Package ‘RDAVIDWebService’

April 10, 2015

Type Package

Title An R Package for retrieving data from DAVID into R objects using Web Services API.

Version 1.4.0

Date 2014-04-15

Author Cristobal Fresno and Elmer A. Fernandez

Maintainer Cristobal Fresno <cfresno@bdmg.com.ar>

Description Tools for retrieving data from the Database for Annotation, Visualization and Integrated Discovery (DAVID) using Web Services into R objects. This package offers the main functionalities of DAVID website including: i) user friendly connectivity to upload gene/background list/s, change gene/background position, select current specie/s, select annotations, etc. ii) Reports of the submitted Gene List, Annotation Category Summary, Gene/Term Clusters, Functional Annotation Chart, Functional Annotation Table

License GPL (>=2)

Imports Category, GO.db, RBGL, rJava

Depends R (>= 2.14.1), methods, graph, GOstats, ggplot2

Collate 'DAVIDdemo-ids.R' 'DAVIDdemo-geneList.R'
 'DAVIDdemo-annotationSummary.R'
 'DAVIDdemo-functionalAnnotationChart.R'
 'DAVIDdemo-annotationTable.R' 'DAVIDdemo-clusterReport.R'
 'DAVIDResult-class.R' 'DAVIDGenes-class.R'
 'DAVIDFunctionalAnnotationChart-class.R' 'DAVIDCluster-class.R'
 'DAVIDGeneCluster-class.R' 'DAVIDTermCluster-class.R'
 'DAVIDFunctionalAnnotationTable-class.R' 'DAVIDGODag-class.R'
 'DAVIDWebService-class.R' 'DAVIDClasses-show.R'
 'DAVIDClasses-ids.R' 'DAVIDClasses-plot2D.R'
 'DAVIDClasses-summary.R' 'DAVIDClasses-genes.R'
 'DAVIDClasses-categories.R' 'DAVIDResult-getters.R'
'DAVIDGenes-methods.R' 'DAVIDCluster-methods.R'
'DAVIDFunctionalAnnotationTable-methods.R'
'DAVIDGODag-methods.R' 'DAVIDWebService-accessors.R'
'DAVIDWebService-methods.R' 'DAVIDWebService-reports.R'
'DAVIDClasses-constructors.R' 'RDAVIDWebService-package.R'

Suggests Rgraphviz

Installable Everywhere yes

biocViews Visualization, DifferentialExpression, GraphAndNetwork

R topics documented:

- DAVIDWebService-package .. 3
- annotationSummary1 ... 3
- annotationTable1 .. 4
- categories ... 5
- cluster ... 7
- DAVIDCluster-class .. 9
- DAVIDFunctionalAnnotationChart-class 10
- DAVIDFunctionalAnnotationTable-class 12
- DAVIDGeneCluster-class .. 14
- DAVIDGenes ... 16
- DAVIDGenes-class .. 21
- DAVIDGODag-class ... 23
- DAVIDResult-class ... 25
- DAVIDTermCluster-class .. 26
- DAVIDWebService-class ... 28
- demoList1 ... 31
- funChart1 ... 32
- geneCluster1 ... 33
- geneList1 ... 34
- genes ... 35
- getGeneCategoriesReport .. 37
- ids ... 42
- is.connected ... 45
- plot2D ... 53
- setEmail ... 56
- show ... 58
- species ... 59
- subset ... 61
- summary ... 62
- terms ... 65
- type ... 68

Index ... 69
Description

Tools for retrieving data from the Database for Annotation, Visualization and Integrated Discovery (DAVID) using Web Services into R objects. This package offers the main functionalities of DAVID website including:

Connectivity: upload gene/background list/s, change gene/background position, select current specie/s, select annotations, etc. from R.

Exploration: native R objects of submitted Gene List, Annotation Category Summary, Gene/Term Clusters, Functional Annotation Chart and Functional Annotation Tables. In addition it offers the usual many-genes-to-many-terms visualization and induced Gene Ontology direct acyclic graph GOstats-based conversion method, in order to visualize GO structure.

Author(s)

Cristobal Fresno <cristobalfresno@gmail.com> and Elmer A. Fernandez <elmerfer@gmail.com>

References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

annotationSummary1

DAVID’s website annotation summary example files

Description

These datasets correspond to the unfolded main summary categories data obtained in the Annotation Summary Results page in the Database for Annotation, Visualization and Integrated Discovery (DAVID) website, using as input file, the ones provided for demo purposes (demoList1 or demoList2) with default options. No statistical analysis is performed on these results.
Usage

```r
data(annotationSummary1)
data(annotationSummary2)
```

Format

annotationSummary1/2 are data.frame for demoList1/2 input ids, respectively, with the following columns.

- **Main.Category** factor with the main categories used in the present analysis.
- **ID** integer to identify the annotation category.
- **Name** character with the name of category (the ones available in getAllAnnotationCategoryNames function).
- **X.** numeric with the percentage of the gene list ids present in the term.
- **Count** integer with the number of ids of the gene list that belong to this term.

Author(s)

Cristobal Fresno and Elmer A Fernandez

References

1. The Database for Annotation, Visualization and Integrated Discovery (davidgeneList.abcc.ncifcrf.gov)

See Also

Other DataExamples: demoList1, demoList2, genelist1, genelist2

Description

These datasets correspond to the Functional Annotation Table report obtained in the Database for Annotation, Visualization and Integrated Discovery (DAVID) website, using as input file, the ones provided for demo purposes (demoList1 or demoList2) for GOTERM_BP_ALL, GOTERM_MF_ALL and GOTERM_CC_ALL categories. No statistical analysis is performed on these results.
categories

Usage

data(annotationTable1)

data(annotationTable2)

Format

annotationTable1/2 are data.frame for demoList1/2 input ids, respectively, with the following columns.

Gene Three Columns with the same data included in Gene List Report (ID, Gene.Name and Species) but coding for DAVID ID, i.e., comma separated character with input ids if, two or more stands for the same gene.

Annotation As many columns as Annotation Categories were used. In each column, a comma separated style is use to delimitate the different terms where is evidence reported for DAVID ID record.

Author(s)

Cristobal Fresno and Elmer A Fernandez

References

1. The Database for Annotation, Visualization and Integrated Discovery (davidgeneList.abcc.ncifcrf.gov)
3. DAVID Help page http://david.abcc.ncifcrf.gov/helps/functional_annotation.html#EXP2

| categories | categories for the different DAVIDWebService package class objects |

Description

Obtain ids related information, according to the given function call (see Values).

Usage

categories(object)

S4 method for signature DAVIDFunctionalAnnotationChart

categories(object)

S4 method for signature DAVIDFunctionalAnnotationTable

categories(object)
Arguments

object DAVIDWebService class object. Possible values are: DAVIDFunctionalAnnotationChart or DAVIDFunctionalAnnotationTable.

Value

according to the call, one of the following objects can be returned:

DAVIDFunctionalAnnotationChart
factor vector of the "Category" column.

DAVIDFunctionalAnnotationTable
character vector with the name of available main categories in the dictionary/membership.

Author(s)

Cristobal Fresno and Elmer A Fernandez

See Also

Other DAVIDFunctionalAnnotationChart: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart.
DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart-class, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, ids, ids, ids, ids, ids, initialize, initialize, initialize, initialize, initialize, initialize, initialize, plot2D, plot2D, plot2D, plot2D, plot2D

Other DAVIDFunctionalAnnotationTable: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable-class, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDGeneCluster, DAVIDGeneCluster, as, as, dictionary, dictionary, genes, genes, genes, genes, initialize, membership, membership, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, subset, subset

Examples

{
 ##DAVIDFunctionalAnnotationChart example
 ##Load the Functional Annotation Chart file report for the input demo
 ##file 2, using data function. Then, create a DAVIDFunctionalAnnotationChart
 ##object using the loaded data.frame funChart2.
 data(funChart2)
 davidFunChart2<-DAVIDFunctionalAnnotationChart(funChart2)

 ##In Addition to the usual data.frame accessors, the user can inspect the
 ##main categories used in the analysis.
 categories(davidFunChart2)

 ##DAVIDFunctionalAnnotationTable example
Load the Functional Annotation Table file report for the input demo file 1, using data function. Then, create a DAVIDFunctionalAnnotationTable object using the loaded data.frame annotationTable1.

data(annotationTable1)
davidFunTable1<-DAVIDFunctionalAnnotationTable(annotationTable1)

Now, the user can inspect the main categories used in the analysis.
categories(davidFunTable1)

<table>
<thead>
<tr>
<th>cluster</th>
<th>Methods for DAVIDCluster class object</th>
</tr>
</thead>
</table>

Description

Obtain DAVIDCluster related information, according to the given function call (see Values).

Usage

```
cluster(object)
```

S4 method for signature DAVIDCluster

```
cluster(object)
```

```
enrichment(object)
```

S4 method for signature DAVIDCluster

```
enrichment(object)
```

```
members(object)
```

S4 method for signature DAVIDCluster

```
members(object)
```

Arguments

- `object` DAVIDCluster class object.

Value

According to the call, one of the following objects can be returned:

- `cluster` list with DAVIDCluster object slot.
- `enrichment` numeric vector with DAVID cluster’s enrichment score.
- `members` list with DAVID Cluster’s members.

Author(s)

Cristobal Fresno and Elmer A Fernandez
See Also

Other DAVIDCluster: DAVIDCluster-class, dictionary, dictionary, membership, membership, subset, subset, summary, summary, summary, summary

Other DAVIDCluster: DAVIDCluster-class, dictionary, dictionary, membership, membership, subset, subset, summary, summary, summary, summary

Other DAVIDCluster: DAVIDCluster-class, dictionary, dictionary, membership, membership, subset, subset, summary, summary, summary, summary

Examples

{
 #DAVIDGeneCluster example:
 #Load the Gene Functional Classification Tool file report for the
 #input demo list 1 file to create a DAVIDGeneCluster object.
 setwd(tempdir())
 fileName<-system.file("files/geneClusterReport1.tab.tar.gz",
 package="RDAVIDWebService")
 untar(fileName)
 davidGeneCluster1<-DAVIDGeneCluster(untar(fileName, list=TRUE))
 davidGeneCluster1

 ##Now we can invoke DAVIDCluster ancestor functions to inspect the report
 ##data of each cluster. For example, we can call summary to get a general
 ##idea, and then inspect the cluster with the higher Enrichment Score, to see
 ##which members belong to it, etc. or simply, returning the whole cluster as
 ##a list with EnrichmentScore and Members.
 summary(davidGeneCluster1)
 higherEnrichment<-which.max(enrichment(davidGeneCluster1))
 clusterGenes<-members(davidGeneCluster1)[[higherEnrichment]]
 wholeCluster<-cluster(davidGeneCluster1)[[higherEnrichment]]

 #DAVIDTermCluster example:
 #Load the Gene Functional Classification Tool file report for the
 #input demo file 2 to create a DAVIDGeneCluster object.
 setwd(tempdir())
 fileName<-system.file("files/termClusterReport2.tab.tar.gz",
 package="RDAVIDWebService")
 untar(fileName)
 davidTermCluster2<-DAVIDGeneCluster(untar(fileName, list=TRUE))
 davidTermCluster2

 ##Now we can invoke DAVIDCluster ancestor functions to inspect the report
 ##data of each cluster. For example, we can call summary to get a general
 ##idea, and then inspect the cluster with the higher Enrichment Score, to see
 ##which members belong to it, etc. Or simply returning the whole cluster as a
 ##list with EnrichmentScore and Members.
 summary(davidTermCluster2)
 higherEnrichment<-which.max(enrichment(davidTermCluster2))
 clusterGenes<-members(davidTermCluster2)[[higherEnrichment]]
 wholeCluster<-cluster(davidTermCluster2)[[higherEnrichment]]

DAVIDCluster-class

Description
This virtual class represents the output of a DAVID "Cluster" report, with "DAVIDTermCluster" and "DAVIDGeneCluster" as possible heirs, according to the report used.

Type
This class is a "Virtual" one.

Extends
• DAVIDResult in the conceptual way.

Heirs
• DAVIDTermCluster: DAVID's Functional Annotation Clustering report.
• DAVIDGeneCluster: DAVID's Functional Classification Tool report.

Slots
cluster named list with the different clustered terms/genes: Members, represented as DAVIDGenes object; and EnrichmentScore, a numeric with DAVID cluster enrichment score.

Methods
show signature(object="DAVIDCluster"): basic console output.
summary signature(object="DAVIDCluster"): basic summary console output.
initialize signature(object="DAVIDCluster", fileName="character"): basic cluster report file parser.
cluster signature(object="DAVIDCluster"): getter for the corresponding slot.
enrichment signature(object="DAVIDCluster"): obtain the enrichment score of each cluster.
members signature(object="DAVIDCluster"): obtain the corresponding cluster members.

Author(s)
Cristobal Fresno and Elmer A Fernandez
References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

See Also

Other DAVIDCluster: cluster, cluster, dictionary, dictionary, dictionary, enrichment, enrichment, members, members, membership, membership, subset, subset, summary, summary, summary, summary

DAVIDFunctionalAnnotationChart-class

*class "DAVIDFunctionalAnnotationChart"

Description

This class represents the output of "Functional Annotation Chart" of DAVID. It is an heir of DAVIDResult in the conceptual way, and also a data.frame with additional features, such as identifying the unique and duplicate ids, searching for genes with a given id, etc.

