Back to Multiple platform build/check report for BioC 3.14
[A]BCDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2021-10-20 12:05:00 -0400 (Wed, 20 Oct 2021).

CHECK results for aroma.light on riesling1

To the developers/maintainers of the aroma.light package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/aroma.light.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 77/2072HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
aroma.light 3.23.1  (landing page)
Henrik Bengtsson
Snapshot Date: 2021-10-19 14:50:04 -0400 (Tue, 19 Oct 2021)
git_url: https://git.bioconductor.org/packages/aroma.light
git_branch: master
git_last_commit: 1b3dc46
git_last_commit_date: 2021-08-19 07:30:58 -0400 (Thu, 19 Aug 2021)
nebbiolo2Linux (Ubuntu 20.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
riesling1Windows Server 2019 Standard / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: aroma.light
Version: 3.23.1
Command: D:\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:aroma.light.install-out.txt --library=D:\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings aroma.light_3.23.1.tar.gz
StartedAt: 2021-10-20 00:11:11 -0400 (Wed, 20 Oct 2021)
EndedAt: 2021-10-20 00:15:51 -0400 (Wed, 20 Oct 2021)
EllapsedTime: 279.9 seconds
RetCode: 0
Status:   OK  
CheckDir: aroma.light.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   D:\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:aroma.light.install-out.txt --library=D:\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings aroma.light_3.23.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'D:/biocbuild/bbs-3.14-bioc/meat/aroma.light.Rcheck'
* using R version 4.1.1 (2021-08-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'aroma.light/DESCRIPTION' ... OK
* this is package 'aroma.light' version '3.23.1'
* package encoding: latin1
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... NOTE
Found the following hidden files and directories:
  inst/rsp/.rspPlugins
These were most likely included in error. See section 'Package
structure' in the 'Writing R Extensions' manual.
* checking for portable file names ... OK
* checking whether package 'aroma.light' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
** running examples for arch 'x64' ... OK
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'backtransformAffine.matrix.R'
  Running 'backtransformPrincipalCurve.matrix.R'
  Running 'callNaiveGenotypes.R'
  Running 'distanceBetweenLines.R'
  Running 'findPeaksAndValleys.R'
  Running 'fitPrincipalCurve.matrix.R'
  Running 'fitXYCurve.matrix.R'
  Running 'iwpca.matrix.R'
  Running 'likelihood.smooth.spline.R'
  Running 'medianPolish.matrix.R'
  Running 'normalizeAffine.matrix.R'
  Running 'normalizeAverage.list.R'
  Running 'normalizeAverage.matrix.R'
  Running 'normalizeCurveFit.matrix.R'
  Running 'normalizeDifferencesToAverage.R'
  Running 'normalizeFragmentLength-ex1.R'
  Running 'normalizeFragmentLength-ex2.R'
  Running 'normalizeQuantileRank.list.R'
  Running 'normalizeQuantileRank.matrix.R'
  Running 'normalizeQuantileSpline.matrix.R'
  Running 'normalizeTumorBoost,flavors.R'
  Running 'normalizeTumorBoost.R'
  Running 'robustSmoothSpline.R'
  Running 'rowAverages.matrix.R'
  Running 'sampleCorrelations.matrix.R'
  Running 'sampleTuples.R'
  Running 'wpca.matrix.R'
  Running 'wpca2.matrix.R'
 OK
** running tests for arch 'x64' ...
  Running 'backtransformAffine.matrix.R'
  Running 'backtransformPrincipalCurve.matrix.R'
  Running 'callNaiveGenotypes.R'
  Running 'distanceBetweenLines.R'
  Running 'findPeaksAndValleys.R'
  Running 'fitPrincipalCurve.matrix.R'
  Running 'fitXYCurve.matrix.R'
  Running 'iwpca.matrix.R'
  Running 'likelihood.smooth.spline.R'
  Running 'medianPolish.matrix.R'
  Running 'normalizeAffine.matrix.R'
  Running 'normalizeAverage.list.R'
  Running 'normalizeAverage.matrix.R'
  Running 'normalizeCurveFit.matrix.R'
  Running 'normalizeDifferencesToAverage.R'
  Running 'normalizeFragmentLength-ex1.R'
  Running 'normalizeFragmentLength-ex2.R'
  Running 'normalizeQuantileRank.list.R'
  Running 'normalizeQuantileRank.matrix.R'
  Running 'normalizeQuantileSpline.matrix.R'
  Running 'normalizeTumorBoost,flavors.R'
  Running 'normalizeTumorBoost.R'
  Running 'robustSmoothSpline.R'
  Running 'rowAverages.matrix.R'
  Running 'sampleCorrelations.matrix.R'
  Running 'sampleTuples.R'
  Running 'wpca.matrix.R'
  Running 'wpca2.matrix.R'
 OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'D:/biocbuild/bbs-3.14-bioc/meat/aroma.light.Rcheck/00check.log'
for details.



Installation output

aroma.light.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O http://155.52.207.166/BBS/3.14/bioc/src/contrib/aroma.light_3.23.1.tar.gz && rm -rf aroma.light.buildbin-libdir && mkdir aroma.light.buildbin-libdir && D:\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=aroma.light.buildbin-libdir aroma.light_3.23.1.tar.gz && D:\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL aroma.light_3.23.1.zip && rm aroma.light_3.23.1.tar.gz aroma.light_3.23.1.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100  409k  100  409k    0     0  1115k      0 --:--:-- --:--:-- --:--:-- 1118k

install for i386

* installing *source* package 'aroma.light' ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'aroma.light'
    finding HTML links ... done
    1._Calibration_and_Normalization        html  
    Non-documented_objects                  html  
    aroma.light-package                     html  
    averageQuantile                         html  
    backtransformAffine                     html  
    backtransformPrincipalCurve             html  
    calibrateMultiscan                      html  
    callNaiveGenotypes                      html  
    distanceBetweenLines                    html  
    findPeaksAndValleys                     html  
    fitIWPCA                                html  
    fitNaiveGenotypes                       html  
    fitPrincipalCurve                       html  
    fitXYCurve                              html  
    iwpca                                   html  
    likelihood.smooth.spline                html  
    medianPolish                            html  
    normalizeAffine                         html  
    normalizeAverage                        html  
    normalizeCurveFit                       html  
    normalizeDifferencesToAverage           html  
    normalizeFragmentLength                 html  
    normalizeQuantileRank                   html  
    normalizeQuantileRank.matrix            html  
    normalizeQuantileSpline                 html  
    normalizeTumorBoost                     html  
    pairedAlleleSpecificCopyNumbers         html  
    plotDensity                             html  
    plotMvsA                                html  
    plotMvsAPairs                           html  
    plotMvsMPairs                           html  
    plotXYCurve                             html  
    print.SmoothSplineLikelihood            html  
    robustSmoothSpline                      html  
    sampleCorrelations                      html  
    sampleTuples                            html  
    wpca                                    html  
** building package indices
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'aroma.light' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'aroma.light' as aroma.light_3.23.1.zip
* DONE (aroma.light)
* installing to library 'D:/biocbuild/bbs-3.14-bioc/R/library'
package 'aroma.light' successfully unpacked and MD5 sums checked

Tests output

aroma.light.Rcheck/tests_i386/backtransformAffine.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
> 
> print(X)
     [,1] [,2]
[1,]    1    5
[2,]    2   NA
[3,]    3    7
[4,]    4    8
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
     [,1] [,2]
[1,]    0    0
[2,]    1   NA
[3,]    2    2
[4,]    3    3
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
     [,1] [,2]
[1,]    1   10
[2,]    2   NA
[3,]    3   14
[4,]    4   16
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
     [,1] [,2]
[1,]    0    4
[2,]    0   NA
[3,]    0    4
[4,]    0    4
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
     [,1] [,2]
[1,]    0    4
[2,]    0   NA
[3,]    0    4
[4,]    3    7
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
     [,1] [,2]
[1,]    0    2
[2,]    0   NA
[3,]    2    3
[4,]    2    3
> 
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
     [,1]
[1,]  2.8
[2,]  1.6
[3,]  5.2
[4,]  6.4
> 
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    2    2    2
[3,]    3    3    3
[4,]    4    4    4
> print(Y)
     [,1]
[1,]    1
[2,]    2
[3,]    3
[4,]    4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
> 
> 
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    2    4    6
[3,]    3    6    9
[4,]    4    8   12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    2    2    2
[3,]    3    3    3
[4,]    4    4    4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
     [,1]
[1,]    1
[2,]    2
[3,]    3
[4,]    4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
> 
> proc.time()
   user  system elapsed 
   0.17    0.03    0.18 

