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1 Introduction

iClusterPlus is developed for integrative clustering analysis of multi-type genomic data and
is an enhanced version of iCluster proposed and developed by Shen, Olshen and Ladanyi
(2009). Multi-type genomic data arise from the experiments where biological samples (e.g.,
tumor samples) are analyzed by multiple techniques, for instance, array comparative ge-
nomic hybridization (aCGH), gene expression microarray, RNA-seq and DNA-seq, and so
on. Examples of these data can be obtained from the Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov/).
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Originally, Shen, Olshen and Ladanyi (2009) proposed a latent variable regression with a
lasso constraint (Tibshirani, 1996) for joint modeling of multiple omics data types to iden-
tify common latent variables that can be used to cluster patient samples into biologically
and clinically relevant disease sub-types. In a followup work, Shen, Wang and Mo (2012)
further incorporated elasticnet (Zou and Hastie, 2005) and fused lasso (Tibshirani, 2005)
into the integration framework. This document discusses the iClusterPlus method that
extends the framework to allow integration of binary, categorical, count, and continuous
data types (Mo et al. 2013). In iClusterPlus model, binary observations such as somatic
mutation are modeled as Binomial processes; categorical observations such as copy num-
ber states (gain, normal, loss) are realizations of Multinomial random variables; counts
are modeled as Poisson random processes; and continuous measures are modeled by Gaus-
sian distributions. We simultaneously regress the observations (somatic mutation, DNA
copy number, DNA methylation, mRNA expression) under their proper distributional as-
sumptions to a common set of latent variables that represent a set of underlying oncogenic
processes. To identify the genomic features (e.g., ERBB2 amplification and over-expression)
that make important contributions to the latent onco- genic process, we use a penalized
regression approach by applying the lasso (L1-norm) penalty (Tibshirani, 1996) in gener-
alized linear models. This is achieved by directly incorporating the Fortran source code
written by Friedman, Hastie and Tibshirani (2009) that is available in the glmnet package
(http://cran.r-project.org/web/packages/glmnet/index.html). Finally, we show how
to use iClusterBayes method, a newly developed Bayesian integrative clustering method to
analyze multi-omics data (Mo et al., 2018).

In this document, we use the TCGA glioblastoma data set as an example to demonstrate
how to use iClusterPlus to perform an integrative clustering analysis of somatic mutation,
DNA copy number and gene expression data.

2 Data and Pre-processing

A description of the TCGA glioblastoma data set can be found in TCGA (2008). The GBM
datasets were downloaded from the Cancer Genome Atlas public data portal, and from the
cBio Cancer Genomics Portal (http://cbioportal.org/) at the Memorial Sloan-Kettering
Cancer Center. Somatic mutation data are available in a total of 91 matched tumor?normal
pairs and in 601 selected genes. DNA copy number alterations (CNAs) were measured on
three microarray platforms (Agilent 244K, SNP6, Illumina 550K) and analyzed with multiple
analytical algorithms. Level 3 normalized and segmented data were used. In our data pre-
processing step, we reduce multi-sample array CGH data to 1K-5K non-redundant regions
for subsequent clustering analysis. For mRNA expression data, unified gene expression data
across three microarray platforms (Affymetrix Human Exon 1.0 ST GeneChips, Affymetrix
HT-HG-U133A GeneChips, and custom designed Agilent 244K array) as described in (Ver-
haak et al. 2010) were used. A set of 1,740 most variable genes were used for the analysis.
The "triplet" data set (mutation, copy number, expression) were available on 84 samples
for integrative analysis.
The somatic mutation data should be stored in binary matrix (1: mutation, 0: no muta-
tion) with the rows and columns corresponding to the samples and genes, respectively. We

2

http://cran.r-project.org/web/packages/glmnet/index.html
http://cbioportal.org/


recommend filtering out genes with too few mutations for clustering (e.g., less than 5%).

