Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-06-21 11:35 -0400 (Fri, 21 Jun 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.4.0 RC (2024-04-16 r86468) -- "Puppy Cup" 4690
lconwaymacOS 12.7.1 Montereyx86_644.4.1 RC (2024-06-06 r86719) -- "Race for Your Life" 4404
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1939/2242HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.15.0  (landing page)
Joshua David Campbell
Snapshot Date: 2024-06-20 14:00 -0400 (Thu, 20 Jun 2024)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 4d7a515
git_last_commit_date: 2024-04-30 11:06:02 -0400 (Tue, 30 Apr 2024)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.15.0
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings singleCellTK_2.15.0.tar.gz
StartedAt: 2024-06-21 03:47:52 -0400 (Fri, 21 Jun 2024)
EndedAt: 2024-06-21 04:02:35 -0400 (Fri, 21 Jun 2024)
EllapsedTime: 882.5 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings singleCellTK_2.15.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.0 RC (2024-04-16 r86468)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
    GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
* running under: Ubuntu 22.04.4 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.15.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) dedupRowNames.Rd:10: Lost braces
    10 | \item{x}{A matrix like or /linkS4class{SingleCellExperiment} object, on which
       |                                       ^
checkRd: (-1) dedupRowNames.Rd:14: Lost braces
    14 | /linkS4class{SingleCellExperiment} object. When set to \code{TRUE}, will
       |             ^
checkRd: (-1) dedupRowNames.Rd:22: Lost braces
    22 | By default, a matrix or /linkS4class{SingleCellExperiment} object
       |                                     ^
checkRd: (-1) dedupRowNames.Rd:24: Lost braces
    24 | When \code{x} is a /linkS4class{SingleCellExperiment} and \code{as.rowData}
       |                                ^
checkRd: (-1) plotBubble.Rd:42: Lost braces
    42 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runClusterSummaryMetrics.Rd:27: Lost braces
    27 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runEmptyDrops.Rd:66: Lost braces
    66 | provided \\linkS4class{SingleCellExperiment} object.
       |                       ^
checkRd: (-1) runSCMerge.Rd:44: Lost braces
    44 | construct pseudo-replicates. The length of code{kmeansK} needs to be the same
       |                                                ^
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 31.946  0.320  32.265
runSeuratSCTransform     28.921  0.688  29.612
runDoubletFinder         28.310  0.152  28.462
plotScDblFinderResults   27.128  0.656  27.782
runScDblFinder           19.412  0.452  19.864
importExampleData        13.855  1.552  15.953
plotBatchCorrCompare     10.941  0.348  11.283
plotScdsHybridResults     9.145  0.140   8.409
plotBcdsResults           7.841  0.276   7.239
runDecontX                7.204  0.116   7.319
plotDecontXResults        6.954  0.168   7.123
runUMAP                   6.386  0.252   6.635
plotEmptyDropsResults     6.537  0.024   6.561
plotEmptyDropsScatter     6.539  0.016   6.555
runEmptyDrops             6.312  0.000   6.313
plotUMAP                  6.263  0.024   6.283
plotCxdsResults           5.972  0.132   6.101
detectCellOutlier         4.878  0.125   5.004
getEnrichRResult          0.520  0.071   5.348