aroma.light.Rcheck/tests_x64/backtransformAffine.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
> 
> print(X)
     [,1] [,2]
[1,]    1    5
[2,]    2   NA
[3,]    3    7
[4,]    4    8
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
     [,1] [,2]
[1,]    0    0
[2,]    1   NA
[3,]    2    2
[4,]    3    3
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
     [,1] [,2]
[1,]    1   10
[2,]    2   NA
[3,]    3   14
[4,]    4   16
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
     [,1] [,2]
[1,]    0    4
[2,]    0   NA
[3,]    0    4
[4,]    0    4
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
     [,1] [,2]
[1,]    0    4
[2,]    0   NA
[3,]    0    4
[4,]    3    7
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
     [,1] [,2]
[1,]    0    2
[2,]    0   NA
[3,]    2    3
[4,]    2    3
> 
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
     [,1]
[1,]  2.8
[2,]  1.6
[3,]  5.2
[4,]  6.4
> 
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    2    2    2
[3,]    3    3    3
[4,]    4    4    4
> print(Y)
     [,1]
[1,]    1
[2,]    2
[3,]    3
[4,]    4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
> 
> 
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    2    4    6
[3,]    3    6    9
[4,]    4    8   12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    2    2    2
[3,]    3    3    3
[4,]    4    4    4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
     [,1]
[1,]    1
[2,]    2
[3,]    3
[4,]    4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
> 
> proc.time()
   user  system elapsed 
   0.17    0.03    0.18 

aroma.light.Rcheck/tests_i386/backtransformPrincipalCurve.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'.  The different measurements
> # have different systematic variation
> #
> #   y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> #   f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
> 
> # Transforms
> a <- c(2, 15, 15,   3)
> b <- c(2,  3,  3,   4)
> c <- c(1,  2,  2, 1/2)
> K <- length(a)
> 
> # The true signal
> N <- 1000
> x <- rexp(N)
> 
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
> 
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
> 
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
> 
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+   fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
> 
> L <- ncol(fit$s)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
> 
> 
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
> 
> 
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
> 
> 
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+   YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+                                   targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
> 
> 
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+                                targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
> 
> 
> # Extract signals from measurement #2 and backtransform according
> # its model fit.  Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+                                                targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
> 
> 
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+                                                targetDimension=1)
> stopifnot(ncol(yN7) == 1)
> 
> rho <- cor(yN7, yN6)
> print(rho)
          [,1]
[1,] 0.9999877
> stopifnot(rho > 0.999)
> 
> proc.time()
   user  system elapsed 
   0.53    0.04    0.56 

aroma.light.Rcheck/tests_x64/backtransformPrincipalCurve.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'.  The different measurements
> # have different systematic variation
> #
> #   y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> #   f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
> 
> # Transforms
> a <- c(2, 15, 15,   3)
> b <- c(2,  3,  3,   4)
> c <- c(1,  2,  2, 1/2)
> K <- length(a)
> 
> # The true signal
> N <- 1000
> x <- rexp(N)
> 
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
> 
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
> 
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
> 
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+   fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
> 
> L <- ncol(fit$s)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
> 
> 
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
> 
> 
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
> 
> 
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+   YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+                                   targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
> 
> 
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+                                targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
> 
> 
> # Extract signals from measurement #2 and backtransform according
> # its model fit.  Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+                                                targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
> 
> 
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+                                                targetDimension=1)
> stopifnot(ncol(yN7) == 1)
> 
> rho <- cor(yN7, yN6)
> print(rho)
          [,1]
[1,] 0.9999853
> stopifnot(rho > 0.999)
> 
> proc.time()
   user  system elapsed 
   0.46    0.06    0.51 

aroma.light.Rcheck/tests_i386/callNaiveGenotypes.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x      density
1   peak -0.005953693 1.6773199323
2 valley  0.500622544 0.0006212268
3   peak  0.994639039 1.7015926234
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
 Fitting naive genotype model...
  Fitting naive genotype model from normal allele B fractions (BAFs)...
   Flavor: density
   Censoring BAFs...
    Before:
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
    -0.393394 -0.001964  0.467232  0.499418  0.999487  1.365333 
    [1] 20000
    After:
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
         -Inf -0.001964  0.467232            0.999487       Inf 
    [1] 16771
   Censoring BAFs...done
   Copy number level #1 (C=1) of 1...
    Identified extreme points in density of BAF:
        type          x     density
    1   peak 0.01093679 1.629615238
    2 valley 0.49826025 0.004108202
    3   peak 0.97871999 1.651731994
    Local minimas ("valleys") in BAF:
        type         x     density
    2 valley 0.4982602 0.004108202
   Copy number level #1 (C=1) of 1...done
  Fitting naive genotype model from normal allele B fractions (BAFs)...done
  [[1]]
  [[1]]$flavor
  [1] "density"
  
  [[1]]$cn
  [1] 1
  
  [[1]]$nbrOfGenotypeGroups
  [1] 2
  
  [[1]]$tau
  [1] 0.4982602
  
  [[1]]$n
  [1] 16771
  
  [[1]]$fit
      type          x     density
  1   peak 0.01093679 1.629615238
  2 valley 0.49826025 0.004108202
  3   peak 0.97871999 1.651731994
  
  [[1]]$fitValleys
      type         x     density
  2 valley 0.4982602 0.004108202
  
  
  attr(,"class")
  [1] "NaiveGenotypeModelFit" "list"                 
 Fitting naive genotype model...done
 Copy number level #1 (C=1) of 1...
  Model fit:
  $flavor
  [1] "density"
  
  $cn
  [1] 1
  
  $nbrOfGenotypeGroups
  [1] 2
  
  $tau
  [1] 0.4982602
  
  $n
  [1] 16771
  
  $fit
      type          x     density
  1   peak 0.01093679 1.629615238
  2 valley 0.49826025 0.004108202
  3   peak 0.97871999 1.651731994
  
  $fitValleys
      type         x     density
  2 valley 0.4982602 0.004108202
  
  Genotype threshholds [1]: 0.498260248088216
  TCN=1 => BAF in {0,1}.
  Call regions: A = (-Inf,0.498], B = (0.498,+Inf)
 Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
    0     1 
10000 10000 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x   density
1   peak -0.005954513 1.1639129
2 valley  0.247034986 0.1884324
3   peak  0.496008778 1.1823780
4 valley  0.748998276 0.1895895
5   peak  0.993956362 1.1879792
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
   0  0.5    1 
9561 9329 9642 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type           x      density
1   peak -0.00231609 2.606824e+00
2 valley  0.24729466 3.242266e-05
3   peak  0.49690542 2.605283e+00
4 valley  0.74651617 3.361790e-05
5   peak  0.99612692 2.600536e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
    0   0.5     1 
10000 10000 10000 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
> 
> proc.time()
   user  system elapsed 
   0.40    0.03    0.43 

aroma.light.Rcheck/tests_x64/callNaiveGenotypes.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x      density
1   peak -0.009440283 1.6891331564
2 valley  0.496053969 0.0004285488
3   peak  0.992832804 1.6770918589
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
 Fitting naive genotype model...
  Fitting naive genotype model from normal allele B fractions (BAFs)...
   Flavor: density
   Censoring BAFs...
    Before:
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
    -0.425285 -0.001595  0.528658  0.498523  0.997575  1.421751 
    [1] 20000
    After:
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
         -Inf -0.001595  0.528658            0.997575       Inf 
    [1] 16890
   Censoring BAFs...done
   Copy number level #1 (C=1) of 1...
    Identified extreme points in density of BAF:
        type          x     density
    1   peak 0.01124382 1.628920570
    2 valley 0.49485795 0.003975715
    3   peak 0.97847208 1.637678359
    Local minimas ("valleys") in BAF:
        type         x     density
    2 valley 0.4948579 0.003975715
   Copy number level #1 (C=1) of 1...done
  Fitting naive genotype model from normal allele B fractions (BAFs)...done
  [[1]]
  [[1]]$flavor
  [1] "density"
  
  [[1]]$cn
  [1] 1
  
  [[1]]$nbrOfGenotypeGroups
  [1] 2
  
  [[1]]$tau
  [1] 0.4948579
  
  [[1]]$n
  [1] 16890
  
  [[1]]$fit
      type          x     density
  1   peak 0.01124382 1.628920570
  2 valley 0.49485795 0.003975715
  3   peak 0.97847208 1.637678359
  