> library(iClusterPlus)
> library(GenomicRanges)
> library(gplots)
> library(lattice)
> data(gbm)
> dim(gbm.mut)

[1] 84 306

> mut.rate=apply(gbm.mut,2,mean)
> gbm.mut2 = gbm.mut[,which(mut.rate>0.02)]
> gbm.mut2[1:10,1:8]

A2M ABCC4 ADAMTSL3 ASXL1 BAI3 BCAR1 BCL11A BCL11B
TCGA.02.0001 0 0 0 0 0 0 0 0
TCGA.02.0003 0 0 0 0 0 0 0 0
TCGA.02.0006 0 0 0 0 0 0 0 0
TCGA.02.0007 0 0 0 0 0 0 0 0
TCGA.02.0009 0 0 0 0 0 0 0 0
TCGA.02.0010 0 0 1 1 1 0 0 1
TCGA.02.0011 0 0 0 0 0 0 0 0
TCGA.02.0014 0 0 0 0 0 0 1 0
TCGA.02.0021 0 0 0 0 0 0 0 0
TCGA.02.0024 1 0 0 0 0 0 0 0

For gene expression data, we recommend using the top variable genes for integrative clus-
tering analysis, which can be obtained by variance filtering. For example, we use the top
1740 genes for our iCluster analysis.

> dim(gbm.exp)

[1] 84 1740

> # the rows and columns corresponding to the samples and genes respectively
> gbm.exp[1:3,1:8]

FSTL1 MMP2 BBOX1 GCSH EDN1 CXCR4 SALL1
TCGA.02.0001 -0.66392 -0.27716 0.79896 0.09005 0.46557 0.30278 0.76869
TCGA.02.0003 -0.28438 1.00445 0.19157 0.92115 1.08181 -0.03790 0.00452
TCGA.02.0006 0.98890 0.19374 0.93830 0.49317 -0.22644 1.43145 -0.38401

MMP7
TCGA.02.0001 0.55745
TCGA.02.0003 -0.04971
TCGA.02.0006 1.58288
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It is a challenge to incorporate raw or normalized copy number data for iCluster analysis
considering the high dimensionality and spatial correlation of the data. Based on our experi-
ence, we think it is more feasible to use the segmentation results produced by the DNAcopy
package (http://www.bioconductor.org/packages/release/bioc/html/DNAcopy.html).

> dim(gbm.seg)

[1] 16295 6

> gbm.seg[1:3,] #gbm.cn is the segmentation results produced by DNAcopy

sample chromosome start end num.mark seg.mean
1 TCGA.02.0001 1 150823073 150848509 5 -2.1537
2 TCGA.02.0001 1 150852858 167483267 1814 0.1907
3 TCGA.02.0001 1 167493768 167507882 2 -3.4343

We reduce the GBM copy number regions to 5K by removing the redundant regions using
function CNregions.

> data(variation.hg18.v10.nov.2010)
> gbm.cn=CNregions(seg=gbm.seg,epsilon=0,adaptive=FALSE,rmCNV=TRUE,
+ cnv=variation.hg18.v10.nov.2010[,3:5],
+ frac.overlap=0.5, rmSmallseg=TRUE,nProbes=5)

Removing CNV...

> dim(gbm.cn)

[1] 84 5512

> gbm.cn[1:3,1:5]

chr1.554268-554287 chr1.554287-736483 chr1.736483-746956
TCGA.02.0001 0.2077 0.2077 0.2077
TCGA.02.0003 -0.0096 -0.0096 -0.0096
TCGA.02.0006 0.0027 0.0027 0.0027

chr1.746956-757922 chr1.757922-769590
TCGA.02.0001 0.2077 0.2077
TCGA.02.0003 -0.0096 -0.0096
TCGA.02.0006 0.0027 0.0027

Here seg is the DNAcopy segmentation output. In the first step, we define a set of non-
redundant regions with parameter epsilon that denotes the maximum distance (Euclidean)
between adjacent probes tolerated for defining a non-redundant region. epsilon=0 is equiv-
alent as taking the union of all unique break points across the n samples. Default ep-
silon=0.005. We then take the medoid signature as the representative copy number profile
for that region, an approach similar to van Wieringen and van de Wiel (2002). The degree
of dimension reduction is proportional to the number of samples included. We recommend
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setting an epsilon such that the reduced dimension is less than 10K. When sample size is
large, an adaptive dimension reduction is more effective. Instead of setting absolute thresh-
old epsilon, setting adaptive=T will reduce dimension proportional to upper quantile of the
distances. default is False. rmCNV=T remove germline CNV. When set to True, one must
supply a list of germline CNVs as cnv=cnv. The additional argument rmSmallseg removes
small segments likely to be noise. Default is False. When set of True, nProbes, the segment
length threshold below which rmSmallseg will exclude should be specified.