Type

This class is a "Concrete" one.

Extends

• DAVIDResult in the conceptual way.
• data.frame in order to extend the basic features.

Slots

no additional to the ones inherited from DAVIDResult and data.frame classes.

Methods

show signature(object="DAVIDFunctionalAnnotationChart"): returns a basic console output.
valid signature(object="DAVIDFunctionalAnnotationChart"): logical which checks DAVID's file output name ("Category", "Term", "Count", etc.) presence.
DAVIDFunctionalAnnotationChart signature(object="character"): constructor with the name of the .tab file report to load.
DAVIDFunctionalAnnotationChart-class

DAVIDFunctionalAnnotationChart signature(object="data.frame"): data.frame already loaded to use when constructing the object.

as signature(object="DAVIDFunctionalAnnotationChart"): coerce a data.frame into a DAVIDFunctionalAnnotationChart object.

categories signature(object="DAVIDFunctionalAnnotationChart"): obtain the factor vector of the "Category" column.

ids signature(object="DAVIDFunctionalAnnotationChart"): obtain a list with character/integer vector with the ids of the corresponding term.

Author(s)

Cristobal Fresno and Elmer A Fernandez

References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

See Also

Other DAVIDFunctionalAnnotationChart: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster, as, as, as, categories, categories, categories, ids, ids, ids, ids, ids, initialize, plot2D, plot2D

Examples

```r
{
##Load the Functional Annotation Chart file report for the input demo
##file 2, using data function. Then, create a DAVIDFunctionalAnnotationChart
##object using the loaded data.frame funChart2. In addition, the user can
##use the file name of the downloaded file report.
data(funChart2)
davidFunChart2<-DAVIDFunctionalAnnotationChart(funChart2)

##In Addition to the usual data.frame accessors, the user can inspect the
##main categories used in the analysis.
categories(davidFunChart2)

##Obtain the ids of the genes present in each Term, as a list of character
##vector
ids(davidFunChart2)

##Or plot a 2D tile matrix with the reported evidence (green) or not (black).
```
Just to keep it simple, for the first five terms present in funChart2 object.

```r
plot2D(DAVIDFunctionalAnnotationChart(funChart2[1:5,]),
color=c("FALSE"="black", "TRUE"="green"))
```

Description

This class represents the output of a DAVID Functional Annotation Table report. In this class no statistical analysis is carried out.

Type

This class is a "Concrete" one.

Extends

- `DAVIDResult` in the conceptual way, and to reuse some functionalities such as `plot2D`, `type` and so on.

Slots

- **Genes** a DAVIDGenes object with the submitted genes.
- **Dictionary** a look up list of data.frame of each main annotation category, where the specified IDs and Terms used can be found.
- **Membership** list with logical membership matrix, where gene ids are coded by rows and the respective annotation category ids as columns.

Methods

- `initialize(.Object= "DAVIDFunctionalAnnotationTable", fileName="character")`: basic Functional Annotation Table report file parser.
- `DAVIDFunctionalAnnotationTable signature(fileName= "character")`: high level Functional Annotation Table report file parser.
- `valid signature(object= "DAVIDFunctionalAnnotationTable")`: logical which checks for Membership, Dictionary and Genes cohesion.
- `show signature(object="DAVIDFunctionalAnnotationTable")`: returns a basic console output.
- `genes signature(object="DAVIDFunctionalAnnotationTable")`: returns a DAVIDGenes object.
subset signature(object= "DAVIDFunctionalAnnotationTable", selection=c("Membership","Dictionary"),
 returns a subset list using the selection slot, looking up the category parameter if provided. Otherwise, it returns all the available main categories. Drop parameter indicates whether to drop list structure or not, if a list of length==1 is to be returned.
dictionary signature(object= "DAVIDFunctionalAnnotationTable", category, drop=TRUE):
returns subset using selection="Dictionary" and category and drop parameters.
membership signature(object= "DAVIDFunctionalAnnotationTable", category="character", drop=TRUE):
returns subset using selection="Membership" and category and drop parameters.
genes signature(object= "DAVIDFunctionalAnnotationTable", ...): returns a DAVID- Genes object slot, according to additional ... parameters.
categories signature(object= "DAVIDFunctionalAnnotationTable"): returns a character vector with the main annotation categories available..
plot2D signature(object="DAVIDFunctionalAnnotationTable", category, id, names.genes=FALSE, names.category=FALSE, color=c("FALSE"="black", "TRUE"="green")):
ggplot2 tile plot of genes id vs functional annotation category membership. If missing, all available data is used. In addition, names.genes and names.category parameters indicate whether to use or not, genes and category names respectively. Default value is FALSE.

Author(s)
Cristobal Fresno and Elmer A Fernandez

References
1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

See Also
Other DAVIDFunctionalAnnotationTable: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, as, categories, categories, categories, dictionary, dictionary, genes, genes, genes, genes, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, membership, membership, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, subset, subset

Examples
{
 # Load the Functional Annotation Table file report for the input demo
 # file 1, using data function. Then, create a DAVIDFunctionalAnnotationTable
 # object using the loaded data.frame annotationTable1. In addition, the user
 # can use the file name of the downloaded file report.
 data((annotationTable1))
}
davidFunTable1 <- DAVIDFunctionalAnnotationTable(annotationTable1)

Now we can obtain the genes for the given ids, or the complete list if the
parameter is omitted.
genes(davidFunTable1, id=c("37166_at", "41703_r_at"))

Or the main categories used on the analysis, in order to get the
dictionary for a specific category (ID and Term fields), for the head of
the data frame.
categories(davidFunTable1)
head(dictionary(davidFunTable1, categories(davidFunTable1)[1]))

And what about the membership of the genes in these terms? Just for the
first six ids we can use:
head(membership(davidFunTable1, categories(davidFunTable1)[1]))

Or simply plot the membership of only for the first six terms in this
category, with only the genes of the first six terms with at least one
evidence code.
Category filtering...
categorySelection <- list(head(dictionary(davidFunTable1, categories(davidFunTable1)[1]))$ID))
names(categorySelection) <- categories(davidFunTable1)[1]

Gene filter...
id <- membership(davidFunTable1, categories(davidFunTable1)[1])[1:6]
id <- ids(genes(davidFunTable1))[rowSums(id) > 0]

Finally the membership tile plot
plot2D(davidFunTable1, category=categorySelection, id=id, names.category = TRUE)
}

DAVIDGeneCluster-class

*class "DAVIDGeneCluster"

Description

This class represents the output of a DAVID Gene Functional Classification Tool report.

Type

This class is a "Concrete" one.

Extends

- *DAVIDCluster* and uses its constructor to parse the report.
DAVIDGeneCluster-class

Slots
the ones inherited from DAVIDCluster.

Methods
initialize signature(.Object="DAVIDGeneCluster", fileName="character"): basic cluster report file parser.
DAVIDGeneCluster signature(fileName="character"): high level gene cluster report file parser.
ids signature(object="DAVIDGeneCluster"): list with the member ids within each cluster.
genes signature(object="DAVIDGeneCluster"): list with the DAVIDGenes members within each cluster.
plot2D signature(object="DAVIDGeneCluster", color=c("FALSE"="black","TRUE"="green"), names=FALSE): ggplot2 tile plot with gene membership to each cluster.

Author(s)
Cristobal Fresno and Elmer A Fernandez

References
1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

See Also
Other DAVIDGeneCluster: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, as, genes, genes, genes, ids, ids, ids, ids, ids, ids, initialize, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D

Examples
{
 #Load the Gene Functional Classification Tool file report for the
 #Input demo list 1 file to create a DAVIDGeneCluster object.
 setwd(tempdir())
 fileName<-system.file("files/geneClusterReport1.tab.tar.gz", package="RDAVIDWebService")
 untar(fileName)
 davidGeneCluster1<-DAVIDGeneCluster(untar(fileName, list=TRUE))
 davidGeneCluster1
}
Now we can invoke DAVIDCluster ancestor functions to inspect the report data, of each cluster. For example, we can call summary to get a general idea, and the inspect the cluster with higher Enrichment Score, to see which members belong to it, etc. Or simply returning the whole cluster as a list with EnrichmentScore and Members.

```r
summary(davidGeneCluster1)
higherEnrichment<-which.max(enrichment(davidGeneCluster1))
clusterGenes<-members(davidGeneCluster1)[[higherEnrichment]]
wholeCluster<-cluster(davidGeneCluster1)[[higherEnrichment]]
```

Then, we can obtain the ids of the members calling clusterGenes object which is a DAVIDGenes class or directly using ids on davidGeneCluster1.

```r
ids(clusterGenes)
ids(davidGeneCluster1)[[higherEnrichment]]
```

Obtain the genes of the first cluster using davidGeneCluster1 object. Or, using genes on DAVIDGenes class once we get the members of the cluster.

```r
genes(davidGeneCluster1)[[1]]
genes(members(davidGeneCluster1)[[1]])
```

Finally, we can inspect a 2D tile membership plot, to visually inspect for overlapping of genes across the clusters. Or use a scaled version of gene names to see the association of gene cluster, e.g., cluster 3 is related to ATP genes.

```r
plot2D(davidGeneCluster1)
plot2D(davidGeneCluster1,names=TRUE)+
  theme(axis.text.y=element_text(size=rel(0.9)))
```
as(object, Class, strict=TRUE,
 ext=possibleExtends(thisClass, Class))

DAVIDFunctionalAnnotationChart(object)

S4 method for signature character
DAVIDFunctionalAnnotationChart(object)

S4 method for signature data.frame
DAVIDFunctionalAnnotationChart(object)

S4 method for signature DAVIDFunctionalAnnotationChart
initialize(.Object,
 fileName)

as(object, Class, strict=TRUE,
 ext=possibleExtends(thisClass, Class))

S4 method for signature DAVIDCluster
initialize(.Object, fileName)

S4 method for signature DAVIDGeneCluster
initialize(.Object, fileName)

DAVIDGeneCluster(object)

S4 method for signature character
DAVIDGeneCluster(object)

S4 method for signature DAVIDTermCluster
initialize(.Object, fileName)

DAVIDTermCluster(object)

S4 method for signature character
DAVIDTermCluster(object)

S4 method for signature DAVIDFunctionalAnnotationTable
initialize(.Object, fileName)

as(object, Class, strict=TRUE,
 ext=possibleExtends(thisClass, Class))

DAVIDFunctionalAnnotationTable(object)
DAVIDGenes

S4 method for signature character
DAVIDFunctionalAnnotationTable(object)

S4 method for signature data.frame
DAVIDFunctionalAnnotationTable(object)

S4 method for signature DAVIDGODag
initialize(.Object, funChart, type=c("BP","MF","CC"), pvalueCutoff=0.1, removeUnattached=FALSE,...)

DAVIDGODag(funChart,...)

S4 method for signature DAVIDFunctionalAnnotationChart
DAVIDGODag(funChart,...)

Arguments

object could be a character with the file name of the .tab report or data.frame already loaded.

fileName character with the file name of the .tab report to load.

.Object character to use in new function call. Possible values are: "DAVIDGenes", "DAVIDFunctionalAnnotationChart" or "DAVIDCluster".

Class character to use in the as function call. Possible values are: "DAVIDGenes" and "DAVIDFunctionalAnnotationChart".

strict,ext see as function.

funChart DAVIDFunctionalAnnotationChart object.

type character to indicate Gene Ontology main category: "BP", "MF" or "CC".

pvalueCutoff numeric >0 <=1 to indicate the p-value to use as the threshold for enrichment. Default value is 0.1

removeUnattached Should unattached nodes be removed from GO DAG? Default value is FALSE.

... Additional parameters for lower level constructors (initialize).

Value

a DAVIDWebService object according to function call:

DAVIDGenes object with genes description related data.

DAVIDFunctionalAnnotationChart object with the respective report.

DAVIDFunctionalAnnotationTable object with the respective report.

DAVIDCluster Not possible to invoke as it is a Virtual class.

DAVIDGeneCluster object with the respective report.
DAVIDGenes

DAVIDTermCluster
do object with the respective report.

DAVIDGODag
derived GOstats GO Direct Acyclic Graph from DAVIDFunctionalAnnotation-
Chart data.