  [[1]]$fitValleys
      type         x     density
  2 valley 0.4948579 0.003975715
  
  
  attr(,"class")
  [1] "NaiveGenotypeModelFit" "list"                 
 Fitting naive genotype model...done
 Copy number level #1 (C=1) of 1...
  Model fit:
  $flavor
  [1] "density"
  
  $cn
  [1] 1
  
  $nbrOfGenotypeGroups
  [1] 2
  
  $tau
  [1] 0.4948579
  
  $n
  [1] 16890
  
  $fit
      type          x     density
  1   peak 0.01124382 1.628920570
  2 valley 0.49485795 0.003975715
  3   peak 0.97847208 1.637678359
  
  $fitValleys
      type         x     density
  2 valley 0.4948579 0.003975715
  
  Genotype threshholds [1]: 0.494857945842394
  TCN=1 => BAF in {0,1}.
  Call regions: A = (-Inf,0.495], B = (0.495,+Inf)
 Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
    0     1 
10000 10000 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x   density
1   peak -0.006346978 1.1714749
2 valley  0.244896077 0.1901294
3   peak  0.496139132 1.1562285
4 valley  0.743194802 0.1933033
5   peak  0.994437857 1.1589722
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
   0  0.5    1 
9542 9331 9659 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x      density
1   peak -0.001641533 2.609546e+00
2 valley  0.246623133 3.202647e-05
3   peak  0.497677291 2.610705e+00
4 valley  0.748731448 3.045171e-05
5   peak  0.996996115 2.602768e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
    0   0.5     1 
10000 10000 10000 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
> 
> proc.time()
   user  system elapsed 
   0.40    0.04    0.43 

aroma.light.Rcheck/tests_i386/distanceBetweenLines.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+ 
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+ 
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+ 
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+ 
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+ 
+ lines(xv, col="red")
+ lines(yv, col="blue")
+ 
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+ 
+ 
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1))  # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3))  # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+ 
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+ 
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+ 
+ for (theta in seq(30,140,length.out=3)) {
+   plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+                              xlim=ylim, ylim=ylim, zlim=zlim)
+ 
+   # Highlight the offset coordinates for both lines
+   points3d(t(x$a), pch="+", col="red")
+   text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+   points3d(t(y$a), pch="+", col="blue")
+   text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+ 
+   # Draw the lines
+   lines3d(xv, col="red")
+   lines3d(yv, col="blue")
+ 
+   # Draw the two points that are closest to each other
+   points3d(t(fit$xs), cex=2.0, col="red")
+   text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+   points3d(t(fit$yt), cex=1.5, col="blue")
+   text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ 
+   # Draw the distance between the two points
+   lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+ 
+ print(fit)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
   0.21    0.06    0.26 

aroma.light.Rcheck/tests_x64/distanceBetweenLines.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+ 
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+ 
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+ 
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+ 
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+ 
+ lines(xv, col="red")
+ lines(yv, col="blue")
+ 
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+ 
+ 
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1))  # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3))  # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+ 
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+ 
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+ 
+ for (theta in seq(30,140,length.out=3)) {
+   plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+                              xlim=ylim, ylim=ylim, zlim=zlim)
+ 
+   # Highlight the offset coordinates for both lines
+   points3d(t(x$a), pch="+", col="red")
+   text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+   points3d(t(y$a), pch="+", col="blue")
+   text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+ 
+   # Draw the lines
+   lines3d(xv, col="red")
+   lines3d(yv, col="blue")
+ 
+   # Draw the two points that are closest to each other
+   points3d(t(fit$xs), cex=2.0, col="red")
+   text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+   points3d(t(fit$yt), cex=1.5, col="blue")
+   text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ 
+   # Draw the distance between the two points
+   lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+ 
+ print(fit)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
   0.23    0.07    0.26 

aroma.light.Rcheck/tests_i386/findPeaksAndValleys.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
    type           x      density
1   peak -3.73466158 0.0010972538
2 valley -3.39856600 0.0007431877
3   peak -0.17204838 0.3904786698
4 valley -0.07121970 0.3901570616
5   peak  0.09682809 0.3914488712
6 valley  3.74346519 0.0002571131
7   peak  3.87790342 0.0002863551
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type           x    density
1   peak -0.02115115 0.12419814
2 valley  1.98529423 0.04306911
3   peak  3.99173961 0.12452254
4 valley  5.96235561 0.04256354
5   peak  7.96880099 0.12590731
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
> 
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
    type          x      density
1   peak -0.0152347 3.427053e-01
2 valley  1.9718436 1.238353e-06
3   peak  3.9805205 3.425602e-01
4 valley  5.9891975 1.163892e-06
5   peak  7.9762758 3.423711e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
> 
> proc.time()
   user  system elapsed 
   0.23    0.03    0.25 

aroma.light.Rcheck/tests_x64/findPeaksAndValleys.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
  type           x   density
1 peak -0.08548551 0.4077802
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type           x    density
1   peak -0.06331476 0.12532037
2 valley  1.94688293 0.04485589
3   peak  3.99234724 0.12329973
4 valley  5.96727830 0.04281351
5   peak  7.94220936 0.12430889
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
> 
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
    type           x      density
1   peak -0.02187893 3.421491e-01
2 valley  1.98490012 1.212088e-06
3   peak  3.97010089 3.419298e-01
4 valley  5.97687994 1.260160e-06
5   peak  7.98365898 3.427871e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
> 
> proc.time()
   user  system elapsed 
   0.18    0.10    0.25 

aroma.light.Rcheck/tests_i386/fitPrincipalCurve.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
> 
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
 Data size: 1000x3
 Identifying missing values...
 Identifying missing values...done
 Data size after removing non-finite data points: 1000x3
 Calling principal_curve()...
Starting curve---distance^2: 2186106
Iteration 1---distance^2: 417.8364
Iteration 2---distance^2: 417.0513
Iteration 3---distance^2: 417.0509
  Converged: TRUE
  Number of iterations: 3
  Processing time/iteration: 0.1s (0.0s/iteration)
 Calling principal_curve()...done
Fitting principal curve...done
> 
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+   fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
> 
> 
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
> 
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+   yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
> 
> 
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
> 
> 
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+   ylab <- substitute(y[c], env=list(c=cc))
+   plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+   abline(h=a[cc], lty=3)
+   mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+         cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+   points(x, y[,cc])
+   points(x, yN[,cc], col="tomato")
+   legend("topleft", col=c("black", "tomato"), pch=19,
+                     c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
> 
> 
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+   ylab <- substitute(y[c], env=list(c=rr))
+   for (cc in 1:2) {
+     if (cc == rr) {
+       plot.new()
+       next
+     }
+     xlab <- substitute(y[c], env=list(c=cc))
+     plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+     abline(a=0, b=1, lty=2)
+     points(y[,c(cc,rr)])
+     points(yN[,c(cc,rr)], col="tomato")
+     legend("topleft", col=c("black", "tomato"), pch=19,
+                       c("orignal", "transformed"), bty="n")
+   }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
> 
> proc.time()
   user  system elapsed 
   0.84    0.00    0.82 

aroma.light.Rcheck/tests_x64/fitPrincipalCurve.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
> 
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
 Data size: 1000x3
 Identifying missing values...
 Identifying missing values...done
 Data size after removing non-finite data points: 1000x3
 Calling principal_curve()...
Starting curve---distance^2: 1503169
Iteration 1---distance^2: 405.3827
Iteration 2---distance^2: 404.9544
Iteration 3---distance^2: 404.9576
  Converged: TRUE
  Number of iterations: 3
  Processing time/iteration: 0.1s (0.0s/iteration)
 Calling principal_curve()...done
Fitting principal curve...done
> 
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+   fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
> 
> 
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
> 
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+   yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
> 
> 
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
> 
> 
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+   ylab <- substitute(y[c], env=list(c=cc))
+   plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+   abline(h=a[cc], lty=3)
+   mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+         cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+   points(x, y[,cc])
+   points(x, yN[,cc], col="tomato")
+   legend("topleft", col=c("black", "tomato"), pch=19,
+                     c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
> 
> 
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+   ylab <- substitute(y[c], env=list(c=rr))
+   for (cc in 1:2) {
+     if (cc == rr) {
+       plot.new()
+       next
+     }
+     xlab <- substitute(y[c], env=list(c=cc))
+     plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+     abline(a=0, b=1, lty=2)
+     points(y[,c(cc,rr)])
+     points(yN[,c(cc,rr)], col="tomato")
+     legend("topleft", col=c("black", "tomato"), pch=19,
+                       c("orignal", "transformed"), bty="n")
+   }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
> 
> proc.time()
   user  system elapsed 
   0.75    0.03    0.79 