Sort gbm.cn to make sure all the samples are in the same order.

> gbm.cn=gbm.cn[order(rownames(gbm.cn)),]
> # check if all the samples are in the same order for the three data sets
> all(rownames(gbm.cn)==rownames(gbm.exp))

[1] TRUE

> all(rownames(gbm.cn)==rownames(gbm.mut2))

[1] TRUE

3 Integrative clustering analysis

Given multiple genomic data types (e.g., mutation, copy number, gene expression, etc) mea-
sured in the same set of samples, and specified sparsity parameter values, iClusterPlus fits
a regularized latent variable model based clustering that generates an integrated cluster as-
signment based on joint inference across data types. Below is a one-liner to run iClusterPlus
given the desired number of eigen-features k (number of clusters is k+1) and the values
of parameter set lambda (which determines how many genomic features will have nonzero
weights on the fused eigen-feature). Normally, we have to optimize k and lambda through
model tuning which we discuss in the next section.

> fit.single=iClusterPlus(dt1=gbm.mut2,dt2=gbm.cn,dt3=gbm.exp,
+ type=c("binomial","gaussian","gaussian"),
+ lambda=c(0.04,0.61,0.90),K=2,maxiter=10)

4 Model tuning using tune.iClusterPlus

Using parallel computing, tune.iClusterPlus samples a series of lambda values from the
parameter space based on the Uniform design (Fang and Wang, 1995) to search for the best
model. The number of points to sample (n.lambda) depends on the number of data types
and can take the following values: If we know the number of clusters in the samples, we may
just choose the corresponding k (the number of latent variables) for the cluster analysis. We
use the rule that the number of clusters equals k+1. If we don’t know the cluster number,
we can test the k from 1 to N (a reasonable number of clusters). In this example, we let the
k from 1 to 5.
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Number of data types n.lambda
1 any
2 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
3 35, 101, 135, 185, 266, 418, 597, 828, 1010
4 307, 562, 701, 1019, 2129, 3001, 4001, 5003, 6007

> set.seed(123)
> date()

[1] "Sat Feb 25 11:57:51 2023"

> for(k in 1:5){
+ cv.fit = tune.iClusterPlus(cpus=12,dt1=gbm.mut2,dt2=gbm.cn,dt3=gbm.exp,
+ type=c("binomial","gaussian","gaussian"),K=k,n.lambda=185,
+ scale.lambda=c(1,1,1),maxiter=20)
+ save(cv.fit, file=paste("cv.fit.k",k,".Rdata",sep=""))
+ }

185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation

> date()

[1] "Sat Feb 25 19:15:39 2023"

Here for demonstration purpose, we specify n.lambda=185 sampling points (a modest value
for this setting) which may result in some variability. As a result, either k=2 can be chosen as
the best k based on % explained variation (percentEV). Use set.seed() to make sure you can
reproduce your results from independent runs. For general practice, set n.lambda=NULL
to use the default value.
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5 Model selection

Now we illustrate how to analyze and interpret the output of tune.iClusterPlus. The first step
is to examine model selection criteria. For each k, we use Bayesian information criteria (BIC)
to select the best sparse model with the optimal combination of penalty parameters. To
select the best k, we compute the deviance ratio which is the ratio of the log-likelihood(fitted)
- log-likelihood(null model) divided by the log-likelihood (full model) - log-likelihood(null
model). The deviance ratio can be interpreted as the percentEV. We choose the k where
the curve of percentEV levels off. Below, we show how to do this in R.

> output=alist()
> files=grep("cv.fit",dir())
> for(i in 1:length(files)){
+ load(dir()[files[i]])
+ output[[i]]=cv.fit
+ }
> nLambda = nrow(output[[1]]$lambda)
> nK = length(output)
> BIC = getBIC(output)
> devR = getDevR(output)

Now we get the ID for the lambda vector at which the BIC is minimum. Then we obtain
the deviance ratio of the lambda vector at which the BIC is minimum.