Author(s)

Cristobal Fresno and Elmer A Fernandez

See Also

Other DAVIDFunctionalAnnotationChart: DAVIDFunctionalAnnotationChart-class, categories, categories, ids, ids, ids, ids, plot2D, plot2D, plot2D, plot2D, plot2D

Other DAVIDFunctionalAnnotationTable: DAVIDFunctionalAnnotationTable-class, categories, categories, dictionary, dictionary, genes, genes, genes, genes, membership, membership, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, subset, subset

Other DAVIDGODag: DAVIDGODag-class, benjaminis, benjaminis, bonferronis, bonferronis, counts, counts, fdrs, fdrs, foldEnrichments, foldEnrichments, listTotals, listTotals, percentages, percentages, popHits, popHits, popTotals, popTotals, summary, summary, summary, summary, summary, terms, terms, universeCounts, universeCounts, universeCounts, universeCounts, universeCounts, universeCounts, universeCounts

Other DAVIDGeneCluster: DAVIDGeneCluster-class, genes, genes, genes, ids, ids, ids, ids, ids, ids, ids, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D

Other DAVIDGenes: DAVIDGenes-class, DAVIDGenes-class, genes, genes, genes, ids, ids, ids, ids, id

Other DAVIDTermCluster: DAVIDTermCluster-class, ids, ids, ids, ids, ids, ids, plot2D, plot2D, plot2D, plot2D

Examples

{
 #DAVIDGenes example:
 ##Load Show Gene List file report for the input demo file 1, using data
 ##function. Then, create a DAVIDGenes object using the loaded data.frame
 ##geneList1.
 data(geneList1)
 davidGenes1<-DAVIDGenes(geneList1)

 ##In addition, the user can use the file name of the downloaded file report.
 ##Here, we need to first uncompressed the report included in the package, in
 ##order to load it.
 setwd(tempdir())
 fileName<-system.file("files/geneListReport1.tab.tar.gz", package="RDAVIDWebService")
 untar(fileName)
 davidGenes1<-DAVIDGenes(untar(fileName,list=TRUE))

 #DAVIDFunctionalAnnotationChart example
 ##Load the Functional Annotation Chart file report for the input demo
##file 2, using data function. Then, create a DAVIDFunctionalAnnotationChart object using the loaded data.frame funChart2.
data(funChart2)
davidFunChart2<-DAVIDFunctionalAnnotationChart(funChart2)

##In addition, the user can use the file name of the downloaded file report. Here, we need to first uncompressed the report included in the package, in order to load it.
setwd(tempdir())
fileName<-system.file("files/functionalAnnotationChartReport2.tab.tar.gz", package="RDAVIDWebService")
untar(fileName)
davidFunChart2<-DAVIDFunctionalAnnotationChart(untar(fileName, list=TRUE))

##DAVIDFunctionalAnnotationTable example
##Load the Functional Annotation Table file report for the input demo file 1, using data function. Then, create a DAVIDFunctionalAnnotationTable object using the loaded data.frame annotationTable1.
data(annotationTable1)
davidFunTable1<-DAVIDFunctionalAnnotationTable(annotationTable1)

##In addition, the user can use the file name of the downloaded file report. Here, we need to first uncompressed the report included in the package, in order to load it.
setwd(tempdir())
fileName<-system.file("files/annotationTableReport1.tab.tar.gz", package="RDAVIDWebService")
untar(fileName)
davidFunTable1<-DAVIDFunctionalAnnotationTable(untar(fileName, list=TRUE))

##Example DAVIDGODag
##Load the Functional Annotation Chart file report for the input demo file 2, using data function. Then, create a DAVIDGODag object using Molecular Function main category of DAVIDFunctionalAnnotationChart object, obtained from the loaded data.frame funChart2. In addition, we have selected a threshold pvalue of 0.001 and removed unattached nodes, in case DAVID/GO.db database are not using the same version.
data(funChart2)
davidGODag<DAVIDGODag(DAVIDFunctionalAnnotationChart(funChart2), type="MF", pvalueCutoff=0.001, removeUnattached=TRUE)

##DAVIDGeneCluster example:
##Load the Gene Functional Classification Tool file report for the input demo list 1 file to create a DAVIDGeneCluster object.
setwd(tempdir())
fileName<-system.file("files/geneClusterReport1.tab.tar.gz", package="RDAVIDWebService")
untar(fileName)
davidGeneCluster1<-DAVIDGeneCluster(untar(fileName, list=TRUE))
DAVIDGenes-class

setwd(tempdir())
fileName<-system.file("files/termClusterReport2.tab.tar.gz", package="RDAVIDWebService")
untar(fileName)
davidTermCluster2<-DAVIDTermCluster(untar(fileName, list=TRUE))

##DAVIDTermCluster example:
##Load the Gene Functional Classification Tool file report for the
##input demo file 2 to create a DAVIDGeneCluster object.

Description
This class represents the output of "Show Genes Result" of DAVID. It is an heir of DAVIDResult in
the conceptual way, and also a data.frame with additional features, such as identifying the unique
and duplicate ids, searching for genes with a given id, etc.

Type
This class is a "Concrete" one.

Extends
- DAVIDResult in the conceptual way.
- data.frame in order to extend the basic features.

Slots
none additional to the ones inherited from DAVIDResult and data.frame classes.

Methods
valid signature(object="DAVIDGenes"): logical which checks for data.frame name (ID, Name)
presence.
DAVIDGenes signature(object="character"): constructor with the name of the .tab file report
to load.
DAVIDGenes signature(object="data.frame"): data.frame already loaded to use when con-
structing the object.
ids signature(object="DAVIDGenes"): character vector with gene submitted ids.

Author(s)
Cristobal Fresno and Elmer A Fernandez
References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

See Also

Other DAVIDGenes: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, as, genes, genes, genes, ids, ids, ids, ids, ids, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize

Examples

{
 ##Load Show Gene List file report for the input demo file 1, using data
 ##function. Then, create a DAVIDGenes object using the loaded data.frame
 ##geneList1. In addition, the user can use the file name of the downloaded
 ##file report.
 data(geneList1)
 davidGenes1<-DAVIDGenes(geneList1)

 ##Now we can inspect davidGenes1 as it was an common data.frame
 head(davidGenes1)

 ##Additional getters for this object are also available, to obtain the
 ##different columns: ids, genes and species.
 ids(davidGenes1)
 genes(davidGenes1)
 species(davidGenes1)

 ##Or even look up for a particular gene id, which will return only the
 ##matched ones.
 genes(davidGenes1, ids=c("38926_at", "35367_at", "no match"))

 ##Obtain the genes with duplicate manufacturer ids or just the genes that
 ##do not have duplicate ids (uniqueIds).
 duplicateIds(davidGenes1)
 uniqueIds(davidGenes1)
}

DAVIDGODag-class

Description

This concrete class represents an induced GO DAG generated by the DAVID Functional Annotation Chart report a.k.a a DAVIDFunctionalAnnotationChart object.

Type

This class is a "Concrete" one.

Extends

- GOHyperGResult directly, in order to reuse GOstats functionalities.

Slots

the ones inherited from GOHyperGResult

Methods

show signature(object="DAVIDGODag"): basic console output.

summary signature(object="DAVIDGODag", ...): basic summary console output.

initialize signature(object="DAVIDGODag", fileName="character"): basic cluster report file parser.

DAVIDGODag signature(object="DAVIDGODag", fileName="character"): high level constructor to parse the file report.

universeMappedCount, universeCounts, counts signature(object="DAVIDGODag"): modifications to the corresponding GOstats/Category library functions, to keep the same behavior, for DAVIDGODag object.

fdrs, benjaminis, bonferronis signature(object="DAVIDGODag"): Adjusted method specific p-values for the corresponding nodes/terms.

terms signature(object="DAVIDGODag"): character vector with GO node names.

popTotals, popHits, listTotals signature(object="DAVIDGODag"): integer vector with the number of ids, to use in the EASE score calculations, when building the 2x2 contingency table.

percentages signature(object="DAVIDGODag"): numeric vector with the percentage of the gene list ids present in the term.

foldEnrichments signature(object="DAVIDGODag"): numeric vector with the ratio of the two proportions for each node/term. For example, if 40/400 (i.e. 10%) of your input genes involved in "kinase activity" and the background information is 300/30000 genes (i.e. 1%) associating with "kinase activity", roughly 10%/1% = 10 fold enrichment.
DAVIDGODag-class

Author(s)
Cristobal Fresno and Elmer A Fernandez

References
1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

See Also
Other DAVIDGODag: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, as, benjaminis, bonferronis, bonferronis, counts, counts, fdrs, fdrs, foldEnrichments, foldEnrichments, initialize, initialize, initialize, initialize, initialize, initialize, initialize, listTotals, listTotals, percentages, percentages, popHits, popHits, popTotals, popTotals, summary, summary, summary, summary, terms, terms, universeCounts, universeMappedCount, upsideDown, upsideDown

Examples
{
 #Load the Functional Annotation Chart file report for the input demo
 #file 2, using data function. Then, create a DAVIDGODag object using
 #Molecular Function main category of DAVIDFunctionalAnnotationChart object,
 #obtained from the loaded data.frame funChart2. In addition, we have
 #selected a threshold pvalue of 0.001 and removed unattached nodes, in case
 #DAVID/GO.db database are not using the same version.
 data(funChart2)
 davidGODag<-DAVIDGODag(DAVIDFunctionalAnnotationChart(funChart2), type="MF",
 pvalueCutoff=0.001, removeUnattached=TRUE)

 #Now, we can inspect the enrichment GO DAG using GOstats functionalities:
 #counts, pvalues, sigCategories, universeCounts, geneMappedCount, etc.
 #However, oddsRatios, expectedCounts and universeMappedCount are not
 #available because these results are not available on DAVIDs Functional
 #Annotation Chart report. In addition geneIdUniverse are not the ones of
 #the universe but the ids on the category (geneIdsByCategory).
 davidGODag
 counts(davidGODag)
 pvalues(davidGODag)
 sigCategories(davidGODag, p=0.0001)
 universeCounts(davidGODag)
}
In addition, the new nodeData attributes (term, listTotal, popHit,
popTotal, foldEnrichment, bonferroni, benjamini, fdr) can be retrieved.

terms(davidGODag)
listTotals(davidGODag)
popHits(davidGODag)
popTotals(davidGODag)
foldEnrichments(davidGODag)
bonferronis(davidGODag)
benjaminis(davidGODag)
fdrs(davidGODag)

The user can even plot the enrichment GO DAG if Rgraphviz package is available.

plotGOTermGraph(g=goDag(davidGODag), r=davidGODag, max.nchar=30,
node.shape="ellipse")

Description

This class represents the most generic result obtained in the Database for Annotation, Visualization and Integrated Discovery (DAVID) website (see References).

Type

This class is a "Virtual" one.

Heirs

- DAVIDGenes: basic gene information (ID, Name and Specie)
- DAVIDCluster: generic Cluster result (Term or Gene).
- DAVIDFunctionalAnnotationChart: EASE results on each Functional Category (see references).
- DAVIDFunctionalAnnotationTable: annotation for each gene, no statistical analysis.

Slots

type Object of class "character". Contains the name of DAVID’s result.
Methods

show signature(object="DAVIDResult"): returns a basic console output.

type signature(object="DAVIDResult"): getter for type slot.

plot2D signature(object="DAVIDResult", dataFrame="data.frame"): internal ggplot tile plot for gene/term cluster and annotation heirs.

Author(s)

Cristobal Fresno and Elmer A Fernandez

References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)
3. Huang, D. W.; Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA., 2009, 37, 1-13

See Also

Other DAVIDResult: plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, type, type

DAVIDTermCluster-class

class "DAVIDTermCluster"

Description

This class represents the output of a DAVID Functional Annotation Clustering report.

Type

This class is a "Concrete" one.

Extends

- DAVIDCluster and uses its constructor to parse the report.
DAVIDTermCluster-class

Slots

the ones inherited from DAVIDCluster.

Methods

initialize signature(.Object="DAVIDTermCluster", fileName="character"): basic cluster report file parser.

DAVIDTermCluster signature(fileName="character"): high level gene cluster report file parser.

ids signature(object="DAVIDTermCluster"): list with the member ids within each cluster.

plot2D signature(object="DAVIDTermCluster", number=1, color=c("FALSE"="black","TRUE"="green"): ggplot2 tile plot of genes vs functional annotation category membership of the given cluster number.

Author(s)

Cristobal Fresno and Elmer A Fernandez

References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)

See Also

Other DAVIDTermCluster: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, as, as, ids, ids, ids, ids, initialize, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D

Examples

{
 ##Load the Gene Functional Classification Tool file report for the
 ##input demo file 2 to create a DAVIDGeneCluster object.
 setwd(tempdir())
 fileName<-system.file("files/termClusterReport2.tab.tar.gz",
 package="RDAVIDWebService")
 untar(fileName)
 davidTermCluster2<-DAVIDTermCluster(untar(fileName, list=TRUE))
 davidTermCluster2

 ##Now we can invoke DAVIDCluster ancestor functions to inspect the report
 ##data, of each cluster. For example, we can call summary to get a general
Idea, and the inspect the cluster with higher Enrichment Score, to see which members belong to it, etc. Or simply returning the whole cluster as a list with Enrichment Score and Members.

```r
summary(davidTermCluster2)
higherEnrichment <- which.max(enrichment(davidTermCluster2))
clusterGenes <- members(davidTermCluster2)[[higherEnrichment]]
wholeCluster <- cluster(davidTermCluster2)[[higherEnrichment]]
```

Then, we can obtain the ids of the term members calling clusterGenes object which is a DAVIDFunctionalAnnotationChart class or directly using ids on davidTermCluster2 for the higherEnrichment cluster.

```r
ids(clusterGenes)
ids(davidTermCluster2)[[higherEnrichment]]
```

Finally, we can inspect a 2D tile membership plot, to visual inspect for overlapping of genes across the term members of the selected cluster.

```r
plot2D(davidTermCluster2, number=higherEnrichment)
```

DAVIDWebService-class

Main class to connect to DAVID Web Service

Description

A reference class to manage DAVID’s Web Service connectivity, to run Set Enrichment Analysis (SEA) or Modular Enrichment Analysis (MEA) on a candidate list of gene/protein(s) with respect to a background list (the genome of the organism by default).

