Package ‘veloviz’

September 10, 2021

Title VeloViz: RNA-velocity informed 2D embeddings for visualizing cell state trajectories

Version 0.99.7

Description VeloViz uses each cell’s current observed and predicted future transcriptional states inferred from RNA velocity analysis to build a nearest neighbor graph between cells in the population. Edges are then pruned based on a cosine correlation threshold and/or a distance threshold and the resulting graph is visualized using a force-directed graph layout algorithm. VeloViz can help ensure that relationships between cell states are reflected in the 2D embedding, allowing for more reliable representation of underlying cellular trajectories.

biocViews Transcriptomics, Visualization, GeneExpression, Sequencing, RNASeq, DimensionReduction

License GPL-3

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Imports Rcpp, Matrix, igraph, mgcv, RSpectra, grDevices, graphics, stats

LinkingTo Rcpp

Depends R (>= 4.1)

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/veloviz

git_branch master

git_last_commit a59dff

git_last_commit_date 2021-08-04

Date/Publication 2021-09-10

Author Lyla Atta [aut, cre] (<https://orcid.org/0000-0002-6113-0082>), Jean Fan [aut] (<https://orcid.org/0000-0002-0212-5451>), Arpan Sahoo [aut] (<https://orcid.org/0000-0002-0325-2073>)

Maintainer Lyla Atta <lylaatta@jhmi.edu>
R topics documented:

- asNNGraph .. 2
- buildVeloviz .. 3
- graphViz .. 5
- normalizeDepth ... 7
- normalizeVariance ... 7
- pancreas .. 9
- plotEmbedding ... 9
- plotVeloviz .. 11
- projectedNeighbors ... 12
- reduceDimensions ... 13
- vel ... 14
- veloviz ... 15

Index 16

asNNGraph

Function to produce idx and dist representation of a VeloViz graph

Description

Function to produce idx and dist representation of a VeloViz graph

Usage

asNNGraph(vig)

Arguments

vig output of buildVeloviz

Value

idx numVertices x numNeighbors matrix, where each row i contains indices of vertex i's neighbors
dist numVertices x numNeighbors matrix, where each row i contains distances from vertex i to its neighbors

Examples

data(vel)
curr <- vel$current
proj <- vel$projected

vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE,
use.ods.genes = FALSE, alpha = 0.05, pca = TRUE, nPCs = 3, center = TRUE,
scale = TRUE, k = 10, similarity.threshold = -1, distance.weight = 1,
distance.threshold = 1, weighted = TRUE, verbose = FALSE)
buildVeloviz

asNNGraph(vv)

buildVeloviz

Creates VeloViz graph and FDG layout from PC scores of current and projected transcriptional states.

Description

Creates VeloViz graph and FDG layout from PC scores of current and projected transcriptional states.

Usage

```r
buildVeloviz(
  curr,  
  proj,  
  normalize.depth = TRUE,  
  depth = 1e+06,  
  use.ods.genes = TRUE,  
  max.ods.genes = 2000,  
  alpha = 0.05,  
  pca = TRUE,  
  center = TRUE,  
  scale = TRUE,  
  nPCs = 10,  
  k = 10,  
  similarity.threshold = 0,  
  distance.weight = 1,  
  distance.threshold = 1,  
  weighted = TRUE,  
  remove.unconnected = TRUE,  
  verbose = FALSE,  
  details = FALSE
)
```

Arguments

- `curr`
 Genes (rows) x cells (columns) matrix of observed current transcriptional state

- `proj`
 Genes (rows) x cells (columns) matrix of predicted future transcriptional state

- `normalize.depth`
 logical to normalize raw counts to counts per million, default = TRUE

- `depth`
 Depth scaling, default = 1e6 for counts per million (CPM)

- `use.ods.genes`
 Use only overdispersed genes to create VeloViz graph, default = TRUE

- `max.ods.genes`
 number of most highly expressed overdispersed genes to use to create VeloViz graph, default = 2000
alpha
Significance threshold for overdispersed genes, default = 0.05

pca
logical to use PC scores to create VeloViz graph, default = TRUE. FALSE = use gene expression to create VeloViz graph

center
logical to mean center gene expression before PCA, default = TRUE

scale
logical to scale gene expression variance before PCA, default = TRUE

nPcs
number of principal components to use to create VeloViz graph, default = 10

k
Number of nearest neighbors to assign each cell

similarity.threshold
similarity threshold below which to remove edges, default = -1 i.e. no edges removed

distance.weight
Weight of distance component of composite distance, default = 1

distance.threshold
quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed

weighted
logical indicating whether to compute VeloViz edges based on composite distance, default = TRUE. FALSE = all edges are of equal weight

remove.unconnected
logical indicating whether to remove cells with no edges in the VeloViz graph from the output embedding, default = TRUE (removed)

verbose
logical for verbosity setting, default = FALSE

details
logical to return detailed data frame or names of genes, default = FALSE

Value

graph
igraph object of VeloViz graph

fdg_coords
cells (rows) x 2 coordinates of force-directed layout of VeloViz graph

projectedNeighbors
output of projectedNeighbors

See Also

projectedNeighbors

Examples

data(vel)
curr <- vel$current
proj <- vel$projected

buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE, use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPcs = 20, center = TRUE, scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1, distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)
graphViz