aroma.light.Rcheck/tests_i386/fitXYCurve.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
> 
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
> 
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
> 
> lines(fit, col="red", lwd=2)
> 
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
> 
> proc.time()
   user  system elapsed 
   0.28    0.03    0.31 

aroma.light.Rcheck/tests_x64/fitXYCurve.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
> 
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
> 
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
> 
> lines(fit, col="red", lwd=2)
> 
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
> 
> proc.time()
   user  system elapsed 
   0.23    0.06    0.28 

aroma.light.Rcheck/tests_i386/iwpca.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+ 
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+ 
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+   # Plot the data
+   persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+ 
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+ 
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+   # Fit a line using IWPCA through data
+   fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+ 
+   ymid <- fit$xMean
+   d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+   d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+   b <- fit$vt[1,]
+   y0 <- -b * max(abs(d0))
+   y1 <-  b * max(abs(d1))
+   yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+   yline <- yline + ymid
+ 
+   for (kk in seq_along(theta)) {
+     # Set pane to draw in
+     par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+     # Set the viewpoint of the pane
+     options(persp.matrix=persp[[kk]])
+ 
+     # Get the first principal component
+     points3d(t(ymid), col=col[ii])
+     lines3d(t(yline), col=col[ii])
+ 
+     # Highlight the last one
+     if (ii == length(maxIter))
+       lines3d(t(yline), col="red", lwd=3)
+   }
+ }
+ 
+ par(opar)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
   0.18    0.06    0.23 

aroma.light.Rcheck/tests_x64/iwpca.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+ 
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+ 
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+   # Plot the data
+   persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+ 
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+ 
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+   # Fit a line using IWPCA through data
+   fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+ 
+   ymid <- fit$xMean
+   d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+   d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+   b <- fit$vt[1,]
+   y0 <- -b * max(abs(d0))
+   y1 <-  b * max(abs(d1))
+   yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+   yline <- yline + ymid
+ 
+   for (kk in seq_along(theta)) {
+     # Set pane to draw in
+     par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+     # Set the viewpoint of the pane
+     options(persp.matrix=persp[[kk]])
+ 
+     # Get the first principal component
+     points3d(t(ymid), col=col[ii])
+     lines3d(t(yline), col=col[ii])
+ 
+     # Highlight the last one
+     if (ii == length(maxIter))
+       lines3d(t(yline), col="red", lwd=3)
+   }
+ }
+ 
+ par(opar)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
   0.18    0.06    0.25 

aroma.light.Rcheck/tests_i386/likelihood.smooth.spline.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
> 
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
> 
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
> 
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
> 
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
> 
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
> 
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -306776.5 
 Log base: 2.718282 
 Weighted residuals sum of square: 306776.6 
 Penalty: -0.1251556 
 Smoothing parameter lambda: 0.0009257147 
 Roughness score: 135.1989 
> 
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1]  # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
> 
> cat("\nLog likelihood of the *spline* data set:\n")

Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -306388.1 
 Log base: 2.718282 
 Weighted residuals sum of square: 306388.2 
 Penalty: -0.1251499 
 Smoothing parameter lambda: 0.0009261969 
 Roughness score: 135.1224 
> 
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")

Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -306778.9 
 Log base: 2.718282 
 Weighted residuals sum of square: 306779 
 Penalty: -0.1251499 
 Smoothing parameter lambda: 0.0009261969 
 Roughness score: 135.1224 
> 
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
   0.26    0.03    0.28 

aroma.light.Rcheck/tests_x64/likelihood.smooth.spline.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
> 
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
> 
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
> 
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
> 
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
> 
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
> 
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -299959.7 
 Log base: 2.718282 
 Weighted residuals sum of square: 299959.8 
 Penalty: -0.1172191 
 Smoothing parameter lambda: 0.0009257147 
 Roughness score: 126.6256 
> 
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1]  # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
> 
> cat("\nLog likelihood of the *spline* data set:\n")

Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -299633.8 
 Log base: 2.718282 
 Weighted residuals sum of square: 299633.9 
 Penalty: -0.117229 
 Smoothing parameter lambda: 0.0009261969 
 Roughness score: 126.5702 
> 
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")

Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -299960.9 
 Log base: 2.718282 
 Weighted residuals sum of square: 299961 
 Penalty: -0.1172292 
 Smoothing parameter lambda: 0.0009261969 
 Roughness score: 126.5705 
> 
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
   0.28    0.01    0.29 

aroma.light.Rcheck/tests_i386/medianPolish.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Deaths from sport parachuting;  from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
> 
> print(deaths)
       1973 1974 1975
1-24     14   15   14
25-74     7    4    7
75-199    8    2   10
200++    15    9   10
NA        0    2    0
> 
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)

Median Polish Results (Dataset: "deaths")

Overall: 8

Row Effects:
  1-24  25-74 75-199  200++     NA 
     6     -1      0      2     -8 

Column Effects:
1973 1974 1975 
   0   -1    0 

Residuals:
       1973 1974 1975
1-24      0    2    0
25-74     0   -2    0
75-199    0   -5    2
200++     5    0    0
NA        0    3    0

> 
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
> 
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
> 
> proc.time()
   user  system elapsed 
   0.18    0.01    0.20 

aroma.light.Rcheck/tests_x64/medianPolish.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Deaths from sport parachuting;  from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
> 
> print(deaths)
       1973 1974 1975
1-24     14   15   14
25-74     7    4    7
75-199    8    2   10
200++    15    9   10
NA        0    2    0
> 
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)

Median Polish Results (Dataset: "deaths")

Overall: 8

Row Effects:
  1-24  25-74 75-199  200++     NA 
     6     -1      0      2     -8 

Column Effects:
1973 1974 1975 
   0   -1    0 

Residuals:
       1973 1974 1975
1-24      0    2    0
25-74     0   -2    0
75-199    0   -5    2
200++     5    0    0
NA        0    3    0

> 
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
> 
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
> 
> proc.time()
   user  system elapsed 
   0.14    0.06    0.18 

aroma.light.Rcheck/tests_i386/normalizeAffine.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
> 
> rg <- as.list(rg)
> for (field in c("R", "G"))
+   rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
> 
> rgC <- rg
> 
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
> 
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   channelColor <- switch(channel, R="red", G="green")
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The raw data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   plotMvsAPairs(rg, channel=channel)
+   title(main=paste("Observed", channel))
+   box(col=channelColor)
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The calibrated data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+ 
+   plotMvsAPairs(rgC, channel=channel)
+   title(main=paste("Calibrated", channel))
+   box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
> 
> plotMvsA(rgCA)
> title(main="Average calibrated")
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
> 
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
> 
> 
> 
> proc.time()
   user  system elapsed 
   2.04    0.07    2.11 

aroma.light.Rcheck/tests_x64/normalizeAffine.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
> 
> rg <- as.list(rg)
> for (field in c("R", "G"))
+   rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
> 
> rgC <- rg
> 
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
> 
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   channelColor <- switch(channel, R="red", G="green")
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The raw data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   plotMvsAPairs(rg, channel=channel)
+   title(main=paste("Observed", channel))
+   box(col=channelColor)
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The calibrated data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+ 
+   plotMvsAPairs(rgC, channel=channel)
+   title(main=paste("Calibrated", channel))
+   box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
> 
> plotMvsA(rgCA)
> title(main="Average calibrated")
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
> 
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
> 
> 
> 
> proc.time()
   user  system elapsed 
   1.84    0.07    1.90 

aroma.light.Rcheck/tests_i386/normalizeAverage.list.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+   rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+   size <- runif(1, min=0.3, max=1)
+   a <- rgamma(1, shape=20, rate=10)
+   b <- rgamma(1, shape=10, rate=10)
+   values <- rfcn(size*N, a, b)
+ 
+   # "Censor" values
+   values[values < 0 | values > 8] <- NA_real_
+ 
+   X[[kk]] <- values
+ }
> 
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+   x[sample(length(x), size=0.20*length(x))] <- NA_real_
+   x
+ })
> 
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.29    0.01    0.29 

aroma.light.Rcheck/tests_x64/normalizeAverage.list.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+   rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+   size <- runif(1, min=0.3, max=1)
+   a <- rgamma(1, shape=20, rate=10)
+   b <- rgamma(1, shape=10, rate=10)
+   values <- rfcn(size*N, a, b)
+ 
+   # "Censor" values
+   values[values < 0 | values > 8] <- NA_real_
+ 
+   X[[kk]] <- values
+ }
> 
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+   x[sample(length(x), size=0.20*length(x))] <- NA_real_
+   x
+ })
> 
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.23    0.07    0.29 