Usage

```r
DAVIDWebService(...)```

#### Arguments

... additional parameters. See Methods section.

#### Details

DAVIDWebService class is implemented as a reference class, to manage a single instance connection to DAVID’s server by means of web services using a registered e-mail. For user registration, go to [http://david.abcc.ncifcrf.gov/webservice/register.html](http://david.abcc.ncifcrf.gov/webservice/register.html). The implementation uses Java Remote Method Implementation (RMI) to connect the client and server side of DAVID. The main functionalities include:

1. **Connectivity**: upload gene/background list/s, change gene/background position, select current specie/s, select annotations, etc. from R.

2. **Reports**: Submitted Gene List, Annotation Category Summary, Gene/TERM Clusters, Functional Annotation Chart and Functional Annotation Table as native R objects.
Fields

stub: Java jobRef which corresponds to a sample/session/client/stub/DAVIDWebServiceStub object for the client side of DAVID.

email: character.

Methods

show(): prints DAVIDWebService object.

summary(): return a data.frame with a summary of all available annotations in DAVID in terms of percentage of gene list ids present in the category and numbers of terms where they can be found (see getAnnotationSummary)

initialize(email=", ... url): constructor for DAVIDWebService object, which includes:
Java Virtual Machine initialization (... if required), and stub initialization with the provided email (if present) and using the url parameter for the API website.

setEmail(mail): Set the email field with the given registered user email parameter for authentication purposes.

getEmail(): Returns the current authentication email in use.

getStub: Returns jobRef object with the current stub field in use.

is.connected(): Check if connected to the DAVID server.

connect(): Try to establish a connection with the DAVID server using the provided email.

getIdTypes(): Returns all acceptable DAVID idTypes.

getAllAnnotationCategoryNames(): Returns all available annotation category names.

getDefaultCategoryNames(): Returns all default category names.

getGeneListNames(): Returns submitted gene list names.

getBackgroundListNames(): Returns submitted background names.

getListName(listType=c("Gene", "Background"), position=1L): Get the name of the selected list type at a given position.

getSpeciesNames(): Return species of the current gene list.

getCurrentGeneListPosition(): Return the position of current gene list.

getCurrentBackgroundListPosition(): Return the position of current background list.

getCurrentSpeciesPosition(): Return current species used positions for the uploaded gene list.

setCurrentGeneListPosition(position): Use the gene list of the given position.

setCurrentBackgroundPosition(position): Use the gene list of the given position.

setCurrentSpecies(species): Select the species of the submitted gene list to use in the analysis.

setAnnotationCategories(categories): Select the species of the submitted gene list to use in the analysis.

addList(inputIds, idType, listName, listType=c("Gene", "Background")): Add a gene or background to the current session.

getGeneCategoriesReport(): Get the gene report categories.
getAnnotationSummary(): Generate the summary of all available annotation in DAVID in terms of percentage of gene list ids present in the category and numbers of terms where the can be found.


getFunctionalAnnotationChartFile(fileName, threshold=0.1, count=2L): Generate the Functional Annotation Chart Report for the selected functional categories, for the given EASE threshold and number of genes and save it to a file.

getFunctionalAnnotationChart(...): getFunctionalAnnotationChart but as an R object.


geneListAnnotationTableFile(fileName): Generate Functional Annotation Table Report File, which is a gene-centric view of the genes and their associated annotation terms (selected only). There is no statistics applied in this report.

geneListAnnotationTable(): getFunctionalAnnotationTable but as an R object.

Limitations

1. A job with more than 3000 genes to generate gene or term cluster report will not be handled by DAVID due to resource limit.
2. No more than 200 jobs in a day from one user or computer.
3. DAVID Team reserves right to suspend any improper uses of the web service without notice.

Author(s)

Cristobal Fresno <cristobalfresno@gmail.com> and Elmer A. Fernandez <elmerfer@gmail.com>

References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)
3. Huang, D. W.; Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA., 2009, 37, 1-13
demoList1


See Also

Other DAVIDWebService: addList, addList, connect, connect, getAllAnnotationCategoryNames, getAllAnnotationCategoryNames, getAnnotationSummary, getAnnotationSummary, getBackgroundListNames, getBackgroundListNames, getClusterReport, getClusterReport, getClusterReportFile, getClusterReportFile, getCurrentBackgroundListPosition, getCurrentBackgroundListPosition, getCurrentGeneListPosition, getCurrentGeneListPosition, getCurrentSpeciesPosition, getCurrentSpeciesPosition, getDefaultCategoryNames, getDefaultCategoryNames, getEmail, getEmail, getFunctionalAnnotationChart, getFunctionalAnnotationChart, getFunctionalAnnotationChartFile, getFunctionalAnnotationChartFile, getFunctionalAnnotationTable, getFunctionalAnnotationTable, getFunctionalAnnotationTableFile, getFunctionalAnnotationTableFile, getGeneCategoriesReport, getGeneCategoriesReport, getGeneListNames, getGeneListNames, getGeneListReport, getGeneListReport, getGeneListReportFile, getGeneListReportFile, getIdTypes, getIdTypes, getListsName, getListsName, getSpecieNames, getSpecieNames, getStub, getStub, isConnected, isConnected, setAnnotationCategories, setAnnotationCategories, setAnnotationCategories, setCurrentBackgroundPosition, setSpecies, setSpecies, setSpecies, setSpecies, setEmail, setEmail, setEmail, DAVIDWebService-method, summary, summary, summary, summary

demoList1  
DAVID's website demoList1 example id files

description

This datasets are the same example input id files present in the Database for Annotation, Visualization and Integrated Discovery.

Usage

data(demoList1)

data(demoList2)

Format

character vector with AFFYMETRIX_3PRIME_IVT_ID manufacturer identification codes (ids)

demoList1  164 ids in total.
demoList2  403 ids in total.

Author(s)

Cristobal Fresno and Elmer A Fernandez
References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)


See Also

Other DataExamples: annotationSummary1, annotationSummary2, geneList1, geneList2

funChart1

DAVID’s website Functional Annotation Chart example files

Description

These datasets correspond to the reports obtained using Functional Annotation Chart Reports in the Database for Annotation, Visualization and Integrated Discovery (DAVID) website, using as input file the ones provided for demo purposes (demoList1 or demoList2) with GOTERM_BP_ALL, GOTERM_MF_ALL and GOTERM_CC_ALL categories.

Usage

data(funChart1)

data(funChart2)

Format

funChart1/2 are data.frame for demoList1/2 input ids, respectively, with the following columns.

Category factor with the main categories under used in the present analysis.

Term character with the name of the term in format id~name (if available).

Count integer with the number of ids of the gene list that belong to this term.

X after converting user input gene IDs to corresponding DAVID gene ID, it refers to the percentage of DAVID genes in the list associated with particular annotation term. Since DAVID gene ID is unique per gene, it is more accurate to use DAVID ID percentage to present the gene-annotation association by removing any redundancy in user gene list, i.e. two user IDs represent same gene.

PValue numeric with the EASE Score of the term (see DAVID Help page).

Genes character in comma separated style with the genes present in the term.

List.Total, Pop.Hits, Pop.Total integers (in addition to Count) to build the 2x2 contingency table in order to compute the EASE Score (see DAVID Help page).
Fold.Enrichment numeric with the ratio of the two proportions. For example, if 40/400 (i.e. 10%) of your input genes involved in "kinase activity" and the background information is 300/30000 genes (i.e. 1%) associating with "kinase activity", roughly \(10\%/1\%=10\) fold enrichment.

Bonferroni, Benjamini, FDR numerics with p-value adjust different criterias (see p.adjust)

Author(s)
Cristobal Fresno and Elmer A Fernandez

References
1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)
3. DAVID Help page http://david.abcc.ncifcrf.gov/helps/functional_annotation.html#E3

Description
These datasets correspond to the Functional Annotation Clustering or Gene Functional Classification report obtained in the Database for Annotation, Visualization and Integrated Discovery (DAVID) website, using as input file the ones provided for demo purposes (demoList1 or demoList2) with GOTERM_BP_ALL, GOTERM_MF_ALL and GOTERM_CC_ALL categories.

Format
geneCluster1/2 or termCluster1/2 are tab delimitate unstructured files with DAVID format where:

Cluster header
1. TypeGene Cluster or Annotation Cluster.
2. Numberinteger to indicate the cluster label.
3. Enrichment Score numeric with the geometric mean (in -log scale) of members p-values in a corresponding annotation cluster, is used to rank their biological significance. Thus, the top ranked annotation groups most likely have consistent lower p-values for their annotation members.

Members Header according to the type of cluster it can be:
1. Gene the character vector with "ID", "Gene" and "Name".
2. Annotation the same columns of a Functional Annotation Chart (see getFunctionalAnnotationChart).

Members Body member data per line according to the respective type of cluster.
Author(s)

Cristobal Fresno and Elmer A Fernandez

References

1. The Database for Annotation, Visualization and Integrated Discovery (davidgeneList.abcc.ncifcrf.gov)


3. DAVID Help page http://david.abcc.ncifcrf.gov/helps/functional_classification.html#textmode

geneList1 DAVID's website gene list example files

Description

These datasets correspond to the reports obtained using Show Gene List in the Database for Annotation, Visualization and Integrated Discovery (DAVID) website, using as input file the ones provided for demo purposes (demoList1 or demoList2) with default options.

Usage

data(geneList1)

data(geneList2)

Format

geneList1/2 are data.frame for demoList1/2 input ids, respectively, with the following columns.

ID character with the Gene List ID present in DAVID knowledge base, in the submitted type. If more than one ids map to the same DAVID ID, the record is a comma separated character.

Name character with the name of the gene as seen in DAVID knowledge base, in a comma separated fashion (if more than one ID maps to the same DAVID ID).

Species factor with the name of the Specie.

Author(s)

Cristobal Fresno and Elmer A Fernandez
genes

References

1. The Database for Annotation, Visualization and Integrated Discovery (david.abcc.ncifcrf.gov)


3. DAVID Help page http://david.abcc.ncifcrf.gov/helps.functional_annotation.html#

See Also

Other DataExamples: annotationSummary1, annotationSummary2, demoList1, demoList2

| genes | genes for the different DAVIDWebService package class objects. |

Description

Obtain genes related information, according to the given function call (see Values).

Usage

genes(object, ...)

## S4 method for signature DAVIDGenes
genes(object, ids)

## S4 method for signature DAVIDGeneCluster
genes(object)

## S4 method for signature DAVIDFunctionalAnnotationTable
genes(object, ...)

Arguments

object DAVIDGenes or DAVIDGeneCluster class object.
ids character vector with the ids to fetch.
... Additional parameters for internal functions (if applicable).
**Value**

according to the call one of the following objects can be returned

- DAVIDGenes: a DAVIDGenes object with the matched genes of ids parameter. If missing, returns all the genes.
- DAVIDGeneCluster: list with DAVIDGenes objects for each cluster.
- DAVIDFunctionalAnnotationTable: a DAVIDGenes objects, according to ... parameter used internally on genes(DAVIDGenes, ...).

**Author(s)**

Cristobal Fresno and Elmer A Fernandez

**See Also**

Other DAVIDFunctionalAnnotationTable: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable-class, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster, as, as, as, categories, categories, categories, dictionary, dictionary, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, membership, membership, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, subset, subset

Other DAVIDGeneCluster: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable-class, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster, as, as, as, ids, ids, ids, ids, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D

Other DAVIDGenes: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster, as, as, as, ids, ids, ids, ids, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize

**Examples**

```r
{
 #DAVIDGenes example:
 #Load Show Gene List file report for the input demo file 1, using data
 #function. Then, create a DAVIDGenes object using the loaded data.frame
 #geneList1.
 data(geneList1)
 davidGenes1<-DAVIDGenes(geneList1)