> minBICid = apply(BIC,2,which.min)
> devRatMinBIC = rep(NA,nK)
> for(i in 1:nK){
+ devRatMinBIC[i] = devR[minBICid[i],i]
+ }

See Figure 1 for the plot of number of clusters vs. percent of explained variation.
The optimal k (number of latent variables) is where the curve of %Explained variation
levels off. By examining Figure 1, we choose to present the three-cluster results. Get cluster
membership (note number of clusters is k+1):

> clusters=getClusters(output)
> rownames(clusters)=rownames(gbm.exp)
> colnames(clusters)=paste("K=",2:(length(output)+1),sep="")
> #write.table(clusters, file="clusterMembership.txt",sep='\t',quote=F)
> k=2
> best.cluster=clusters[,k]
> best.fit=output[[k]]$fit[[which.min(BIC[,k])]]

If the data are noisy, we may not see a curve like 1. For noisy data, in general, when k
increases, the deviance ratio also increases. In this case, we suggest the user make heat
maps of the data sets, and then decide the optimal number of clusters based on the features’
pattern.
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> plot(1:(nK+1),c(0,devRatMinBIC),type="b",xlab="Number of clusters (K+1)",
+ ylab="%Explained Variation")
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Figure 1: Number of clusters vs. percent of explained variation.
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6 Generate heatmap

We provide a function to plot heatmaps. If necessary, the users may modify plotHeatmap
function to fit their own needs.

> chr=unlist(strsplit(colnames(gbm.cn),"\\."))
> chr=chr[seq(1,length(chr),by=2)]
> chr=gsub("chr","",chr)
> chr=as.numeric(chr)
> #truncate the values for a better image plot
> cn.image=gbm.cn
> cn.image[cn.image>1.5]=1.5
> cn.image[cn.image< -1.5]= -1.5
> exp.image=gbm.exp
> exp.image[exp.image>2.5]=2.5
> exp.image[exp.image< -2.5]= -2.5

See Figure 2 for the heatmap plot for the three-cluster result.

7 Feature selection

Select the top features based on lasso coefficient estimates for the 3-cluster solution.

> features = alist()
> features[[1]] = colnames(gbm.mut2)
> features[[2]] = colnames(gbm.cn)
> features[[3]] = colnames(gbm.exp)
> sigfeatures=alist()
> for(i in 1:3){
+ rowsum=apply(abs(best.fit$beta[[i]]),1, sum)
+ upper=quantile(rowsum,prob=0.75)
+ sigfeatures[[i]]=(features[[i]])[which(rowsum>upper)]
+ }
> names(sigfeatures)=c("mutation","copy number","expression")
> #print a few examples of selected features
> head(sigfeatures[[1]])

character(0)

> head(sigfeatures[[2]])

[1] "chr1.202692537-202801982" "chr4.52383858-52395837"
[3] "chr4.52395837-52522387" "chr4.52522387-52989049"
[5] "chr4.52989049-53002654" "chr4.53002654-53517879"

> head(sigfeatures[[3]])
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> bw.col = colorpanel(2,low="white",high="black")
> col.scheme = alist()
> col.scheme[[1]] = bw.col
> col.scheme[[2]] = bluered(256)
> col.scheme[[3]] = bluered(256)
> plotHeatmap(fit=best.fit,datasets=list(gbm.mut2,cn.image,exp.image),
+ type=c("binomial","gaussian","gaussian"), col.scheme = col.scheme,
+ row.order=c(F,F,T),chr=chr,plot.chr=c(F,T,F),sparse=c(T,F,T),cap=c(F,T,F))
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Figure 2: Heatmap of mutation (top panel), DNA copy number (middle panel), and mRNA
expression (bottom panel) for the three-cluster solution. Rows are genomic features and
columns are samples.
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[1] "FSTL1" "CXCR4" "MMP7" "ZEB1" "KIAA1199" "SERPINF1"

We notice that no gene is selected from the mutation data, which indicates that the selected
lambda value is too large and it is not in the same scale as those for the copy number and
gene expression data. To solve this problem, we need to set the scale.lambda (an argument of
tune.iClusterPlus) to a value between 0 and 1. For example, after several tries, we find that
letting scale.lambda equal to 0.05 allows a more effective variable selection of the mutation
data and the three-cluster solution is still one of the best solutions. The following is a repeat
of the above analysis with a new scale.lambda for the mutation data.