aroma.light.Rcheck/tests_i386/normalizeAverage.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.20    0.07    0.26 

aroma.light.Rcheck/tests_x64/normalizeAverage.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.18    0.07    0.25 

aroma.light.Rcheck/tests_i386/normalizeCurveFit.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
> 
> rg <- as.list(rg)
> for (field in c("R", "G"))
+   rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
> 
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
> 
> rgC <- rg
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   channelColor <- switch(channel, R="red", G="green")
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The raw data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   plotMvsAPairs(rg[,sidx])
+   title(main=paste("Observed", channel))
+   box(col=channelColor)
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The calibrated data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+ 
+   plotMvsAPairs(rgC[,sidx])
+   title(main=paste("Calibrated", channel))
+   box(col=channelColor)
+ } # for (channel ...)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
> 
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
> 
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
> 
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
> 
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
> 
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
  Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
> 
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
> 
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
> 
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+        col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
> 
> 
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+        col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
> 
> 
> proc.time()
   user  system elapsed 
   4.37    0.09    4.45 

aroma.light.Rcheck/tests_x64/normalizeCurveFit.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
> 
> rg <- as.list(rg)
> for (field in c("R", "G"))
+   rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
> 
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
> 
> rgC <- rg
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   channelColor <- switch(channel, R="red", G="green")
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The raw data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   plotMvsAPairs(rg[,sidx])
+   title(main=paste("Observed", channel))
+   box(col=channelColor)
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The calibrated data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+ 
+   plotMvsAPairs(rgC[,sidx])
+   title(main=paste("Calibrated", channel))
+   box(col=channelColor)
+ } # for (channel ...)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
> 
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
> 
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
> 
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
> 
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
> 
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
  Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
> 
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
> 
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
> 
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+        col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
> 
> 
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+        col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
> 
> 
> proc.time()
   user  system elapsed 
   4.28    0.06    4.34 

aroma.light.Rcheck/tests_i386/normalizeDifferencesToAverage.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
> 
> yy <- list(
+   A = rnorm(ns["A"], mean=0, sd=0.5),
+   B = rnorm(ns["B"], mean=5, sd=0.4),
+   C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+   n <- length(y)
+   y[1:(n/2)] <- y[1:(n/2)] + 2
+   y[1:(n/4)] <- y[1:(n/4)] - 4
+   y
+ })
> 
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
> 
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
> 
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
> 
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
> 
> proc.time()
   user  system elapsed 
   0.34    0.01    0.34 

aroma.light.Rcheck/tests_x64/normalizeDifferencesToAverage.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
> 
> yy <- list(
+   A = rnorm(ns["A"], mean=0, sd=0.5),
+   B = rnorm(ns["B"], mean=5, sd=0.4),
+   C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+   n <- length(y)
+   y[1:(n/2)] <- y[1:(n/2)] + 2
+   y[1:(n/4)] <- y[1:(n/4)] - 4
+   y
+ })
> 
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
> 
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
> 
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
> 
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
> 
> proc.time()
   user  system elapsed 
   0.26    0.10    0.32 

aroma.light.Rcheck/tests_i386/normalizeFragmentLength-ex1.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
> 
> # Number of loci
> J <- 1000
> 
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
> 
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
> 
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+   k <- runif(n=1, min=3, max=5)
+   mu <- function(fl) {
+     mu <- rep(maxY, length(fl))
+     ok <- !is.na(fl)
+     mu[ok] <- mu[ok] - fl[ok]^{1/k}
+     mu
+   }
+   eps <- rnorm(J, mean=0, sd=1)
+   y[,kk] <- mu(fl) + eps
+ }
> 
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+   normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
> 
> # The correction factors
> rho <- y-yN
> print(summary(rho))
       V1              V2              V3              V4       
 Min.   :7.641   Min.   :7.893   Min.   :5.857   Min.   :5.040  
 1st Qu.:7.784   1st Qu.:8.184   1st Qu.:6.260   1st Qu.:5.620  
 Median :8.071   Median :8.403   Median :6.680   Median :6.193  
 Mean   :8.174   Mean   :8.511   Mean   :6.846   Mean   :6.382  
 3rd Qu.:8.528   3rd Qu.:8.812   3rd Qu.:7.377   3rd Qu.:7.113  
 Max.   :9.055   Max.   :9.458   Max.   :8.407   Max.   :8.278  
       V5              V6              V7              V8       
 Min.   :7.687   Min.   :5.148   Min.   :5.729   Min.   :6.027  
 1st Qu.:7.970   1st Qu.:5.613   1st Qu.:6.292   1st Qu.:6.498  
 Median :8.223   Median :6.157   Median :6.853   Median :6.978  
 Mean   :8.310   Mean   :6.344   Mean   :6.933   Mean   :7.117  
 3rd Qu.:8.633   3rd Qu.:7.024   3rd Qu.:7.533   3rd Qu.:7.700  
 Max.   :9.203   Max.   :8.153   Max.   :8.473   Max.   :8.658  
       V9       
 Min.   :7.628  
 1st Qu.:7.894  
 Median :8.179  
 Mean   :8.282  
 3rd Qu.:8.660  
 Max.   :9.225  
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
       V1              V2              V3             V4              V5       
 Min.   :8.071   Min.   :8.403   Min.   :6.68   Min.   :6.193   Min.   :8.223  
 1st Qu.:8.071   1st Qu.:8.403   1st Qu.:6.68   1st Qu.:6.193   1st Qu.:8.223  
 Median :8.071   Median :8.403   Median :6.68   Median :6.193   Median :8.223  
 Mean   :8.071   Mean   :8.403   Mean   :6.68   Mean   :6.193   Mean   :8.223  
 3rd Qu.:8.071   3rd Qu.:8.403   3rd Qu.:6.68   3rd Qu.:6.193   3rd Qu.:8.223  
 Max.   :8.071   Max.   :8.403   Max.   :6.68   Max.   :6.193   Max.   :8.223  
       V6              V7              V8              V9       
 Min.   :6.157   Min.   :6.853   Min.   :6.978   Min.   :8.179  
 1st Qu.:6.157   1st Qu.:6.853   1st Qu.:6.978   1st Qu.:8.179  
 Median :6.157   Median :6.853   Median :6.978   Median :8.179  
 Mean   :6.157   Mean   :6.853   Mean   :6.978   Mean   :8.179  
 3rd Qu.:6.157   3rd Qu.:6.853   3rd Qu.:6.978   3rd Qu.:8.179  
 Max.   :6.157   Max.   :6.853   Max.   :6.978   Max.   :8.179  
> 
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+   plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+   ok <- (is.finite(fl) & is.finite(y[,kk]))
+   lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
> 
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+   plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+   ok <- (is.finite(fl) & is.finite(y[,kk]))
+   lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
> 
> proc.time()
   user  system elapsed 
   0.75    0.06    0.81 