 #Now, get the genes using the ids look up parameter with the first
```
getGeneCategoriesReport

Obtain DAVID website reports

Description

DAVIDWebService class methods to obtain DAVID website reports from R. This includes the different functionalities starting from the basic "Show Gene List" or "Annotation Summary", to Set Enrichment Analysis using "Functional Annotation Chart" or Modular Enrichment Analysis using "Functional Annotation Clustering" or "Gene Functional Classification Tool". Note that DAVIDWebService is a Reference class, hence invoke it using object_name$method_name(parameters). In addition, the user can use the S4 version style function call (see Details).

Usage

getGeneCategoriesReport(object)

## S4 method for signature DAVIDWebService
getGeneCategoriesReport(object)

getAnnotationSummary(object)

## S4 method for signature DAVIDWebService
getAnnotationSummary(object)

geneListReportFile(object, fileName)

## S4 method for signature DAVIDWebService
geneListReportFile(object, fileName)

geneListReport(object)

## S4 method for signature DAVIDWebService
geneListReport(object)

getFunctionalAnnotationChartFile(object, fileName, threshold=0.1, count=2L)

## S4 method for signature DAVIDWebService
getFunctionalAnnotationChartFile(object, fileName, threshold=0.1, count=2L)

geneListReport(object, ...)  

getFunctionalAnnotationChart(object, ...)  

getClusterReportFile(object, fileName, type=c("Term", "Gene"), overlap=4L, initialSeed=4L, finalSeed=4L, linkage=0.5, kappa=35L)

## S4 method for signature DAVIDWebService
getClusterReportFile(object, fileName, type=c("Term", "Gene"), overlap=4L, initialSeed=4L, finalSeed=4L, linkage=0.5, kappa=35L)

getClusterReport(object, type=c("Term", "Gene"), ...)  

getFunctionalAnnotationTableFile(object, fileName)
## Arguments

- **object**: DAVIDWebService class object.
- **fileName**: character with the name of the file to store the Report.
- **threshold**: numeric with the EASE score (at most equal) that must be present in the category to be included in the report. Default value is 0.1.
- **count**: integer with the number of genes (greater equal) that must be present in the category to be included in the report. Default value is 2.
- **type**: character with the type of cluster to obtain Term/Genes. Default value "Term".
- **overlap**: integer with the minimum number of annotation terms overlapped between two genes in order to be qualified for kappa calculation. This parameter is to maintain necessary statistical power to make kappa value more meaningful. The higher value, the more meaningful the result is. Default value is 4L.
- **initialSeed,finalSeed**: integer with the number of genes in the initial (seeding) and final (filtering) cluster criteria. Default value is 4L for both.
- **linkage**: numeric with the percentage of genes that two clusters share in order to become one.
- **kappa**: integer (kappa * 100), with the minimum kappa value to be considered biological significant. The higher setting, the more genes will be put into unclustered group, which lead to higher quality of functional classification result with a fewer groups and a fewer gene members. Kappa value 0.3 starts giving meaningful biology based on our genome-wide distribution study. Anything below 0.3 have great chance to be noise.
- **...**: additional parameters for getXXFile functions.

## Details

Available functions include:

- **getGeneCategoriesReport**: Get the gene categories report.
- **getAnnotationSummary**: Generate the summary of all available annotation in DAVID in terms of percentage of gene list ids present in the category and numbers of terms where the can be found.
- **getGeneListReportFile**: Generate the Gene List Report a.k.a Show Gene List in DAVID website and save it into a file.
getGeneCategoriesReport: Generate Gene List Report a.k.a Show Gene List in DAVID website and import it as a DAVIDGenes object into R.

getFunctionalAnnotationChartFile: Generate the Functional Annotation Chart Report for the selected functional categories, for the given EASE threshold and number of genes and save it to a file.

getFunctionalAnnotationChart: Generate the Functional Annotation Chart Report for the selected functional categories, for the given EASE threshold and number of genes, and import it as a DAVIDFunctionalAnnotationChart object in R.

getClusterReportFile: Generate the Term/Gene Cluster Report for the given configuration.

getClusterReport: Generate the Term/Gene Cluster Report for the given configuration, and import it as a DAVIDGeneCluster or DAVIDTermCluster object, according to function call.

getFunctionalAnnotationTableFile: Generate Functional Annotation Table Report File, which is a gene-centric view of the genes and their associated annotation terms (selected only). There is no statistics applied in this report.

getFunctionalAnnotationTable: Generate Functional Annotation Table Report and import it as a DAVIDFunctionalAnnotationTable object in R.

Value

according to the call one of the following objects can be returned

getGeneCategoriesReport
integer vector with the IDs of the categories.

getAnnotationSummary
data.frame with the annotation summary report with the following columns:
1. **Main.Category**: factor with the main categories under used in the present analysis.
2. **ID**: integer to identify the annotation category.
3. **Name**: character with the name of category (the available ones in getAllAnnotationCategoryNames function).
4. **X.**: numeric with the percentage of the gene list ids present in the term.
5. **Count**: integer with the number of ids of the gene list that belong to this term.

getGeneListReportFile
data.frame with the Gene List Report with the following columns:
1. **ID**: character with the Gene List ID present in DAVID knowledge base, in the submitted type. If more than one ids map to the same DAVID ID, the record is a comma separated character.
2. **Name**: character with the name of the gene as seen in DAVID knowledge base, in a comma separated fashion (if more than one ID maps to the same DAVID ID).
3. **Species**: factor with the name of the Specie.

getGeneListReport
Generate Gene List Report a.k.a Show Gene List in DAVID website and import it as a DAVIDGenes object in R.
getGeneCategoriesReport

getFunctionalAnnotationChartFile

file with the following columns:
1. **Category**: factor with the main categories under used in the present analysis.
2. **Term**: character with the name of the term in format id~name (if available).
3. **Count**: integer with the number of ids of the gene list that belong to this term.
4. **X.**: after converting user input gene IDs to corresponding DAVID gene ID, it refers to the percentage of DAVID genes in the list associated with a particular annotation term. Since DAVID gene ID is unique per gene, it is more accurate to use DAVID ID percentage to present the gene-annotation association by removing any redundancy in user gene list, i.e. two user IDs represent same gene.
5. **PValue**: numeric with the EASE Score of the term (see DAVID Help page).
6. **Genes**: character in comma separated style with the genes present in the term.
7. **List.Total, Pop.Hits, Pop.Total**: integers (in addition to Count) to build the 2x2 contingency table in order to compute the EASE Score (see DAVID Help page).
8. **Fold.Enrichment**: numeric with the ratio of the two proportions. For example, if 40/400 (i.e. 10%) of your input genes involved in "kinase activity" and the background information is 300/30000 genes (i.e. 1%) associating with "kinase activity", roughly 10% / 1% = 10 fold enrichment.
9. **Bonferroni, Benjamini, FDR**: numerics with p-value adjust different criteria (see p.adjust).

getFunctionalAnnotationChart

Generate the Functional Annotation Chart Report for the selected functional categories, for the given EASE threshold and number of genes, and import it as a DAVIDFunctionalAnnotationChart object in R.

getClusterReportFile

file with the following columns:
1. **Annotation/Gene Cluster**: integer with the number of cluster.
2. **EnrichmentScore**: numeric with the geometric mean (in -log scale) of members p-values in a corresponding annotation cluster, is used to rank their biological significance. Thus, the top ranked annotation groups most likely have consistent lower p-values for their annotation members.
3. **Members**: according to the type of cluster, changes the associated data to include Gene List or Functional Chart Report (see getGeneListReport and getFunctionalAnnotationChart).

getClusterReport

Generate the Term/Gene Cluster Report for the given configuration, and import it as a DAVIDGeneCluster or DAVIDTermCluster according to function call.

getFunctionalAnnotationTableFile

file with the following columns:
1. **Gene**: Three Columns with the same data included in Gene List Report (ID, Gene.Name and Species) but coding for DAVID ID, i.e., comma separated character with input ids if two or more stands for the same gene.
2. **Annotation**: as many columns as Annotation Categories were in used. In each column, a comma separated style is use to delimitate the different terms where is reported evidence for DAVID ID record.

**getFunctionalAnnotationTable**: Generate Functional Annotation Table Report, which is a gene-centric view of the genes and their associated annotation terms (selected only), and import it as a DAVIDFunctionalAnnotationTable object in R.

**References**


**See Also**

`p.adjust` and `fisher.test`

Other DAVIDWebService: `DAVIDWebService-class`, `addList`, `addList`, `connect`, `connect`, `getAllAnnotationCategoryNames`, `getAllAnnotationCategoryNames`, `getBackgroundListNames`, `getBackgroundListNames`, `getCurrentBackgroundListPosition`, `getCurrentBackgroundListPosition`, `getCurrentGeneListPosition`, `getCurrentGeneListPosition`, `getEmail`, `getEmail`, `getGeneListNames`, `getGeneListNames`, `getIdTypes`, `getIdTypes`, `getIdName`, `getIdName`, `getSpecieNames`, `getSpecieNames`, `getStub`, `getStub`, `is.connected`, `is.connected`, `setAnnotationCategories`, `setAnnotationCategories`, `setCurrentBackgroundPosition`, `setCurrentBackgroundPosition`, `setCurrentGeneListPosition`, `setCurrentGeneListPosition`, `setCurrentSpecies`, `setCurrentSpecies`, `setEmail`, `setEmail`, `setEmail`, `DAVIDWebService-method`, `summary`, `summary`, `summary`, `summary`, `summary`

<table>
<thead>
<tr>
<th>ids</th>
<th>ids for the different DAVIDWebService package class objects</th>
</tr>
</thead>
</table>

**Description**

Obtain ids related information, according to the given function call (see Values).

**Usage**

```r
ids(object)
```

## S4 method for signature DAVIDGenes
dis(object)

## S4 method for signature DAVIDFunctionalAnnotationChart
dis(object)

## S4 method for signature DAVIDGeneCluster
### ids

```r
ids(object)
```

#### ## S4 method for signature DAVIDTermCluster
```r
ids(object)
```

#### Arguments

- **object**
  - DAVIDWebService class object. Possible values are: DAVIDGenes, DAVIDFunctionalAnnotationChart, DAVIDGeneCluster or DAVIDTermCluster.

#### Value

According to the call one of the following objects can be returned:

- **DAVIDGenes**
  - character vector with gene submitted ids.

- **DAVIDFunctionalAnnotationChart**
  - list with character/integer vector of ids of the corresponding "Category".

- **DAVIDGeneCluster, DAVIDTermCluster**
  - list with character/integer vector of ids of the members of each cluster.

#### Author(s)

Cristobal Fresno and Elmer A Fernandez

#### See Also

- Other DAVIDFunctionalAnnotationChart: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart-class, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster-class, DAVIDTermCluster, DAVIDTermCluster-class, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster.

- Other DAVIDGeneCluster: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster-class, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDGeneCluster, DAVIDGeneCluster-class, DAVIDGenes, DAVIDGenes, DAVIDGenes-class, DAVIDGeneCluster, DAVIDGeneCluster-class.

- Other DAVIDGenes: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGeneCluster.

- Other DAVIDTermCluster: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster.  
Examples

```
{
 # DAVIDGenes example:
 # Load Show Gene List file report for the input demo file 1, using data
 # function. Then, create a DAVIDGenes object using the loaded data.frame
 # geneList1. Once, the report is loaded, we can retrieve the ids.
 data(geneList1)
 davidGenes1<-DAVIDGenes(geneList1)
 ids(davidGenes1)

 #DAVIDFunctionalAnnotationChart example:
 # Load the Functional Annotation Chart file report for the input demo
 # file 2, using data function. Then, create a DAVIDFunctionalAnnotationChart
 # object using the loaded data.frame funChart2. Once the report is loaded,
 # the user can obtain the ids of the genes present in each Term, as a list of
 # character vector.
 data(funChart2)
 davidFunChart2<-DAVIDFunctionalAnnotationChart(funChart2)
 ids(davidFunChart2)

 #DAVIDGeneCluster example:
 # Load the Gene Functional Classification Tool file report for the
 # input demo list 1 file to create a DAVIDGeneCluster object.
 setwd(tempdir())
 fileName<-system.file("files/geneClusterReport1.tab.tar.gz",
 package="RDAVIDWebService")
 untar(fileName)
 davidGeneCluster1<-DAVIDGeneCluster(untar(fileName, list=TRUE))
 davidGeneCluster1

 ## Now we can invoke DAVIDCluster ancestor functions to inspect the report
 ## data, of each cluster. For example, we can call summary to get a general
 ## idea, and the inspect the cluster with higher Enrichment Score, to see
 ## which members belong to it, etc. Or simply returning the whole cluster as
 ## a list with EnrichmentScore and Members.
 summary(davidGeneCluster1)
 higherEnrichment<-which.max(enrichment(davidGeneCluster1))
 clusterGenes<-members(davidGeneCluster1)[[higherEnrichment]]
 wholeCluster<-cluster(davidGeneCluster1)[[higherEnrichment]]

 ## Now, we can obtain the ids of the first cluster directly using
 ## davidGeneCluster1 or by using DAVIDGenes class on the same cluster.
 ids(davidGeneCluster1)[[1]]
 ids(members(davidGeneCluster1)[[1]])

 #DAVIDTermCluster example:
```
## Load the Gene Functional Classification Tool file report for the input demo file 2 to create a DAVIDGeneCluster object.

```r
setwd(tempdir())
fileName<-system.file("files/termClusterReport2.tab.tar.gz", package="RDAVIDWebService")
untar(fileName)
davidTermCluster2<-DAVIDTermCluster(untar(fileName, list=TRUE))
davidTermCluster2
```

## Now we can invoke DAVIDCluster ancestor functions to inspect the report data, of each cluster. For example, we can call summary to get a general idea, and the inspect the cluster with higher Enrichment Score, to see which members belong to it, etc. Or simply returning the whole cluster as a list with EnrichmentScore and Members.

```r
summary(davidTermCluster2)
higherEnrichment<-which.max(enrichment(davidTermCluster2))
clusterGenes<-members(davidTermCluster2)[[higherEnrichment]]
wholeCluster<-cluster(davidTermCluster2)[[higherEnrichment]]
```

## Then, we can obtain the ids of the term members calling clusterGenes object which is a DAVIDFunctionalAnnotationChart class or directly using ids on davidTermCluster2 for the higherEnrichment cluster.

