1 Preparing the data

To demonstrate the data visualization of QFeatures, we first perform a quick processing of the hlpsms example data. We load the data and read it as a QFeautres object. See the processing vignette for more details about data processing with QFeatures.

library("QFeatures")
data(hlpsms)
hl <- readQFeatures(hlpsms, quantCols = 1:10, name = "psms")

We then aggregate the psms to peptides, and the peptodes to proteins.

hl <- aggregateFeatures(hl, "psms", "Sequence", name = "peptides", fun = colMeans)
## Your row data contain missing values. Please read the relevant
## section(s) in the aggregateFeatures manual page regarding the effects
## of missing values on data aggregation.
hl <- aggregateFeatures(hl, "peptides", "ProteinGroupAccessions", name = "proteins", fun = colMeans)

We also add the TMT tags that were used to multiplex the samples. The data is added to the colData of the QFeatures object and will allow us to demonstrate how to plot data from the colData.

hl$tag <- c("126", "127N", "127C", "128N", "128C", "129N", "129C",
            "130N", "130C", "131")

The dataset is now ready for data exploration.

2 Exploring the QFeatures hierarchy

QFeatures objects can contain several assays as the data goes through the processing workflow. The plot function provides an overview of all the assays present in the dataset, showing also the hierarchical relationships between the assays as determined by the AssayLinks.

plot(hl)

This plot is rather simple with only three assays, but some processing workflows may involve more steps. The feat3 example data illustrates the different possible relationships: one parent to one child, multiple parents to one child and one parent to multiple children.

data("feat3")
plot(feat3)

Note that some datasets may contain many assays, for instance because the MS experiment consists of hundreds of batches. This can lead to an overcrowded plot. Therefore, you can also explore this hierarchy of assays through an interactive plot, supported by the plotly package (Sievert (2020)). You can use the viewer panel to zoom in and out and navigate across the tree(s).

plot(hl, interactive = TRUE)

3 Basic data exploration

The quantitative data is retrieved using assay(), the feature metadata is retrieved using rowData() on the assay of interest, and the sample metadata is retrieved using colData(). Once retrieved, the data can be supplied to the base R data exploration tools. Here are some examples:

  • Plot the intensities for the first protein. These data are available from the proteins assay.
plot(assay(hl, "proteins")[1, ])