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.4.0 RC (2024-04-16 r86468) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.155   0.037   0.181 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.4.0 RC (2024-04-16 r86468) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
    union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
258.985   8.845 268.841 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.002
SEG0.0000.0020.002
calcEffectSizes0.1460.0030.149
combineSCE1.3300.0291.358
computeZScore0.7860.1120.899
convertSCEToSeurat3.7550.1883.943
convertSeuratToSCE0.4220.0110.435
dedupRowNames0.0380.0150.055
detectCellOutlier4.8780.1255.004
diffAbundanceFET0.0570.0000.057
discreteColorPalette0.0060.0000.006
distinctColors0.0020.0000.002
downSampleCells0.6140.0480.662
downSampleDepth0.4840.0040.488
expData-ANY-character-method0.270.000.27
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3090.0000.308
expData-set0.3000.0040.303
expData0.2850.0200.305
expDataNames-ANY-method0.2410.0120.254
expDataNames0.2590.0040.262
expDeleteDataTag0.0320.0040.036
expSetDataTag0.0240.0000.025
expTaggedData0.0220.0040.026
exportSCE0.0220.0000.022
exportSCEtoAnnData0.0930.0040.096
exportSCEtoFlatFile0.0880.0080.095
featureIndex0.0330.0040.037
generateSimulatedData0.0430.0080.051
getBiomarker0.0540.0040.059
getDEGTopTable0.7770.0120.790
getDiffAbundanceResults0.0520.0000.052
getEnrichRResult0.5200.0715.348
getFindMarkerTopTable3.0950.2683.363
getMSigDBTable0.0030.0000.004
getPathwayResultNames0.0240.0000.024
getSampleSummaryStatsTable0.2680.0360.304
getSoupX000
getTSCANResults1.6370.1321.769
getTopHVG1.1060.0351.141
importAnnData0.0000.0020.002
importBUStools0.2380.0020.240
importCellRanger0.9400.0601.001
importCellRangerV2Sample0.2690.0160.285
importCellRangerV3Sample0.3360.0080.344
importDropEst0.2690.0120.281
importExampleData13.855 1.55215.953
importGeneSetsFromCollection0.6810.0640.746
importGeneSetsFromGMT0.0630.0000.063
importGeneSetsFromList0.0990.0200.119
importGeneSetsFromMSigDB3.5990.2923.891
importMitoGeneSet0.0460.0070.054
importOptimus0.0010.0000.002
importSEQC0.2420.0080.251
importSTARsolo0.2490.0200.269
iterateSimulations0.3590.0120.371
listSampleSummaryStatsTables0.3500.0080.358
mergeSCEColData0.4330.0080.442
mouseBrainSubsetSCE0.0380.0000.038
msigdb_table0.0020.0000.001
plotBarcodeRankDropsResults0.7990.0400.839
plotBarcodeRankScatter0.7770.0280.806
plotBatchCorrCompare10.941 0.34811.283
plotBatchVariance0.3000.0120.312
plotBcdsResults7.8410.2767.239
plotBubble0.8520.0360.888
plotClusterAbundance0.8400.0080.848
plotCxdsResults5.9720.1326.101
plotDEGHeatmap2.7690.0762.845
plotDEGRegression3.3570.1123.462
plotDEGViolin4.1590.0924.245
plotDEGVolcano0.8970.0040.901
plotDecontXResults6.9540.1687.123
plotDimRed0.2520.0000.253
plotDoubletFinderResults31.946 0.32032.265
plotEmptyDropsResults6.5370.0246.561
plotEmptyDropsScatter6.5390.0166.555
plotFindMarkerHeatmap4.0000.0644.065
plotMASTThresholdGenes1.4690.0081.477
plotPCA0.4310.0040.435
plotPathway0.7630.0000.764
plotRunPerCellQCResults1.9670.0161.983
plotSCEBarAssayData0.1760.0000.175
plotSCEBarColData0.130.000.13
plotSCEBatchFeatureMean0.1920.0000.192
plotSCEDensity0.1960.0000.197
plotSCEDensityAssayData0.1510.0040.155
plotSCEDensityColData0.2250.0000.225
plotSCEDimReduceColData0.6270.0040.631
plotSCEDimReduceFeatures0.360.000.36
plotSCEHeatmap0.5630.0040.566
plotSCEScatter0.3150.0080.323
plotSCEViolin0.2550.0120.268