```r
ids(clusterGenes)
ids(davidTermCluster2)[[higherEnrichment]]
```
getIdTypes(object)

## S4 method for signature DAVIDWebService
getIdTypes(object)

addList(object, inputIds, idType, listName,
        listType=c("Gene", "Background"))

## S4 method for signature DAVIDWebService
addList(object, inputIds,
         idType, listName, listType=c("Gene", "Background"))

getAllAnnotationCategoryNames(object)

## S4 method for signature DAVIDWebService
getAllAnnotationCategoryNames(object)

getDefaultCategoryNames(object)

## S4 method for signature DAVIDWebService
getDefaultCategoryNames(object)

geneListNames(object)

## S4 method for signature DAVIDWebService
geneListNames(object)

getBackgroundListNames(object)

## S4 method for signature DAVIDWebService
getBackgroundListNames(object)

getListName(object, listType=c("Gene", "Background"),
             position=1L)

## S4 method for signature DAVIDWebService
ggetListName(object,
              listType=c("Gene", "Background"), position=1L)

getSpecieNames(object)

## S4 method for signature DAVIDWebService
getSpecieNames(object)

currentGeneListPosition(object)

## S4 method for signature DAVIDWebService
currentGeneListPosition(object)
getCurrentBackgroundListPosition(object)

## S4 method for signature DAVIDWebService
getCurrentBackgroundListPosition(object)

getCurrentSpeciesPosition(object)

## S4 method for signature DAVIDWebService
gerGetCurrentSpeciesPosition(object)

getTimeOut(object)

## S4 method for signature DAVIDWebService
gTimeOut(object)

getHttpProtocolVersion(object)

## S4 method for signature DAVIDWebService
gGetHttpProtocolVersion(object)

setCurrentGeneListPosition(object, position)

## S4 method for signature DAVIDWebService
setCurrentGeneListPosition(object, position)

setCurrentBackgroundPosition(object, position)

## S4 method for signature DAVIDWebService
setCurrentBackgroundPosition(object, position)

setCurrentSpecies(object, species)

## S4 method for signature DAVIDWebService
setCurrentSpecies(object, species)

setAnnotationCategories(object, categories)

## S4 method for signature DAVIDWebService
setAnnotationCategories(object, categories)

setTimeout(object, milliSeconds)

## S4 method for signature DAVIDWebService
setTimeout(object, milliSeconds)
setTimeOut(object, milliSeconds)

setHttpProtocolVersion(object, version)

## S4 method for signature DAVIDWebService
setHttpProtocolVersion(object, version)

### Arguments

- **object**: DAVIDWebService class object.
- **inputIds**: character vector with the associated ids.
- **idType**: character with the type of submitted ids.
- **listName**: character to identify the submitted list.
- **listType**: character with the type of list (Gene, Background). Default value is "Gene".
- **position**: integer with the position of the gene/background list to set.
- **species**: numeric vector with the specie/s to use.
- **categories**: character vector with the category name/s to use in the analysis.
- **milliSeconds**: integer with time defined in milli seconds.
- **version**: character with HTTP_PROTOCOL_VERSION to use. At present available strings are: "1.1", "1.0", "HTTP/1.1" and "HTTP/1.0"

### Details

Available functions include:

- **connect**: Try to establish a connection with DAVID server using the provided email.
- **is.connected**: Check if connected to DAVID server.
- **getIdTypes**: Returns all acceptable DAVID idTypes.
- **addList**: Add a gene or background to the current session.
- **getAllAnnotationCategoryNames**: Returns all available annotation category names.
- **getDefaultCategoryNames**: Returns all default category names.
- **getGeneListNames**: Returns all list names.
- **getBackgroundListNames**: Returns background names.
- **getListName**: Get the name of the selected list type at a given position.
- **getSpecieNames**: Return specie/s of the current gene list.
- **getCurrentGeneListPosition**: Return the position of current gene list.
- **getCurrentBackgroundListPosition**: Return the position of current background list.
- **getCurrentSpeciePositions**: Return current specie/s used positions for the uploaded gene list.
- **setCurrentGeneListPosition**: Use the gene list of the given position.
- **setCurrentBackgroundPosition**: Use the background list of the given position.
- **setCurrentSpecie**: Select the specie/s of the submitted gene list to use in the analysis.
- **setAnnotationCategories**: Let the user to select specific annotation categories.
getTimeOut: Get apache Axis time out in milliSeconds.
setTimeOut: Set apache Axis time out in milliSeconds.
getHttpProtocolVersion: Get apache Axis HTTP_PROTOCOL_VERSION.
setHttpProtocolVersion: Set apache Axis HTTP_PROTOCOL_VERSION. possible values are defined in org.apache.axis2.transport.http.HTTPConstants class with HEADER_PROTOCOL_XX property. At present available strings are: "1.1", "1.0", "HTTP/1.1" and "HTTP/1.0".

Value

according to the call one of the following objects can be returned

is.connected TRUE if user has registered email with DAVID knowledge base, FALSE otherwise.
getIdTypes character vector with the available DAVID input ID type.
addList list with two items: i) inDavid, a numeric with the percentage of the inputIds in DAVID knowledge database, ii) unmappedIds, a character vector with the unmapped ids if listType is "Gene", NA_character otherwise.
getAllAnnotationCategoryNames character vector with the available DAVID annotation categories.
getDefaultCategoryNames character vector with a subset of the available DAVID annotation categories, chosen by default.
getGeneListNames return a character vector with the name of the submitted gene list/s.
getBackgroundListNames character vector with the name of the available background gene list/s for the submitted gene list/s.
getListName character with the name of the list.
getSpecieNames character vector with the specie/s and in brackets the number of DAVID Ids of the current gene list, e.g. Homo sapiens(155).
getCurrentGeneListPosition integer with the position of current gene list if available, NA_integer otherwise.
getCurrentBackgroundListPosition integer with the position of current background list if available, NA_integer otherwise.
getCurrentSpeciesPosition integer vector with the specie/s position under use for the gene list under use if available, NA_character otherwise.

See Also

Other DAVIDWebService: DAVIDWebService-class, getAnnotationSummary, getAnnotationSummary, getClusterReport, getClusterReport, getClusterReportFile, getClusterReportFile, getEmail, getEmail, getFunctionalAnnotationChart, getFunctionalAnnotationChart, getFunctionalAnnotationChartFile, getFunctionalAnnotationChartFile, getFunctionalAnnotationTable, getFunctionalAnnotationTable, getFunctionalAnnotationTableFile, getFunctionalAnnotationTableFile, getGeneCategoriesReport,
is.connected


Examples

david <- DAVIDWebService$new()
david$is.connected()
# Or the equivalent S4 style function call
is.connected(david)
plot2D

Visualization of biological relationships

Description

plot2D uses a 2D tile ggplot to explore biological relationships between two variables such as annotation category and genes, for Functional Annotation Chart/Table or Term cluster results. For Gene cluster, the cluster number vs genes membership is plotted.

Usage

plot2D(object,...)

## S4 method for signature DAVIDResult
plot2D(object, dataFrame)

## S4 method for signature DAVIDFunctionalAnnotationChart
plot2D(object, color=c("FALSE"="black", "TRUE"="green"))

## S4 method for signature DAVIDGeneCluster
plot2D(object, color=c("FALSE"="black", "TRUE"="green"), names=FALSE)

## S4 method for signature DAVIDTermCluster
plot2D(object, number=1, color=c("FALSE"="black", "TRUE"="green"))

## S4 method for signature DAVIDFunctionalAnnotationTable
plot2D(object, category, id, names.genes=FALSE, names.category=FALSE, color=c("FALSE"="black", "TRUE"="green"))

Arguments

object
    DAVIDResult heirs (DAVIDFunctionalAnnotationChart/Table or DAVIDGeneCluster/TermCluster)

dataFrame
    data.frame with three columns (x, y and fill) to be used in ggplot. X(Y) is a character/factor with the X(Y)-axis labels and "fill" is a the color to be used for x-y labels.

color
    named character vector to indicate tile color. Default value is c("FALSE"="black", "TRUE"="green").

names
    should gene names be plotted? Default value is FALSE, i.e, use ids.

number
    integer to indicate which cluster to plot. Default value is 1.

category
    character vector to select the main annotation categories. By default is missing in order to use all the available ones.
id  character vector to indicate which gene ids to use. By default is missing in order
 to use all the available ones.

names.genes,names.category
Should genes and/or category names used? Default value is FALSE, i.e., use
both ids.

...  Additional parameters for heirs functions.

Value

a ggplot object if the object is not empty.

Author(s)

Cristobal Fresno and Elmer A Fernandez

See Also

Other DAVIDFunctionalAnnotationChart: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart,
DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable-class, DAVIDFunctionalAnnotationTable,
DAVIDGODag, DAVIDGODag,
DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster,
DAVIDTermCluster, as, as, as, categories, categories, categories, ids, ids, ids, ids, ids, ids,
initialize, initialize, initialize, initialize, initialize, initialize

Other DAVIDFunctionalAnnotationTable: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart,
DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable-class, DAVIDFunctionalAnnotationTable,
DAVIDGODag, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes,
DAVIDTermCluster, DAVIDTermCluster, as, as, as, categories, categories, categories, dictionary,
dictionary, genes, genes, genes, genes, initialize, initialize, initialize, initialize, initialize,
initialize, initialize, initialize, membership, membership, subset

Other DAVIDGeneCluster: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart,
DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable,
DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGenecluster, DAVIDGeneCluster,
DAVIDGeneCluster-class, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster,
DAVIDTermCluster, as, as, as, genes, genes, genes, genes, ids, ids, ids, ids, ids, ids,
initialize, initialize, initialize, initialize, initialize

Other DAVIDResult: DAVIDResult-class, type, type

Other DAVIDTermCluster: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart,
DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable,
DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGenecluster, DAVIDGeneCluster,
DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, DAVIDTermCluster-class,
as, as, as, ids, ids, ids, ids, ids, initialze, initialize, initialize, initialize, initialize,
initialize, initialize

Examples

{
  #DAVIDFunctionalAnnotationChart example:
Load the Functional Annotation Chart file report for the input demo file 2, using data function. Just to keep it simple, for the first five terms present in funChart2 object, create a DAVIDFunctionalAnnotationChart object and plot a 2D tile matrix with the reported evidence (green) or not (black).

```r
data(funChart2)
plot2D(DAVIDFunctionalAnnotationChart(funChart2[1:5,]),
color=c("FALSE"="black", "TRUE"="green"))
```

DAVIDFunctionalAnnotationTable example
Load the Functional Annotation Table file report for the input demo file 1, using data function. Then, create a DAVIDFunctionalAnnotationTable object using the loaded data.frame annotationTable1.

```r
data(annotationTable1)
davidFunTable1<-DAVIDFunctionalAnnotationTable(annotationTable1)
```

Plot the membership of only for the first six terms in this category, with only the genes of the first six terms with at least one evidence code.

```r
Category filtering...
categorySelection<-list(head(dictionary(davidFunTable1, categories(davidFunTable1)[1]))$ID))
names(categorySelection)<-categories(davidFunTable1)[1]
```

## Gene filter...
```r
id<-membership(davidFunTable1, categories(davidFunTable1)[1][1:6])
id<-ids(genes(davidFunTable1))[rowSums(id)>0]
```

Finally the membership tile plot
```r
plot2D(davidFunTable1, category=categorySelection, id=id, names.category=TRUE)
```

DAVIDGeneCluster example:
Load the Gene Functional Classification Tool file report for the input demo list 1 file to create a DAVIDGeneCluster object.

```r
setwd(tempdir())
fileName<-system.file("files/geneClusterReport1.tab.tar.gz", package="RDAVIDWebService")
untar(fileName)
davidGeneCluster1<-DAVIDGeneCluster(untar(fileName, list=TRUE))
```

We can inspect a 2D tile membership plot, to visual inspect for overlapping of genes across the clusters. Or use an scaled version of gene names to see the association of gene cluster, e.g., cluster 3 is related to ATP genes.

```r
plot2D(davidGeneCluster1)
plot2D(davidGeneCluster1,names=TRUE)+
theme(axis.text.y=element_text(size=rel(0.9)))
```

DAVIDTermCluster example:
Load the Gene Functional Classification Tool file report for the input demo file 2 to create a DAVIDGeneCluster object.