aroma.light.Rcheck/tests_x64/normalizeFragmentLength-ex1.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
> 
> # Number of loci
> J <- 1000
> 
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
> 
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
> 
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+   k <- runif(n=1, min=3, max=5)
+   mu <- function(fl) {
+     mu <- rep(maxY, length(fl))
+     ok <- !is.na(fl)
+     mu[ok] <- mu[ok] - fl[ok]^{1/k}
+     mu
+   }
+   eps <- rnorm(J, mean=0, sd=1)
+   y[,kk] <- mu(fl) + eps
+ }
> 
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+   normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
> 
> # The correction factors
> rho <- y-yN
> print(summary(rho))
       V1              V2              V3              V4       
 Min.   :6.822   Min.   :5.937   Min.   :6.886   Min.   :5.961  
 1st Qu.:7.068   1st Qu.:6.480   1st Qu.:7.292   1st Qu.:6.457  
 Median :7.402   Median :6.926   Median :7.680   Median :6.929  
 Mean   :7.552   Mean   :7.081   Mean   :7.753   Mean   :7.043  
 3rd Qu.:8.008   3rd Qu.:7.666   3rd Qu.:8.218   3rd Qu.:7.611  
 Max.   :8.717   Max.   :8.616   Max.   :8.773   Max.   :8.455  
       V5              V6              V7              V8       
 Min.   :2.963   Min.   :6.057   Min.   :5.020   Min.   :7.952  
 1st Qu.:3.725   1st Qu.:6.691   1st Qu.:5.649   1st Qu.:8.229  
 Median :4.578   Median :7.188   Median :6.245   Median :8.452  
 Mean   :4.780   Mean   :7.274   Mean   :6.369   Mean   :8.541  
 3rd Qu.:5.756   3rd Qu.:7.839   3rd Qu.:7.047   3rd Qu.:8.840  
 Max.   :7.320   Max.   :8.744   Max.   :8.157   Max.   :9.382  
       V9       
 Min.   :7.571  
 1st Qu.:7.802  
 Median :8.117  
 Mean   :8.182  
 3rd Qu.:8.539  
 Max.   :9.021  
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
       V1              V2              V3             V4              V5       
 Min.   :7.402   Min.   :6.926   Min.   :7.68   Min.   :6.929   Min.   :4.578  
 1st Qu.:7.402   1st Qu.:6.926   1st Qu.:7.68   1st Qu.:6.929   1st Qu.:4.578  
 Median :7.402   Median :6.926   Median :7.68   Median :6.929   Median :4.578  
 Mean   :7.402   Mean   :6.926   Mean   :7.68   Mean   :6.929   Mean   :4.578  
 3rd Qu.:7.402   3rd Qu.:6.926   3rd Qu.:7.68   3rd Qu.:6.929   3rd Qu.:4.578  
 Max.   :7.402   Max.   :6.926   Max.   :7.68   Max.   :6.929   Max.   :4.578  
       V6              V7              V8              V9       
 Min.   :7.188   Min.   :6.245   Min.   :8.452   Min.   :8.117  
 1st Qu.:7.188   1st Qu.:6.245   1st Qu.:8.452   1st Qu.:8.117  
 Median :7.188   Median :6.245   Median :8.452   Median :8.117  
 Mean   :7.188   Mean   :6.245   Mean   :8.452   Mean   :8.117  
 3rd Qu.:7.188   3rd Qu.:6.245   3rd Qu.:8.452   3rd Qu.:8.117  
 Max.   :7.188   Max.   :6.245   Max.   :8.452   Max.   :8.117  
> 
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+   plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+   ok <- (is.finite(fl) & is.finite(y[,kk]))
+   lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
> 
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+   plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+   ok <- (is.finite(fl) & is.finite(y[,kk]))
+   lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
> 
> proc.time()
   user  system elapsed 
   0.67    0.09    0.76 

aroma.light.Rcheck/tests_i386/normalizeFragmentLength-ex2.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
> 
> # Number samples
> I <- 5
> 
> # Number of loci
> J <- 3000
> 
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
> 
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
> 
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
> 
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3;  # Less Sty in 1st sample
> rho[3] <- 3/2;  # More Sty in 3rd sample
> 
> 
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+   # Common effect for both enzymes
+   mu <- function(fl) {
+     k <- runif(n=1, min=3, max=5)
+     mu <- rep(maxLog2Theta, length(fl))
+     ok <- is.finite(fl)
+     mu[ok] <- mu[ok] - fl[ok]^{1/k}
+     mu
+   }
+ 
+   # Calculate the effect for each data point
+   for (ee in 1:2) {
+     z[,ee,ii] <- mu(fl[,ee])
+   }
+ 
+   # Update the Sty/Nsp mixing proportions
+   ee <- 2
+   z[,ee,ii] <- rho[ii]*z[,ee,ii]
+ 
+   # Add random errors
+   for (ee in 1:2) {
+     eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+     z[,ee,ii] <- z[,ee,ii] + eps
+   }
+ }
> 
> 
> hasFl <- is.finite(fl)
> 
> unitSets <- list(
+   nsp  = which( hasFl[,1] & !hasFl[,2]),
+   sty  = which(!hasFl[,1] &  hasFl[,2]),
+   both = which( hasFl[,1] &  hasFl[,2]),
+   none = which(!hasFl[,1] & !hasFl[,2])
+ )
> 
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
> 
> # Single-enzyme units
> for (ee in 1:2) {
+   uu <- unitSets[[ee]]
+   theta[uu,] <- 2^z[uu,ee,]
+ }
> 
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
> 
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
> 
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+   uu <- unitSets[[ee]]
+   fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+   class(fit) <- "lowess"
+   targetFcns[[ee]] <- function(fl, ...) {
+     predict(fit, newdata=fl)
+   }
+ }
> 
> 
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
> 
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+   lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+                      fragmentLengths=fl, onMissing="median",
+                      subsetToFit=subsetToFit, .returnFit=TRUE)
+   fits[[ii]] <- attr(lthetaNi, "modelFit")
+   thetaN[,ii] <- 2^lthetaNi
+ }
> 
> 
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
> 
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+   plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+ 
+   # Single-enzyme units
+   for (ee in 1:2) {
+     # The raw data
+     uu <- unitSets[[ee]]
+     points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+   }
+ 
+   # Both-enzyme units (use fragment-length for enzyme #1)
+   uu <- unitSets$both
+   points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+ 
+   for (ee in 1:2) {
+     # The true effects
+     uu <- unitSets[[ee]]
+     lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+ 
+     # The estimated effects
+     fit <- fits[[ii]][[ee]]$fit
+     lines(fit, col="orange", lwd=3)
+ 
+     muT <- targetFcns[[ee]](fl[uu,ee])
+     lines(fl[uu,ee], muT, col="cyan", lwd=1)
+   }
+ }
> 
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
> 
> # Plot normalized data
> for (ii in 1:I) {
+   plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+   # Single-enzyme units
+   for (ee in 1:2) {
+     # The normalized data
+     uu <- unitSets[[ee]]
+     points(fl[uu,ee], M[uu,ii], col=ee+1)
+   }
+   # Both-enzyme units (use fragment-length for enzyme #1)
+   uu <- unitSets$both
+   points(fl[uu,1], M[uu,ii], col=3+1)
+ }
> 
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+   data <- list()
+   for (ee in 1:2) {
+     # The normalized data
+     uu <- unitSets[[ee]]
+     data[[ee]] <- M[uu,ii]
+   }
+   uu <- unitSets$both
+   if (length(uu) > 0)
+     data[[3]] <- M[uu,ii]
+ 
+   uu <- unitSets$none
+   if (length(uu) > 0)
+     data[[4]] <- M[uu,ii]
+ 
+   cols <- seq_along(data)+1
+   plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+ 
+   abline(v=0, lty=2)
+ }
> 
> 
> proc.time()
   user  system elapsed 
   0.75    0.07    0.79 

aroma.light.Rcheck/tests_x64/normalizeFragmentLength-ex2.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
> 
> # Number samples
> I <- 5
> 
> # Number of loci
> J <- 3000
> 
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
> 
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
> 
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
> 
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3;  # Less Sty in 1st sample
> rho[3] <- 3/2;  # More Sty in 3rd sample
> 
> 
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+   # Common effect for both enzymes
+   mu <- function(fl) {
+     k <- runif(n=1, min=3, max=5)
+     mu <- rep(maxLog2Theta, length(fl))
+     ok <- is.finite(fl)
+     mu[ok] <- mu[ok] - fl[ok]^{1/k}
+     mu
+   }
+ 
+   # Calculate the effect for each data point
+   for (ee in 1:2) {
+     z[,ee,ii] <- mu(fl[,ee])
+   }
+ 
+   # Update the Sty/Nsp mixing proportions
+   ee <- 2
+   z[,ee,ii] <- rho[ii]*z[,ee,ii]
+ 
+   # Add random errors
+   for (ee in 1:2) {
+     eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+     z[,ee,ii] <- z[,ee,ii] + eps
+   }
+ }
> 
> 
> hasFl <- is.finite(fl)
> 
> unitSets <- list(
+   nsp  = which( hasFl[,1] & !hasFl[,2]),
+   sty  = which(!hasFl[,1] &  hasFl[,2]),
+   both = which( hasFl[,1] &  hasFl[,2]),
+   none = which(!hasFl[,1] & !hasFl[,2])
+ )
> 
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
> 
> # Single-enzyme units
> for (ee in 1:2) {
+   uu <- unitSets[[ee]]
+   theta[uu,] <- 2^z[uu,ee,]
+ }
> 
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
> 
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
> 
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+   uu <- unitSets[[ee]]
+   fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+   class(fit) <- "lowess"
+   targetFcns[[ee]] <- function(fl, ...) {
+     predict(fit, newdata=fl)
+   }
+ }
> 
> 
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
> 
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+   lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+                      fragmentLengths=fl, onMissing="median",
+                      subsetToFit=subsetToFit, .returnFit=TRUE)
+   fits[[ii]] <- attr(lthetaNi, "modelFit")
+   thetaN[,ii] <- 2^lthetaNi
+ }
> 
> 
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
> 
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+   plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+ 
+   # Single-enzyme units
+   for (ee in 1:2) {
+     # The raw data
+     uu <- unitSets[[ee]]
+     points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+   }
+ 
+   # Both-enzyme units (use fragment-length for enzyme #1)
+   uu <- unitSets$both
+   points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+ 
+   for (ee in 1:2) {
+     # The true effects
+     uu <- unitSets[[ee]]
+     lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+ 
+     # The estimated effects
+     fit <- fits[[ii]][[ee]]$fit
+     lines(fit, col="orange", lwd=3)
+ 
+     muT <- targetFcns[[ee]](fl[uu,ee])
+     lines(fl[uu,ee], muT, col="cyan", lwd=1)
+   }
+ }
> 
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
> 
> # Plot normalized data
> for (ii in 1:I) {
+   plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+   # Single-enzyme units
+   for (ee in 1:2) {
+     # The normalized data
+     uu <- unitSets[[ee]]
+     points(fl[uu,ee], M[uu,ii], col=ee+1)
+   }
+   # Both-enzyme units (use fragment-length for enzyme #1)
+   uu <- unitSets$both
+   points(fl[uu,1], M[uu,ii], col=3+1)
+ }
> 
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+   data <- list()
+   for (ee in 1:2) {
+     # The normalized data
+     uu <- unitSets[[ee]]
+     data[[ee]] <- M[uu,ii]
+   }
+   uu <- unitSets$both
+   if (length(uu) > 0)
+     data[[3]] <- M[uu,ii]
+ 
+   uu <- unitSets$none
+   if (length(uu) > 0)
+     data[[4]] <- M[uu,ii]
+ 
+   cols <- seq_along(data)+1
+   plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+ 
+   abline(v=0, lty=2)
+ }
> 
> 
> proc.time()
   user  system elapsed 
   0.73    0.03    0.76 

