
HowTo BGX

Ernest Turro

Imperial College London

April 25, 2007

1 Introduction

This vignette describes how to use bgx , a C++ implementation of a Bayesian hierarchical
integrated approach to the modelling and analysis of A�ymetrix GeneChip arrays. The
model and methodology is described in Hein et al, 2005.

There are two ways to run bgx : (1) through R and (2) as a standalone binary. Both
ways make use of probe level GeneChip data, which you must obtain as GeneChip CEL
�les.

2 Reading in the CEL �les

When you load bgx , several required packages from the Bioconductor1 project are auto-
matically loaded.

> library(bgx)

The a�y package allows you to read CEL �les into an AffyBatch object. This can
be achieved by changing your working directory to wherever the CEL �les are stored
and executing:

> aData <- ReadAffy()

This will read in the CEL �les in alphabetical order and save the data in the aData
object. Alternatively, you can specify the speci�c �les you would like to read in by
adding their paths to the argument list, for example:

> aData <- ReadAffy("CEL/choe/chipC-rep1.CEL", "CEL/choe/chipS-rep2.CEL")

1http://bioconductor.org

1

http://bioconductor.org

3 Running BGX through R

A basic execution of the program can be performed by simply passing an AffyBatch ob-
ject as a single parameter to the bgx function and saving the result in an ExpressionSet

object. The result will hold array-speci�c gene expression values and their corresponding
standard errors in assayData(eset)$exprs and assayData(eset)$se.exprs respec-
tively.

> eset <- bgx(aData)

A more elaborate scenario would involve splitting the arrays into a number of condi-
tions using the samplesets argument2; specifying which genes to analyse with the genes

argument; specifying whether to take into account probe a�nity with probeA� ; setting
the number of burn-in and post burn-in runs with the burnin and iter arguments respec-
tively; setting the set of parameters to save with the output argument3; and specifying
where to save the runs with rundir . Execute help(bgx) in R for a full explanation of
all the parameters.

As an example, let us analyse the Dilution data set and save the results in the
current working directory ("."):

> library(affydata)

> library(hgu95av2cdf)

> data(Dilution)

> eset <- bgx(Dilution, samplesets=c(2,2), probeAff=FALSE, burnin=2048, iter=8192,genes=c(12500:12599), output="all")

The eset object will contain gene expression information for each gene under each
condition (not necessarily each array). You may obtain the gene expression measure
using the exprs function. For instance:

> exprs(eset)[10:40,] # Shorthand for assayData(eset)\$exprs[10:40,]

condition 1 condition 2

947_at 6.56098 6.26997

948_s_at 4.85790 4.49876

949_s_at 4.83961 4.56556

950_at 4.52997 4.29875

951_at 3.17393 2.44307

952_at 2.73888 2.56612

953_g_at 5.36699 4.92927

2Note that if your AffyBatch object contains information on the experimental design in the
phenoData slot, you do not need to use the samplesets argument.

3output can be set to either "minimal", "trace" or "all". See the documentation for an explanation
of what these levels mean

2

954_s_at 6.37191 6.10189

955_at 6.62872 6.35100

956_at 7.01201 6.71214

957_at 4.72135 4.34800

958_s_at 5.54409 5.21718

959_at 1.57482 1.86354

960_g_at 5.20786 4.92868

961_at 2.03527 1.66524

962_at 2.14763 2.55365

963_at 4.60264 4.28778

964_at 4.28678 4.13439

965_at 1.03681 1.26713

966_at 4.47805 4.10522

967_g_at 4.84897 4.66133

968_i_at 3.67266 2.90894

969_s_at 4.87544 4.51131

970_r_at 6.31486 6.17551

971_s_at 3.43529 2.95454

973_at 4.45409 4.13214

974_at 2.01042 2.06738

975_at 4.32565 4.13869

976_s_at 3.86750 3.44907

977_s_at 4.94816 4.62901

978_at 2.65994 2.81188

Run help(ExpressionSet) in R for more information.
Note that samplesets should be set to an array specifying the number of replicates

in each condition. If set to (3,2), bgx will treat the �rst three arrays read into R as
replicates under condition 1 and the next two as replicates under condition 2. You should
make sure that all condition 1 �les are read in �rst and all condition 2 �les are read
in second by ReadAffy(). You may check the order of the samples in your AffyBatch
object by using the sampleNames function:

> sampleNames(Dilution)

[1] "20A" "20B" "10A" "10B"

4 Running BGX as a standalone binary

Occasionally it may be useful to run bgx as a standalone binary from the command line4.
In this case, you should use the standalone.bgx function instead of the bgx function.

4You can compile it by tweaking 'src/Make�le.standalone' to your speci�cations and running `make
-f Make�le.standalone` from the 'src' directory.

3

It takes the same arguments as bgx, with the addition of dirname, which should specify
where you would like to save the input �les required by the standalone binary.

aData <- ReadAffy() # Read in 6 arrays across two conditions

in alphabetical order

standalone.bgx(aData, samplesets=c(3,3), genes=c(1:650,1000:1200),

burnin=16384, iter=65536, output="minimal",

dirname="input-choe3replicates")

Once you have saved the input �les, you should locate the binary, make sure it is
executable5, and pass the path to the newly created infile.txt �le as a single argument.
For example:

./bgx ../input-choe3replicates/infile.txt

5 Detailed analysis of the output

If you wish to analyse the output in detail, you should �rst read the output into a list
as follows:

> bgxOutput <- readOutput.bgx("run.1")

You may then pass the bgxOutput object to any of several analysis functions. For
instance, to view the gene expression distributions under the various conditions for gene
10, you could do:

> plotExpressionDensity(bgxOutput, gene=10)

5Under Unix-like environments, you can type chmod +x bgx at the command prompt to do this.

4

5.5 6.0 6.5 7.0

0.
0

0.
5

1.
0

1.
5

2.
0

Densities of mu for gene 947_at

Expression

D
en

si
ty

Cond 1
Cond 2

In order to get a list of ranked di�erential expression values, you could do:

> rankedGeneList <- rankByDE(bgxOutput)

> print(rankedGeneList[1:25,]) # print top 25 DEG

Position DiffExpression

AFFX-HSAC07/X00351_5_at 83 35.264039

956_at 19 34.426614

AFFX-HUMGAPDH/M33197_5_at 90 32.603083

941_at 4 30.761823

955_at 18 30.120320

AFFX-HUMGAPDH/M33197_M_at 92 26.166322

947_at 10 24.066835

AFFX-HSAC07/X00351_M_at 85 23.781085

954_s_at 17 20.713868

953_g_at 16 19.738269

AFFX-HUMGAPDH/M33197_3_at 88 18.643602

946_at 9 17.263210

5

AFFX-hum_alu_at 87 16.196821

958_s_at 21 15.306843

AFFX-BioDn-3_at 70 14.365100

969_s_at 32 13.084924

AFFX-HUMISGF3A/M97935_3_at 94 12.876558

AFFX-HUMISGF3A/M97935_MB_at 97 12.210429

982_at 44 11.920631

957_at 20 11.042587

AFFX-HSAC07/X00351_3_at 81 10.833132

948_s_at 11 10.325586

993_at 54 8.787360

977_s_at 39 8.776448

AFFX-HUMISGF3A/M97935_MA_at 96 8.739451

Run help(analysis.bgx) for more detailed usage instructions on the analysis func-
tions.

6

	Introduction
	Reading in the CEL files
	Running BGX through R
	Running BGX as a standalone binary
	Detailed analysis of the output