```r
setwd(tempdir())
```
setEmail<-system.file("files/termClusterReport2.tab.tar.gz", package="RDAVIDWebService")
untar(fileName)
davidTermCluster2<-DAVIDTermCluster(untar(fileName, list=TRUE))

##Finally, we can inspect a 2D tile membership plot, to visual inspect for overlapping of genes across the term members of the selected cluster, e.g., the first cluster.
plot2D(davidTermCluster2, number=1)

---

setEmail

Accessor methods for DAVIDWebService class

Description
Setter/getters for DAVIDWebService class fields.

Usage

```r
setEmail(object, mail)
```

## S4 method for signature DAVIDWebService
setEmail(object, mail)

## S4 method for signature character
setEmail(mail)

getEmail(object)

## S4 method for signature DAVIDWebService
getEmail(object)

getStub(object)

## S4 method for signature DAVIDWebService
getStub(object)

Arguments

- **object**: DAVIDWebService class object.
- **mail**: character with a registered e-mail account at DAVID’s website.

Details

Note that DAVIDWebService is a Reference class, hence invoke it using object_name$setter/getter(parameters). In addition, the user can use the S4 version style function call.
**setEmail**

**Value**

according to the call one of the following objects can be returned

- setEmail: character with the given e-mail to set.
- getEmail: character with the e-mail under use.
- getStub: jobRef object with the stub java object to interface with DAVID API.

**References**

1. DAVID web [http://david.abcc.ncifcrf.gov](http://david.abcc.ncifcrf.gov)

**See Also**

Other DAVIDWebService: DAVIDWebService-class, addList, addList, connect, connect, getAllAnnotationCategoryNames, getAllAnnotationCategoryNames, getAnnotationSummary, getAnnotationSummary, getBackgroundListNames, getBackgroundListNames, getClusterReport, getClusterReport, getClusterReportFile, getClusterReportFile, getCurrentBackgroundListPosition, getCurrentBackgroundListPosition, getCurrentGeneListPosition, getCurrentGeneListPosition, getCurrentSpeciesPosition, getCurrentSpeciesPosition, getDefaultCategoryNames, getDefaultCategoryNames, getFunctionalAnnotationChart, getFunctionalAnnotationChart, getFunctionalAnnotationChartFile, getFunctionalAnnotationChartFile, getFunctionalAnnotationTable, getFunctionalAnnotationTable, getFunctionalAnnotationTableFile, getFunctionalAnnotationTableFile, getGeneCategoriesReport, getGeneCategoriesReport, getGeneListNames, getGeneListNames, getGeneListReport, getGeneListReport, getGeneListReportFile, getGeneListReportFile, getIdTypes, getIdTypes, getListName, getListName, getSpecieNames, getSpecieNames, is.connected, is.connected, setAnnotationCategories, setAnnotationCategories, setCurrentBackgroundPosition, setCurrentBackgroundPosition(position), setCurrentGeneListPosition, setCurrentGeneListPosition, setCurrentSpecies, setCurrentSpecies, summary, summary, summary, summary

**Examples**

```r
{
 ##Create a DAVIDWebService object
 david<-DAVIDWebService$new()

 ##Invoke Reference class style function setter/getters
 david$setEmail("valid_mail@david.org")
 david$getEmail()
 stub<-david$getStub()

 ##Or the equivalent S4 style function call setter/getters
 setEmail(david, "valid_mail@david.org")
 getEmail(david)
 stub<-getStub(david)
}
```
Description
The different implementations of show function for the DAVIDWebService package classes.

Usage

```r
S4 method for signature DAVIDResult
show(object)

S4 method for signature DAVIDGenes
show(object)

S4 method for signature DAVIDFunctionalAnnotationChart
show(object)

S4 method for signature DAVIDCluster
show(object)

S4 method for signature DAVIDFunctionalAnnotationTable
show(object)

S4 method for signature DAVIDWebService
show(object)
```

Arguments

- `object`: DAVIDXX class members (where XX stands for Result, Genes, Term/GeneCluster, FunctionalAnnotationChart/Table or DAVIDWebService).

Value
Basic console output.

Author(s)
Cristobal Fresno and Elmer A Fernandez

Examples

```r
{
 #DAVIDGenes example:
 ##Load Show Gene List file report for the input demo file 1, using data
 ##function. Then, create a DAVIDGenes object using only the head of the
 ##loaded data.frame geneList1 (just to keep it simple).
 data(geneList1)
}
species <- DAVIDGenes(head(geneList1))
davidGenes1

#DAVIDFunctionalAnnotationChart example
#Load the Functional Annotation Chart file report for the input demo
##file 2, using data function. Then, create a DAVIDFunctionalAnnotationChart
##object using the head of the loaded data.frame funChart2 (just to keep
##it simple).
data(funChart2)
davidFunChart2 <- DAVIDFunctionalAnnotationChart(head(funChart2))
davidFunChart2

#DAVIDFunctionalAnnotationTable example:
#Load the Functional Annotation Table file report for the input demo
##file 1, using data function. Then, create a DAVIDFunctionalAnnotationTable
##object using the loaded data.frame annotationTable1.
data(annotationTable1)
davidFunTable1 <- DAVIDFunctionalAnnotationTable(annotationTable1)
davidFunTable1

species

Methods for DAVIDGenes class object

Description

Obtain DAVIDGenes related information, according to the given function call (see Values).

Usage

species(object)

S4 method for signature DAVIDGenes
species(object)

duplicateIds(object, collapse = FALSE)

S4 method for signature DAVIDGenes
duplicateIds(object, collapse=FALSE)

uniqueIds(object)

S4 method for signature DAVIDGenes
uniqueIds(object)
Arguments

- **object**: DAVIDGenes class object.
- **collapse**: logical indicating if duplicate ids should be grouped as a comma separated id. Default value is FALSE.
- **...**: Additional parameters for internal functions (if applicable).

Value

According to the call one of the following objects can be returned:

- **show**: console output of the class and associated data.
- **species**: character vector with the levels of Species if available.
- **uniqueIds**: a DAVIDGenes object with only the gene names with a unique id.
- **duplicateIds**: a DAVIDGenes object with only the gene names with at least two ids. If collapse is TRUE, a data.frame in where all the ids that matched the same gene name, are coded in comma separated style.

Author(s)

Cristobal Fresno and Elmer A Fernandez

Examples

```{r}
# Load Show Gene List file report for the input demo file 1, using data function. Then, create a DAVIDGenes object using the loaded data.frame geneList1. In addition, the user can use the file name of the downloaded file report.
data(geneList1)
davidGenes1<-DAVIDGenes(geneList1)

# Now we can inspect davidGenes1 as it was an common data.frame
head(davidGenes1)

# Additional getters for this object are also available, to obtain the different columns: ids, genes and species.
ids(davidGenes1)
genesis(davidGenes1)
species(davidGenes1)

# Or even look up for a particular gene id, which will return only the matched ones.
genesis(davidGenes1, ids=c("38926_at", "35367_at", "no match"))

# Obtain the genes with duplicate manufacturer ids or just the genes that do not have duplicate ids (uniqueIds).
duplicateIds(davidGenes1)
uniqueIds(davidGenes1)
```

```
subset  

Methods for DAVIDFunctionalAnnotationTable class object

Description

Obtain DAVIDFunctionalAnnotationTable related information, according to the given function call (see Values).

Usage

subset(x, ...)

## S4 method for signature DAVIDFunctionalAnnotationTable
subset(x, selection=c("Membership", "Dictionary"), category, drop=TRUE)

dictionary(object, ...)

## S4 method for signature DAVIDFunctionalAnnotationTable
dictionary(object, ...)

membership(object, ...)

## S4 method for signature DAVIDFunctionalAnnotationTable
membership(object, ...)

Arguments

object, x   DAVIDFunctionalAnnotationTable class object.
selection   which slot to use to obtain the subset. Possible values are "Membership" or "Dictionary".
category    named list with main annotation category, which contains a character vector with the ids to use. Default value is missing in order to use all available categories of the report.
drop        Should list structure be drop if length==1? Default value TRUE.
...         Additional parameters for subset function call.

Value

according to the call one of the following objects can be returned

subset    list with filtered categories/ids according to function call.
enrichment numeric vector with DAVID cluster's enrichment score.
members   list with DAVID Cluster's members.
**summary**

**Basic summary for DAVIDWebService package classes.**

**Description**

The different implementations of summary function for the DAVIDWebService package classes.
summary

Usage

summary(object, ...)

## S4 method for signature DAVIDCluster
summary(object)

## S4 method for signature DAVIDGODag
summary(object, ...)

## S4 method for signature DAVIDWebService
summary(object)

Arguments

object    DAVIDXX class members (where XX stands for Term/GeneCluster, GODag or DAVIDWebService).

...      Additional parameters.

Value

data.frame with summary output.

Author(s)

Cristobal Fresno and Elmer A Fernandez

See Also

Other DAVIDCluster: DAVIDCluster-class, cluster, cluster, dictionary, dictionary, enrichment, enrichment, members, members, membership, membership, subset, subset

Other DAVIDGODag: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGODag-class, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, as, benjaminis, benjaminis, bonferronis, bonferronis, counts, counts, fdrs, fdrs, foldEnrichments, foldEnrichments, initialize, initialize, initialize, initialize, initialize, initialize, initialize, initialize, listTotals, listTotals, listTotals, percentages, percentages, popHits, popHits, popTotals, popTotals, terms, terms, universeCounts, universeMappedCount, upsideDown, upsideDown

Other DAVIDWebService: DAVIDWebService-class, addList, addList, connect, connect, getAnnotationCategoryNames, getAnnotationCategoryNames, getAnnotationSummary, getAnnotationSummary, getBackgroundListNames, getBackgroundListNames, getClusterReport, getClusterReport, getClusterReportFile, getClusterReportFile, getCurrentBackgroundListPosition, getCurrentBackgroundListPosition, getCurrentGeneListPosition, getCurrentSpeciesPosition, getCurrentSpeciesPosition, getFunctionalAnnotationChart, getFunctionalAnnotationChart, getFunctionalAnnotationChartFile, getFunctionalAnnotationChartFile, getFunctionalAnnotationChartFile, getFunctionalAnnotationChartFile, getFunctionalAnnotationTable, getFunctionalAnnotationTable, getFunctionalAnnotationTable, getFunctionalAnnotationTable, getFunctionalAnnotationTable, getGeneCategoriesReport, getGeneCategoriesReport,
getGeneListNames, getGeneListNames, getGeneListReport, getGeneListReport, getGeneListReportFile, getGeneListReportFile, getIdTypes, getIdTypes, getListName, getListName, getSpecieNames, getSpecieNames, getStub, getStub, is.connected, is.connected, setAnnotationCategories, setAnnotationCategories, setCurrentBackgroundPosition, setCurrentBackgroundPosition(position), setCurrentGeneListPosition, setCurrentGeneListPosition, setCurrentSpecies, setCurrentSpecies, setEmail, setEmail, setEmail, DAVIDWebService-method

Examples

{
  ##DAVIDGODag example:
  ##Load the Functional Annotation Chart file report for the input demo
  ##file 2, using data function. Then, create a DAVIDGODag object using
  ##Molecular Function main category of DAVIDFunctionalAnnotationChart object,
  ##obtained from the loaded data.frame funChart2. In addition, we have
  ##selected a threshold pvalue of 0.001 and removed unattached nodes, in case
  ##DAVID/GO.db database are not using the same version.
  data(funChart2)
  davidGODag<-DAVIDGODag(DAVIDFunctionalAnnotationChart(funChart2), type="MF",
                         pvalueCutoff=0.001, removeUnattached=TRUE)
  summary(davidGODag)

  ##DAVIDGeneCluster example:
  ##Load the Gene Functional Classification Tool file report for the
  ##input demo list 1 file to create a DAVIDGeneCluster object.
  setwd(tempdir())
  fileName<-system.file("files/geneClusterReport1.tab.tar.gz",
                        package="RDAVIDWebService")
  untar(fileName)
  davidGeneCluster1<-DAVIDGeneCluster(untar(fileName, list=TRUE))
  davidGeneCluster1

  ##Now we can invoke DAVIDCluster ancestor functions to inspect the report
  ##data, of each cluster. For example, we can call summary to get a general
  ##idea
  summary(davidGeneCluster1)

  ##DAVIDTermCluster example:
  ##Load the Gene Functional Classification Tool file report for the
  ##input demo file 2 to create a DAVIDGeneCluster object.
  setwd(tempdir())
  fileName<-system.file("files/termClusterReport2.tab.tar.gz",
                        package="RDAVIDWebService")
  untar(fileName)
  davidTermCluster2<-DAVIDTermCluster(untar(fileName, list=TRUE))
  davidTermCluster2

  ##Now we can invoke DAVIDCluster ancestor functions to inspect the report
  ##data, of each cluster. For example, we can call summary to get a general
  ##idea
}
terms

summary(davidTermCluster2)
}

**Methods for DAVIDGODag class object**

**Description**

Obtain DAVIDGODag related information, according to the given function call (see Values).

**Usage**

```r
terms(x, ...)