aroma.light.Rcheck/tests_i386/normalizeQuantileRank.list.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+   rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+   size <- runif(1, min=0.3, max=1)
+   a <- rgamma(1, shape=20, rate=10)
+   b <- rgamma(1, shape=10, rate=10)
+   values <- rfcn(size*N, a, b)
+ 
+   # "Censor" values
+   values[values < 0 | values > 8] <- NA_real_
+ 
+   X[[kk]] <- values
+ }
> 
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+   x[sample(length(x), size=0.20*length(x))] <- NA_real_
+   x
+ })
> 
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.28    0.06    0.32 

aroma.light.Rcheck/tests_x64/normalizeQuantileRank.list.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+   rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+   size <- runif(1, min=0.3, max=1)
+   a <- rgamma(1, shape=20, rate=10)
+   b <- rgamma(1, shape=10, rate=10)
+   values <- rfcn(size*N, a, b)
+ 
+   # "Censor" values
+   values[values < 0 | values > 8] <- NA_real_
+ 
+   X[[kk]] <- values
+ }
> 
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+   x[sample(length(x), size=0.20*length(x))] <- NA_real_
+   x
+ })
> 
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.28    0.03    0.31 

aroma.light.Rcheck/tests_i386/normalizeQuantileRank.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.25    0.04    0.28 

aroma.light.Rcheck/tests_x64/normalizeQuantileRank.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.18    0.07    0.25 

aroma.light.Rcheck/tests_i386/normalizeQuantileSpline.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> 
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
> 
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.76    0.03    0.79 

aroma.light.Rcheck/tests_x64/normalizeQuantileSpline.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> 
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
> 
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
   0.68    0.07    0.75 

aroma.light.Rcheck/tests_i386/normalizeTumorBoost.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.

Attaching package: 'R.oo'

The following object is masked from 'package:R.methodsS3':

    throw

The following objects are masked from 'package:methods':

    getClasses, getMethods

The following objects are masked from 'package:base':

    attach, detach, load, save

R.utils v2.11.0 (2021-09-26 08:30:02 UTC) successfully loaded. See ?R.utils for help.

Attaching package: 'R.utils'

The following object is masked from 'package:utils':

    timestamp

The following objects are masked from 'package:base':

    cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
    warnings

> 
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
> 
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> 
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
> 
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
> 
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
> 
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
> 
> proc.time()
   user  system elapsed 
   0.46    0.04    0.50 

aroma.light.Rcheck/tests_x64/normalizeTumorBoost.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.

Attaching package: 'R.oo'

The following object is masked from 'package:R.methodsS3':

    throw

The following objects are masked from 'package:methods':

    getClasses, getMethods

The following objects are masked from 'package:base':

    attach, detach, load, save

R.utils v2.11.0 (2021-09-26 08:30:02 UTC) successfully loaded. See ?R.utils for help.

Attaching package: 'R.utils'

The following object is masked from 'package:utils':

    timestamp

The following objects are masked from 'package:base':

    cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
    warnings

> 
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
> 
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> 
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
> 
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
> 
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
> 
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
> 
> proc.time()
   user  system elapsed 
   0.43    0.06    0.48 

aroma.light.Rcheck/tests_i386/normalizeTumorBoost,flavors.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.

Attaching package: 'R.oo'

The following object is masked from 'package:R.methodsS3':

    throw

The following objects are masked from 'package:methods':

    getClasses, getMethods

The following objects are masked from 'package:base':

    attach, detach, load, save

R.utils v2.11.0 (2021-09-26 08:30:02 UTC) successfully loaded. See ?R.utils for help.

Attaching package: 'R.utils'

The following object is masked from 'package:utils':

    timestamp

The following objects are masked from 'package:base':

    cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
    warnings

> 
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> 
> # Drop loci with missing values
> data <- na.omit(data)
> 
> attachLocally(data)
> pos <- position/1e6
> 
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
> 
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
> 
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
> 
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+   betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+ 
+   # Assert that no non-finite values are introduced
+   stopifnot(all(is.finite(betaTN)))
+ 
+   # Assert that nothing is flipped
+   stopifnot(all(betaTN[isAA] < 1/2))
+   stopifnot(all(betaTN[isBB] > 1/2))
+ 
+   betaTNs[[flavor]] <- betaTN
+ }
> 
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+   betaTN <- betaTNs[[flavor]]
+   ylab <- sprintf("betaTN[%s]", flavor)
+   plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
> 
> proc.time()
   user  system elapsed 
   0.48    0.06    0.53 

aroma.light.Rcheck/tests_x64/normalizeTumorBoost,flavors.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.

Attaching package: 'R.oo'

The following object is masked from 'package:R.methodsS3':

    throw

The following objects are masked from 'package:methods':

    getClasses, getMethods

The following objects are masked from 'package:base':

    attach, detach, load, save

R.utils v2.11.0 (2021-09-26 08:30:02 UTC) successfully loaded. See ?R.utils for help.

Attaching package: 'R.utils'

The following object is masked from 'package:utils':

    timestamp

The following objects are masked from 'package:base':

    cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
    warnings

> 
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> 
> # Drop loci with missing values
> data <- na.omit(data)
> 
> attachLocally(data)
> pos <- position/1e6
> 
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
> 
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
> 
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
> 
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+   betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+ 
+   # Assert that no non-finite values are introduced
+   stopifnot(all(is.finite(betaTN)))
+ 
+   # Assert that nothing is flipped
+   stopifnot(all(betaTN[isAA] < 1/2))
+   stopifnot(all(betaTN[isBB] > 1/2))
+ 
+   betaTNs[[flavor]] <- betaTN
+ }
> 
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+   betaTN <- betaTNs[[flavor]]
+   ylab <- sprintf("betaTN[%s]", flavor)
+   plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
> 
> proc.time()
   user  system elapsed 
   0.50    0.03    0.53 

aroma.light.Rcheck/tests_i386/robustSmoothSpline.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars)  &  robust smoothing splines")
> 
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
> 
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
> lines(cars.rspl, col = "red")
> 
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
> 
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
> 
> # Fit a smoothing spline using Tukey's biweight norm
> cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric")
> lines(cars.rspl, col = "purple")
> 
> legend(5,120, c(
+       paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+       paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)),
+       paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)),
+       "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+     ),
+     col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2),
+     bg='bisque')
> 
> proc.time()
   user  system elapsed 
   0.23    0.06    0.28 