plotSCEViolinAssayData0.230.000.23
plotSCEViolinColData0.2110.0040.214
plotScDblFinderResults27.128 0.65627.782
plotScanpyDotPlot0.0250.0000.024
plotScanpyEmbedding0.0240.0000.024
plotScanpyHVG0.0230.0000.023
plotScanpyHeatmap0.0230.0000.023
plotScanpyMarkerGenes0.0230.0000.023
plotScanpyMarkerGenesDotPlot0.0230.0000.022
plotScanpyMarkerGenesHeatmap0.0250.0000.024
plotScanpyMarkerGenesMatrixPlot0.0240.0000.023
plotScanpyMarkerGenesViolin0.0230.0000.023
plotScanpyMatrixPlot0.0230.0000.023
plotScanpyPCA0.0230.0000.023
plotScanpyPCAGeneRanking0.0250.0000.025
plotScanpyPCAVariance0.0220.0000.023
plotScanpyViolin0.0240.0000.024
plotScdsHybridResults9.1450.1408.409
plotScrubletResults0.0230.0000.023
plotSeuratElbow0.0230.0000.022
plotSeuratHVG0.0220.0000.022
plotSeuratJackStraw0.0230.0000.023
plotSeuratReduction0.0220.0000.023
plotSoupXResults000
plotTSCANClusterDEG4.580.024.60
plotTSCANClusterPseudo1.9780.0081.986
plotTSCANDimReduceFeatures1.9890.0081.996
plotTSCANPseudotimeGenes1.9160.0081.924
plotTSCANPseudotimeHeatmap2.0230.0162.038
plotTSCANResults1.8430.0441.887
plotTSNE0.4510.0000.451
plotTopHVG0.4880.0040.492
plotUMAP6.2630.0246.283
readSingleCellMatrix0.0050.0000.005
reportCellQC0.1560.0000.157
reportDropletQC0.0240.0000.023
reportQCTool0.1620.0000.161
retrieveSCEIndex0.0290.0000.029
runBBKNN000
runBarcodeRankDrops0.3720.0000.372
runBcds2.3850.0361.481
runCellQC0.1610.0120.172
runClusterSummaryMetrics0.6410.0080.648
runComBatSeq0.4150.0040.420
runCxds0.4390.0000.439
runCxdsBcdsHybrid2.3740.0041.464
runDEAnalysis0.630.000.63
runDecontX7.2040.1167.319
runDimReduce0.4370.0040.442
runDoubletFinder28.310 0.15228.462
runDropletQC0.0230.0000.024
runEmptyDrops6.3120.0006.313
runEnrichR0.4870.0121.920
runFastMNN1.7190.1041.823
runFeatureSelection0.2180.0120.230
runFindMarker3.3470.3523.700
runGSVA0.9090.1111.019
runHarmony0.0320.0040.036
runKMeans0.4040.0360.440
runLimmaBC0.0720.0080.080
runMNNCorrect0.4910.0480.539
runModelGeneVar0.4330.0320.465
runNormalization2.3580.3722.730
runPerCellQC0.4550.0080.462
runSCANORAMA0.0010.0000.000
runSCMerge0.0040.0000.004
runScDblFinder19.412 0.45219.864
runScanpyFindClusters0.0220.0030.025
runScanpyFindHVG0.0230.0000.024
runScanpyFindMarkers0.0230.0000.024
runScanpyNormalizeData0.1740.0160.190
runScanpyPCA0.0230.0000.023
runScanpyScaleData0.0230.0000.022
runScanpyTSNE0.0220.0000.022
runScanpyUMAP0.0220.0000.022
runScranSNN0.6530.0840.737
runScrublet0.0240.0000.023
runSeuratFindClusters0.0200.0040.024
runSeuratFindHVG0.7650.0600.825
runSeuratHeatmap0.0230.0000.023
runSeuratICA0.0220.0000.023
runSeuratJackStraw0.0230.0000.023
runSeuratNormalizeData0.0230.0000.023
runSeuratPCA0.0230.0000.022
runSeuratSCTransform28.921 0.68829.612
runSeuratScaleData0.0250.0000.025
runSeuratUMAP0.0230.0000.023
runSingleR0.0330.0000.033
runSoupX000
runTSCAN1.3210.0041.325
runTSCANClusterDEAnalysis1.4250.0361.462
runTSCANDEG1.3750.0041.379
runTSNE0.8400.0360.875
runUMAP6.3860.2526.635
runVAM0.4750.0000.475
runZINBWaVE0.0040.0000.005
sampleSummaryStats0.2640.0000.265
scaterCPM0.1310.0040.135
scaterPCA0.6070.0000.606
scaterlogNormCounts0.2350.0110.247
sce0.0230.0000.023
sctkListGeneSetCollections0.0660.0040.072
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0790.0000.079
setSCTKDisplayRow0.4110.0040.415
singleCellTK0.0010.0000.001
subDiffEx0.4730.0000.473
subsetSCECols0.1570.0040.161
subsetSCERows0.3610.0040.365
summarizeSCE0.0630.0000.063
trimCounts0.1940.0040.198