H. Pagès

See Also

List-class, RleViewsList-class.

findOverlaps.
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Examples

showClass("ViewsList")
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