 ## S4 method for signature DAVIDGODag
terms(x, ...)

percentages(object)

 ## S4 method for signature DAVIDGODag
percentages(object)

listTotals(object)

 ## S4 method for signature DAVIDGODag
listTotals(object)

popHits(object)

 ## S4 method for signature DAVIDGODag
popHits(object)

popTotals(object)

 ## S4 method for signature DAVIDGODag
popTotals(object)

foldEnrichments(object)

 ## S4 method for signature DAVIDGODag
foldEnrichments(object)

bonferronis(object)

 ## S4 method for signature DAVIDGODag
bonferronis(object)
```
benjaminis(object)

## S4 method for signature DAVIDGODag
benjaminis(object)

fdrs(object)

## S4 method for signature DAVIDGODag
fdrs(object)

counts(object, ...)

## S4 method for signature DAVIDGODag
counts(object, ...)

upsideDown(graph)

## S4 method for signature graph
upsideDown(graph)

## S4 method for signature DAVIDGODag
universeCounts(r)

## S4 method for signature DAVIDGODag
universeMappedCount(r)

**Arguments**

object, x, r  DAVIDGODag class object.

graph  a graph object with the GO DAG structure.
...
  Additional parameters (if required).

**Value**

according to the call one of the following objects can be returned

upsideDown  the same graph but the arcs with its directions in the other way around. Hence, plot layout would make upside down the graph.

universeMappedCount, universeCounts, counts  modifications to the corresponding GOstats/Category library functions, to keep the same behavior for DAVIDGODag objects.

fdrs, benjaminis, bonferronis  Adjusted method specific p-values for the corresponding nodes/terms.

terms  character vector with GO node names.

popTotals, popHits, listTotals  integer vector with the number of ids, to use in the EASE score calculations, when building the 2x2 contingency table.

percentages  numeric vector with the percentage of the gene list ids present in the term.
foldEnrichments

numeric vector with the ratio of the two proportions for each node/term. For example, if 40/400 (i.e. 10%) of your input genes involved in "kinase activity" and the background information is 300/30000 genes (i.e. 1%) associating with "kinase activity", roughly 10%/1%=10 fold enrichment.

Author(s)

Cristobal Fresno and Elmer A Fernandez

See Also

Other DAVIDGODag: DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationChart, DAVIDFunctionalAnnotationTable, DAVIDFunctionalAnnotationTable, DAVIDGODag, DAVIDGODag, DAVIDGODag-class, DAVIDGeneCluster, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, DAVIDGODag, DAVIDGODag-class, DAVIDGeneCluster, DAVIDGenes, DAVIDGenes, DAVIDTermCluster, DAVIDTermCluster, as, as, as, initialize, int


popTotals(davidGODag)
foldEnrichments(davidGODag)
bonferronis(davidGODag)
benjaminis(davidGODag)
fdrs(davidGODag)
}

<table>
<thead>
<tr>
<th>type</th>
<th>Getters for DAVIDResult object</th>
</tr>
</thead>
</table>

**Description**
Obtain DAVIDResult slot information, according to the given function call (see values).

**Usage**
```r
S4 method for signature DAVIDResult
type(object)
```

**Arguments**
- `object` : DAVIDResult class object.

**Value**
according to the call one of the following objects can be returned
- `type` : character with type slot datum.

**Author(s)**
Cristobal Fresno and Elmer A Fernandez

**See Also**
Other DAVIDResult: DAVIDResult-class, plot2D, plot2D, plot2D, plot2D, plot2D, plot2D
Index

*Topic DAVID
DAVIDGenes-class, 21
DAVIDResult-class, 25
DAVIDWebService-class, 28
DAVIDWebService-package, 3

*Topic MEA
DAVIDWebService-class, 28
DAVIDWebService-package, 3

*Topic SEA
DAVIDWebService-class, 28
DAVIDWebService-package, 3

*Topic classes
DAVIDCluster-class, 9
DAVIDFunctionalAnnotationChart-class, 10
DAVIDFunctionalAnnotationTable-class, 12
DAVIDGeneCluster-class, 14
DAVIDGenes-class, 21
DAVIDGODag-class, 23
DAVIDResult-class, 25
DAVIDTermCluster-class, 26

*Topic datasets
annotationSummary1, 3
annotationTable1, 4
demoList1, 31
funChart1, 32
geneCluster1, 33
geneList1, 34

*Topic genes
DAVIDGenes-class, 21

addList, 31, 42, 57, 63
addList (is.connected), 45
addList(DAVIDWebService-method (is.connected), 45
annotationSummary1, 3, 32, 35
annotationSummary2, 32, 35
annotationSummary2 (annotationSummary1), 3
annotationTable1, 4
annotationTable2 (annotationTable1), 4
as, 6, 11, 13, 15, 18, 22, 24, 27, 36, 43, 44, 54,
62, 63, 67
as (DAVIDGenes), 16
benjaminis, 19, 24, 63
benjaminis (terms), 65
benjaminis, DAVIDGODag-method (terms), 65
bonferronis, 19, 24, 63
bonferronis (terms), 65
bonferronis, DAVIDGODag-method (terms), 65
categories, 5, 11, 13, 19, 36, 43, 54, 62
categories, DAVIDFunctionalAnnotationChart-method (categories), 5
categories, DAVIDFunctionalAnnotationTable-method (categories), 5
cluster, 7, 10, 62, 63
cluster, DAVIDCluster-method (cluster), 7
cluster-methods (cluster), 7
connect, 31, 42, 57, 63
connect (is.connected), 45
connect, DAVIDWebService-method (is.connected), 45
counts, 19, 24, 63
counts (terms), 65
counts, DAVIDGODag-method (terms), 65

DAVIDCluster-class, 9
DAVIDFunctionalAnnotationChart, 6, 11, 13, 15, 22, 24, 27, 36, 43, 54, 62, 63,
67
DAVIDFunctionalAnnotationChart (DAVIDGenes), 16
DAVIDFunctionalAnnotationChart, character-method (DAVIDGenes), 16
DAVIDFunctionalAnnotationChart, data.frame-method (DAVIDGenes), 16
DAVIDFunctionalAnnotationTable-class, 16
DAVIDFunctionalAnnotationTable-methods (DAVIDGenes), 16
DAVIDFunctionalAnnotationChart, character-method
( DAVIDGenes), 16
DAVIDFunctionalAnnotationChart-methods
( DAVIDGenes), 16
DAVIDFunctionalAnnotationChart, data.frame-method
( DAVIDGenes), 16
DAVIDFunctionalAnnotationChart-class, 12
DAVIDFunctionalAnnotationTable-methods
( DAVIDGenes), 16
DAVIDGeneCluster, 6, 11, 13, 15, 22, 24, 27, 36, 43, 54, 62, 63, 67
DAVIDGeneCluster ( DAVIDGenes), 16
DAVIDGeneCluster, character-method
( DAVIDGenes), 16
DAVIDGeneCluster-class, 14
DAVIDGeneCluster-methods ( DAVIDGenes), 16
DAVIDGenes, 6, 11, 13, 15, 22, 24, 27, 36, 43, 44, 54, 62, 63, 67
DAVIDGenes, character-method
( DAVIDGenes), 16
DAVIDGenes, data.frame-method
( DAVIDGenes), 16
DAVIDGenes-class, 21
DAVIDGenes-methods ( DAVIDGenes), 16
DAVIDGODag, 6, 11, 13, 15, 22, 24, 27, 36, 43, 54, 62, 63, 67
DAVIDGODag ( DAVIDGenes), 16
DAVIDGODag, DAVIDFunctionalAnnotationChart-methods
( DAVIDGenes), 16
DAVIDGODag-class, 23
DAVIDGODag-methods ( DAVIDGenes), 16
DAVIDResult-class, 25
DAVIDTermCluster, 6, 11, 13, 15, 22, 24, 27, 36, 43, 44, 54, 62, 63, 67
DAVIDTermCluster ( DAVIDGenes), 16
DAVIDTermCluster, character-method
( DAVIDGenes), 16
DAVIDTermCluster-class, 26
DAVIDTermCluster-methods ( DAVIDGenes), 16
DAVIDWebService
( DAVIDWebService-class), 28
DAVIDWebService-class, 28
DAVIDWebService-package, 3
demolist1, 4, 31, 35
demolist2, 4, 35
demolist2 ( demolist1), 31
dictionary, 6, 8, 10, 13, 19, 36, 54, 63
dictionary ( subset), 61
dictionary, DAVIDFunctionalAnnotationTable-method
( subset), 61
dictionary-methods ( subset), 61
duplicateIds ( species), 59
duplicateIds, DAVIDGenes-method
( species), 59
duplicateIds-methods ( species), 59
enrichment, 10, 62, 63
enrichment ( cluster), 7
enrichment, DAVIDCluster-method
( cluster), 7
fdr, 19, 24, 63
fdr ( terms), 65
defisher.test, 42
defoldEnrichments, 19, 24, 63
defoldEnrichments ( terms), 65
defoldEnrichments, DAVIDGODag-method
( terms), 65
defunChart1, 32
defunChart2 ( funChart1), 32
geneCluster1, 33
geneCluster2 ( geneCluster1), 33
demolist1, 4, 32, 34
demolist2, 4, 32
geneList2, geneList1, 34
genes, 6, 13, 15, 19, 22, 35, 43, 54, 62
genes, DAVIDFunctionalAnnotationTable-method
( genes), 35
genes, DAVIDGeneCluster-method ( genes), 35
genes, DAVIDGenes-method ( genes), 35
genes-methods ( genes), 35
geneCluster1, 33
getAllAnnotationCategoryNames, 31, 42, 57, 63
getAllAnnotationCategoryNames
(is.connected), 45

getEmail, DAVIDWebService-method
(setEmail), 56

currentBackgroundListPosition
(getCurrentBackgroundListPosition), 31

getCurrentSpeciesPosition
(getCurrentSpeciesPosition), 31

getClusterReport, DAVIDWebService-method
(getClusterReport), 37

geneCategoriesReport
(getGeneCategoriesReport), 37

getGeneCategoriesReport
(getGeneCategoriesReport), 37

geneListNames
(getGeneListNames), 31

geneListReport
(getGeneListReport), 37

getHttpProtocolVersion
(getHttpProtocolVersion), 37

is.connected
(is.connected), 45
getIdTypes, 31, 42, 57, 64
getIdTypes(is.connected), 45
getIdTypes, DAVIDWebService-method (is.connected), 45
getListName, 31, 42, 57, 64
getListName(is.connected), 45
getListName, DAVIDWebService-method (is.connected), 45
getSpecieNames, 31, 42, 57, 64
getSpecieNames(is.connected), 45
getSpecieNames, DAVIDWebService-method (is.connected), 45
initialize, 6, 11, 15, 19, 22, 27, 36, 42, 54
initialize, DAVIDFunctionalAnnotationChart-method (ids), 42
initialize, DAVIDGeneCluster-method (ids), 42
initialize, DAVIDGenes-method (ids), 42
initialize, DAVIDTermCluster-method (ids), 42
initialize, DAVIDGODag-method (ids), 42
initialize, DAVIDGeneCluster-method (DAVIDGenes), 16
initialize, DAVIDCluster-method (DAVIDGenes), 16
initialize, DAVIDFunctionalAnnotationChart-method (DAVIDGenes), 16
initialize, DAVIDFunctionalAnnotationTable-method (DAVIDGenes), 16
initialize, DAVIDFunctionalAnnotationTable-method (DAVIDGenes), 16
initialize, DAVIDGeneCluster-method (DAVIDGenes), 16
initialize, DAVIDGenes-method (DAVIDGenes), 16
initialize, DAVIDGODag-method (DAVIDGenes), 16
initialize, DAVIDTermCluster-method (DAVIDGenes), 16
is.connected, 31, 42, 45, 57, 64
is.connected, DAVIDWebService-method (is.connected), 45
listTotals, 19, 24, 63
listTotals (terms), 65
listTotals, DAVIDGODag-method (terms), 65
members, 10, 62, 63
members (cluster), 7
members, DAVIDCluster-method (cluster), 7
membership, 6, 8, 10, 13, 19, 36, 54, 63
membership (subset), 61
membership, DAVIDFunctionalAnnotationTable-method (subset), 61
membership-methods (subset), 61
p.adjust, 42
percentages, 19, 24, 63
percentages (terms), 65
percentages, DAVIDGODag-method (terms), 65
plot2D, 6, 11, 13, 15, 19, 26, 27, 36, 43, 44, 53, 62, 68
plot2D, DAVIDFunctionalAnnotationChart-method (plot2D), 53
plot2D, DAVIDFunctionalAnnotationTable-method (plot2D), 53
plot2D, DAVIDGeneCluster-method (plot2D), 53
plot2D, DAVIDResult-method (plot2D), 53
plot2D, DAVIDTermCluster-method (plot2D), 53
plot2D-methods (plot2D), 53
popHits, 19, 24, 63
calculateHits (terms), 65
popHits, DAVIDGODag-method (terms), 65
popTotals, 19, 24, 63
popTotals (terms), 65
popTotals, DAVIDGODag-method (terms), 65
setAnnotationCategories, 31, 42, 57, 64
setAnnotationCategories(is.connected), 45
setAnnotationCategories, DAVIDWebService-method (is.connected), 45
setCurrentBackgroundPosition, 31, 42, 57, 64
setCurrentBackgroundPosition (is.connected), 45
setCurrentBackgroundPosition (position), 31, 42, 57, 64
setCurrentBackgroundPosition, DAVIDWebService-method (is.connected), 45
setCurrentGeneListPosition, 31, 42, 57, 64
setCurrentGeneListPosition (is.connected), 45
setCurrentGeneListPosition, DAVIDWebService-method (is.connected), 45
setCurrentSpecies, 31, 42, 57, 64
setCurrentSpecies (is.connected), 45
setCurrentSpecies, DAVIDWebService-method (is.connected), 45
setEmail, 31, 42, 50–52, 56, 64
setEmail, character-method (setEmail), 56
setEmail, DAVIDWebService-method (setEmail), 56
setHttpProtocolVersion (is.connected), 45
setHttpProtocolVersion, DAVIDWebService-method (is.connected), 45
setTimeOut (is.connected), 45
setTimeOut, DAVIDWebService-method (is.connected), 45
show, 58
show, DAVIDCluster-method (show), 58
show, DAVIDFunctionalAnnotationChart-method (show), 58
show, DAVIDFunctionalAnnotationTable-method (show), 58
show, DAVIDGenes-method (show), 58
show, DAVIDResult-method (show), 58
show, DAVIDWebService-method (show), 58
species, 59
species, DAVIDGenes-method (species), 59
species-methods (species), 59
subset, 6, 8, 10, 13, 19, 36, 54, 61, 63
subset, DAVIDFunctionalAnnotationTable-method (subset), 61
summary, 8, 10, 19, 24, 31, 42, 50–52, 57, 62, 62, 67
summary, DAVIDCluster-method (summary), 62
summary, DAVIDGODag-method (summary), 62
summary, DAVIDWebService-method (summary), 62
termCluster1 (geneCluster1), 33
termCluster2 (geneCluster1), 33
terms, 19, 24, 63, 65
terms, DAVIDGODag-method (terms), 65
type, 26, 54, 68