> set.seed(123)
> date()

[1] "Sat Feb 25 19:15:43 2023"

> for(k in 1:5){
+ cv2.fit = tune.iClusterPlus(cpus=12,dt1=gbm.mut2,dt2=gbm.cn,dt3=gbm.exp,
+ type=c("binomial","gaussian","gaussian"),K=k,n.lambda=185,
+ scale.lambda=c(0.05,1,1),maxiter=20)
+ save(cv2.fit, file=paste("cv2.fit.k",k,".Rdata",sep=""))
+ }

185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation
185 points of lambdas are used to tune parameters.
Begin parallel computation
End parallel computation

> date()

[1] "Sun Feb 26 04:14:06 2023"

> output2=alist()
> files=grep("cv2.fit",dir())
> for(i in 1:length(files)){
+ load(dir()[files[i]])
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+ output2[[i]]=cv2.fit
+ }
> nLambda = nrow(output2[[1]]$lambda)
> nK = length(output2)
> BIC = getBIC(output2)
> devR = getDevR(output2)

> minBICid = apply(BIC,2,which.min)
> devRatMinBIC = rep(NA,nK)
> for(i in 1:nK){
+ devRatMinBIC[i] = devR[minBICid[i],i]
+ }

See Figure 3 for the plot of number of clusters vs. percent of explained variation.

The optimal k (number of latent variables) is where the curve of %Explained variation
levels off. By examining Figure 3, we choose to present the three-cluster results. Get cluster
membership (note number of clusters is k+1):

> clusters=getClusters(output2)
> rownames(clusters)=rownames(gbm.exp)
> colnames(clusters)=paste("K=",2:(length(output2)+1),sep="")
> #write.table(clusters, file="clusterMembership.txt",sep='\t',quote=F)
> k=2
> best.cluster=clusters[,k]
> best.fit=output2[[k]]$fit[[which.min(BIC[,k])]]

See Figure 4 for the heatmap plot for the three-cluster result.

Select the top features based on lasso coefficient estimates for the 3-cluster solution.

> features = alist()
> features[[1]] = colnames(gbm.mut2)
> features[[2]] = colnames(gbm.cn)
> features[[3]] = colnames(gbm.exp)
> sigfeatures=alist()
> for(i in 1:3){
+ rowsum=apply(abs(best.fit$beta[[i]]),1, sum)
+ upper=quantile(rowsum,prob=0.75)
+ sigfeatures[[i]]=(features[[i]])[which(rowsum>upper)]
+ }
> names(sigfeatures)=c("mutation","copy number","expression")
> #print a few examples of selected features
> head(sigfeatures[[1]])

[1] "A2M" "BRCA2" "CAST" "CENTG1" "CES3" "CHAT"
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> plot(1:(nK+1),c(0,devRatMinBIC),type="b",xlab="Number of clusters (K+1)",
+ ylab="%Explained Variation")
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Figure 3: Number of clusters vs. percent of explained variation.
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> plotHeatmap(fit=best.fit,datasets=list(gbm.mut2,cn.image,exp.image),
+ type=c("binomial","gaussian","gaussian"), col.scheme = col.scheme,
+ row.order=c(F,F,T),chr=chr,plot.chr=c(F,T,F),sparse=c(T,F,T),cap=c(F,T,F))
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Figure 4: Heatmap of mutation (top panel), DNA copy number (middle panel), and mRNA
expression (bottom panel) for the three-cluster solution. Rows are genomic features and
columns are samples.
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> head(sigfeatures[[2]])

[1] "chr1.202692537-202801982" "chr4.52383858-52395837"
[3] "chr4.52395837-52522387" "chr4.52522387-52989049"
[5] "chr4.52989049-53002654" "chr4.53002654-53517879"

> head(sigfeatures[[3]])

[1] "FSTL1" "CXCR4" "MMP7" "ZEB1" "KIAA1199" "SERPINF1"

Finally, we show how to analyze the GBM data set using iClusterBayes, a newly developed
Bayesian integrative clustering mehtod (Mo et al., 2018). This method does not need to
perform a grid search for the optimal lasso parameter, and thus it needs much less comput-
ing resource when the data sets are relatively large. In addition, it calculates the posterior
probability of being a driver for each genomic feature, which can be used as a criterion for
seleting genomic features that drive the integrative clustering.

> set.seed(123)
> date()

[1] "Sun Feb 26 04:14:09 2023"

> bayfit = tune.iClusterBayes(cpus=6,dt1=gbm.mut2,dt2=gbm.cn,dt3=gbm.exp,
+ type=c("binomial","gaussian","gaussian"),K=1:6,n.burnin=18000,
+ n.draw=12000,prior.gamma=c(0.5,0.5,0.5),sdev=0.05,thin=3)

Begin parallel computation
End parallel computation

> date()

[1] "Sun Feb 26 05:02:51 2023"

> save.image(file="gbmBayfit.RData")
> #load("gbmBayfit.RData")

BIC or deviance ratio may be used as a criterion to select an optimal value for k, the
parameter that defines the number of clusters.