aroma.light.Rcheck/tests_x64/robustSmoothSpline.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars)  &  robust smoothing splines")
> 
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
> 
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
> lines(cars.rspl, col = "red")
> 
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
> 
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
> 
> # Fit a smoothing spline using Tukey's biweight norm
> cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric")
> lines(cars.rspl, col = "purple")
> 
> legend(5,120, c(
+       paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+       paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)),
+       paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)),
+       "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+     ),
+     col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2),
+     bg='bisque')
> 
> proc.time()
   user  system elapsed 
   0.25    0.04    0.29 

aroma.light.Rcheck/tests_i386/rowAverages.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
> 
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
> 
> proc.time()
   user  system elapsed 
   0.17    0.03    0.18 

aroma.light.Rcheck/tests_x64/rowAverages.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
> 
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
> 
> proc.time()
   user  system elapsed 
   0.18    0.04    0.18 

aroma.light.Rcheck/tests_i386/sampleCorrelations.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
> 
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-0.908334 -0.241076  0.007677  0.005567  0.252308  0.921036 
> 
> 
> proc.time()
   user  system elapsed 
   0.35    0.03    0.34 

aroma.light.Rcheck/tests_x64/sampleCorrelations.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
> 
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-0.929072 -0.244378  0.004053  0.002519  0.248854  0.932427 
> 
> 
> proc.time()
   user  system elapsed 
   0.34    0.01    0.35 

aroma.light.Rcheck/tests_i386/sampleTuples.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
     [,1] [,2]
[1,]   10    8
[2,]    2    8
[3,]    6    1
[4,]    3    7
[5,]    6    9
> 
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
     [,1] [,2] [,3]
[1,]    9    2   10
[2,]    2    5    6
[3,]    6    1    9
[4,]    1    3    2
[5,]    3    6    2
> 
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
     [,1] [,2] [,3] [,4]
[1,]    2    1    1    3
[2,]    1    2    2    1
[3,]    3    2    1    2
[4,]    1    1    2    3
[5,]    1    2    3    3
> 
> proc.time()
   user  system elapsed 
   0.18    0.01    0.18 

aroma.light.Rcheck/tests_x64/sampleTuples.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
     [,1] [,2]
[1,]    5    2
[2,]    5    1
[3,]    9    3
[4,]   10    8
[5,]    2    7
> 
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
     [,1] [,2] [,3]
[1,]    3    5    6
[2,]    3    5    1
[3,]    2    4    9
[4,]    3    6    8
[5,]    3    5    8
> 
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
     [,1] [,2] [,3] [,4]
[1,]    1    3    2    3
[2,]    2    3    3    3
[3,]    3    2    3    1
[4,]    1    1    2    1
[5,]    1    2    3    3
> 
> proc.time()
   user  system elapsed 
   0.14    0.07    0.20 

aroma.light.Rcheck/tests_i386/wpca.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+ 
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+ 
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+ 
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+ 
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+ 
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+   # Plot the data
+   plot3d(y, theta=theta[kk], phi=phi[kk])
+ 
+   # First, same weights for all observations
+   w <- rep(1, length=nrow(y))
+ 
+   for (ww in 1:W) {
+     # Fit a line using IWPCA through data
+     fit <- wpca(y, w=w, swapDirections=TRUE)
+ 
+     # Get the first principal component
+     ymid <- fit$xMean
+     d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+     d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+     b <- fit$vt[1,]
+     y0 <- -b * max(abs(d0))
+     y1 <-  b * max(abs(d1))
+     yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+     yline <- yline + ymid
+ 
+     points3d(t(ymid), col=col)
+     lines3d(t(yline), col=col)
+ 
+     # Down-weight outliers only, because here we know which they are.
+     w[idx] <- w[idx]/2
+   }
+ 
+   # Highlight the last one
+   lines3d(t(yline), col="red", lwd=3)
+ }
+ 
+ par(opar)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
   0.25    0.01    0.28 

aroma.light.Rcheck/tests_x64/wpca.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+ 
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+ 
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+ 
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+ 
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+ 
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+   # Plot the data
+   plot3d(y, theta=theta[kk], phi=phi[kk])
+ 
+   # First, same weights for all observations
+   w <- rep(1, length=nrow(y))
+ 
+   for (ww in 1:W) {
+     # Fit a line using IWPCA through data
+     fit <- wpca(y, w=w, swapDirections=TRUE)
+ 
+     # Get the first principal component
+     ymid <- fit$xMean
+     d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+     d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+     b <- fit$vt[1,]
+     y0 <- -b * max(abs(d0))
+     y1 <-  b * max(abs(d1))
+     yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+     yline <- yline + ymid
+ 
+     points3d(t(ymid), col=col)
+     lines3d(t(yline), col=col)
+ 
+     # Down-weight outliers only, because here we know which they are.
+     w[idx] <- w[idx]/2
+   }
+ 
+   # Highlight the last one
+   lines3d(t(yline), col="red", lwd=3)
+ }
+ 
+ par(opar)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
   0.23    0.01    0.25 

aroma.light.Rcheck/tests_i386/wpca2.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
> 
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
> 
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
> 
> 
> # Linear regression y ~ x
> fit <- lm(y ~ x)
> abline(fit, lty=1, col=1)
> 
> # Linear regression y ~ x through without intercept
> fit <- lm(y ~ x - 1)
> abline(fit, lty=2, col=1)
> 
> 
> # Linear regression x ~ y
> fit <- lm(x ~ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
> 
> # Linear regression x ~ y through without intercept
> fit <- lm(x ~ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
> 
> 
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
> 
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
> 
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
> 
> legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
+           "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+                      lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
> 
> palette(opalette)
> par(opar)
> 
> proc.time()
   user  system elapsed 
   0.18    0.06    0.23 

aroma.light.Rcheck/tests_x64/wpca2.matrix.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.23.1 successfully loaded. See ?aroma.light for help.
> 
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
> 
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
> 
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
> 
> 
> # Linear regression y ~ x
> fit <- lm(y ~ x)
> abline(fit, lty=1, col=1)
> 
> # Linear regression y ~ x through without intercept
> fit <- lm(y ~ x - 1)
> abline(fit, lty=2, col=1)
> 
> 
> # Linear regression x ~ y
> fit <- lm(x ~ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
> 
> # Linear regression x ~ y through without intercept
> fit <- lm(x ~ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
> 
> 
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
> 
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
> 
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
> 
> legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
+           "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+                      lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
> 
> palette(opalette)
> par(opar)
> 
> proc.time()
   user  system elapsed 
   0.18    0.06    0.23 

Example timings

aroma.light.Rcheck/examples_i386/aroma.light-Ex.timings

nameusersystemelapsed
backtransformAffine0.020.000.01
backtransformPrincipalCurve0.350.000.36
calibrateMultiscan000
callNaiveGenotypes0.220.000.22
distanceBetweenLines0.060.000.06
findPeaksAndValleys0.020.010.03
fitPrincipalCurve0.430.020.45
fitXYCurve0.180.000.17
iwpca0.030.000.04
likelihood.smooth.spline0.110.010.12
medianPolish000
normalizeAffine4.080.024.09
normalizeCurveFit4.170.054.22
normalizeDifferencesToAverage0.230.010.25
normalizeFragmentLength1.380.031.41
normalizeQuantileRank0.650.000.66
normalizeQuantileRank.matrix0.030.000.03
normalizeQuantileSpline0.580.000.57
normalizeTumorBoost0.310.000.32
robustSmoothSpline0.300.020.31
sampleCorrelations0.140.000.14
sampleTuples000
wpca0.060.010.07

aroma.light.Rcheck/examples_x64/aroma.light-Ex.timings

nameusersystemelapsed
backtransformAffine000
backtransformPrincipalCurve0.350.000.34
calibrateMultiscan000
callNaiveGenotypes0.190.020.20
distanceBetweenLines0.060.000.06
findPeaksAndValleys0.030.000.03
fitPrincipalCurve0.400.030.42
fitXYCurve0.140.020.16
iwpca0.030.010.05
likelihood.smooth.spline0.080.000.08
medianPolish0.010.000.01
normalizeAffine3.970.054.02
normalizeCurveFit4.120.014.16
normalizeDifferencesToAverage0.220.000.22
normalizeFragmentLength1.240.041.28
normalizeQuantileRank0.610.000.61
normalizeQuantileRank.matrix0.030.000.04
normalizeQuantileSpline0.520.000.51
normalizeTumorBoost0.280.000.28
robustSmoothSpline0.290.000.30
sampleCorrelations0.140.000.15
sampleTuples000
wpca0.080.000.07