> allBIC = NULL
> devratio = NULL
> nK = length(bayfit$fit)
> for(i in 1:nK){
+ allBIC = c(allBIC,bayfit$fit[[i]]$BIC)
+ devratio = c(devratio,bayfit$fit[[i]]$dev.ratio)
+ }
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> par(mar=c(4.0,4.0,0.5,0.5),mfrow=c(1,2))
> plot(1:nK, allBIC,type="b",xlab="k",ylab="BIC",pch=c(1,1,19,1,1,1))
> plot(1:nK,devratio,type="b",xlab="k",ylab="Deviance ratio",pch=c(1,1,19,1,1,1))
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Figure 5: BIC and percent of explained variation vs. K.
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From the BIC and deviance ratio plots, we see that k=3 is an optimal solution. However, if
the data are noisy, the deviance ratio may keep increasing and the BIC may keep decreasing
when k increases. In this case, we suggest the user make heat maps of the data sets, and
then decide the optimal number of clusters based on the features’ pattern on the heat maps.

Plot the posterior probability of genomic features when k=3.
See Figure 7 for the heatmap plot for the four-cluster result.

Let’s compare the three clusters (labeled as C1, C2, C3) given by iClusterPlus with the four
clusters (labeled as B1,B2,B3,B4) given by iClusterBayes.

> best.cluster.Bayes = bayfit$fit[[3]]$clusters
> #best.cluster is the clusters generated by iClusterPlus; See the above code
> table(best.cluster,best.cluster.Bayes)

best.cluster.Bayes
best.cluster 1 2 3 4

1 20 2 21 3
2 1 0 2 20
3 0 14 1 0

We basically find that C1 corresponds to B1, C2 corresponds to B4, and C3 corresponds to
B2 and B3, respectively. In other words, the clusters genered by the two methods are quite
similar except for that iClusterBayes further divides the cluster C3 into 2 sub-clusters (B2
and B3).

> sessionInfo()

R Under development (unstable) (2023-01-14 r83615)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0

Random number generation:
RNG: L'Ecuyer-CMRG
Normal: Inversion
Sample: Rejection

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal
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> par(mfrow=c(3,1))
> k=3
> plot(bayfit$fit[[k]]$beta.pp[[1]],xlab="Genes",ylab="Posterior probability",
+ main="Mutation")
> plot(bayfit$fit[[k]]$beta.pp[[2]],xlab="Genomic region",ylab="Posterior probability",
+ main="Copy Number")
> plot(bayfit$fit[[k]]$beta.pp[[3]],xlab="Genes",ylab="Posterior probability",
+ main="Expression")
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Figure 6: Posterior probabilities of genomic features
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> plotHMBayes(fit=bayfit$fit[[3]],datasets=list(gbm.mut2,cn.image,exp.image),
+ type=c("binomial","gaussian","gaussian"), col.scheme = col.scheme,
+ threshold=c(0.5,0.5,0.5),row.order=c(F,F,T),chr=chr,plot.chr=c(F,T,F),
+ sparse=c(T,T,T),cap=c(F,T,F))
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Figure 7: Heatmap of mutation (top panel), DNA copy number (middle panel), and mRNA
expression (bottom panel) for the 4-cluster solution. Rows are genomic features and columns
are samples.Genomic features with posterior probability > 0.5 are shown on the heatmap.
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attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] lattice_0.20-45 gplots_3.1.3 GenomicRanges_1.51.4
[4] GenomeInfoDb_1.35.15 IRanges_2.33.0 S4Vectors_0.37.3
[7] BiocGenerics_0.45.0 iClusterPlus_1.35.1

loaded via a namespace (and not attached):
[1] zlibbioc_1.45.0 gtools_3.9.4 GenomeInfoDbData_1.2.9
[4] KernSmooth_2.23-20 XVector_0.39.0 RCurl_1.98-1.10
[7] bitops_1.0-7 caTools_1.18.2 grid_4.3.0

[10] compiler_4.3.0 tools_4.3.0
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