Visualize as velocity informed force directed graph

Description
Visualize as velocity informed force directed graph

Usage
```r
graphViz(
  observed, 
  projected, 
  k, 
  distance_metric = "L2", 
  similarity_metric = "cosine", 
  distance_weight = 1, 
  distance_threshold = 1, 
  similarity_threshold = -1, 
  weighted = TRUE, 
  remove_unconnected = TRUE, 
  return_graph = FALSE, 
  plot = TRUE, 
  cell.colors = NA, 
  title = NA
)
```

Arguments

- **observed**: PCs (rows) x cells (columns) matrix of observed transcriptional state projected into PC space
- **projected**: PCs (rows) x cells (columns) matrix of projected transcriptional states. Cell should be in same order as in observed
- **k**: Number of nearest neighbors to assign each cell
- **distance_metric**: Method to compute distance component of composite distance. "L1" or "L2", default = "L2"
- **similarity_metric**: Method to compute similarity between velocity and cell transition matrices. "cosine" or "pearson", default = "cosine"
- **distance_weight**: Weight of distance component of composite distance, default = 1
- **distance_threshold**: quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed
graphViz

- **similarity_threshold**
 - similarity threshold below which to remove edges, default = -1 i.e. no edges removed
- **weighted**
 - if TRUE, assigns edge weights based on composite distance, if FALSE assigns equal weights to all edges, default = TRUE
- **remove_unconnected**
 - if TRUE, does not plot cells with no edges, default = TRUE
- **return_graph**
 - if TRUE, returns igraph object graph, force-directed layout coordinates `fdg_coords`, and `projected_neighbors` object detailing composite distance values and components, default = FALSE
- **plot**
 - if TRUE, plots graph and force-directed layout
- **cell.colors**
 - cell.colors to use for plotting
- **title**
 - title to use for plot

Value

- **graph** igraph object of VeloViz graph
- **fdg_coords** cells (rows) x 2 coordinates of force-directed layout of VeloViz graph
- **projectedNeighbors** output of `projectedNeighbors`

See Also

- `projectedNeighbors`

Examples

```r
data(vel)
curr = vel$current
proj = vel$projected

m <- log10(curr+1)
pca <- RSpectra::svds(A = Matrix::t(m), k=3,
  opts = list(center = FALSE, scale = FALSE, maxitr = 2000, tol = 1e-10))
pca.curr <- Matrix::t(m) %*% pca$v[,1:3]

m <- log10(proj+1)
pca.proj <- Matrix::t(m) %*% pca$v[,1:3]

graphViz(t(pca.curr), t(pca.proj), k=10,
cell.colors=NA, similarity_threshold=-1, distance_weight = 1,
distance_threshold = 1, weighted = TRUE, remove_unconnected = TRUE,
plot = FALSE, return_graph = TRUE)
```
normalizeDepth

Description

Normalizes raw counts to counts per million

Usage

```r
normalizeDepth(counts, depthScale = 1e+06, verbose = TRUE)
```

Arguments

- `counts`: Read count matrix. The rows correspond to genes, columns correspond to individual cells
- `depthScale`: Depth scaling. Using a million for CPM (default: 1e6)
- `verbose`: Boolean for verbosity setting (default: TRUE)

Value

a normalized matrix

Examples

```r
data(vel)
curr <- vel$current
normalizeDepth(curr)
```

normalizeVariance

Description

Identify overdispersed genes by normalizing counts per million (CPM) gene expression variance relative to transcriptome-wide expectations (Modified from SCDE/PAGODA2 code)

Description

Normalizes gene expression magnitudes to with respect to its ratio to the transcriptome-wide expectation as determined by local regression on expression magnitude
normalizeVariance

Usage

normalizeVariance(
 cpm,
 gam.k = 5,
 alpha = 0.05,
 max.adjusted.variance = 1000,
 min.adjusted.variance = 0.001,
 verbose = TRUE,
 plot = FALSE,
 details = FALSE
)

Arguments

cpm Counts per million (CPM) matrix. Rows are genes, columns are cells.
gam.k Generalized additive model parameter; the dimension of the basis used to represent the smooth term (default: 5)
alpha Significance threshold for overdispersed genes (default: 0.05)
max.adjusted.variance
 Ceiling on maximum variance after normalization to prevent infinites (default: 1e3)
min.adjusted.variance
 Floor on minimum variance after normalization (default: 1e-3)
verbose Boolean for verbosity setting (default: TRUE)
plot Boolean to plot mean variance plots before and after correction
details Boolean to return detailed data frame or names of genes (default: FALSE)

Value

A list with two items: (1) an adjusted CPM matrix with the same dimensions as the input and (2) a dataframe with the summary statistics for each gene.

Examples

data(vel)
curr <- vel$current

normalizeDepth(curr)
pancreas

Pancreas scRNA-seq data

Description
Pancreatic endocrinogenesis scRNA-seq from Bastidas-Ponce et. al., Development 2019 accessed via scVelo package and subsampled to 739 cells.

Usage
pancreas

Format
list of 4 objects:

- **spliced** matrix, 7192 genes x 739 cells of spliced counts
- **unspliced** matrix, 7192 genes x 739 cells of unspliced counts
- **pcs** matrix, 739 x 50 cell scores in 50 PCs
- **clusters** factor of cell type annotations from scVelo

Source
https://dev.biologists.org/content/146/12/dev173849.long

plotEmbedding

Plot 2D embedding From scde/pagoda2/MUDAN

Description
Plot 2D embedding From scde/pagoda2/MUDAN

Usage
plotEmbedding(
 emb,
 groups = NULL,
 colors = NULL,
 cex = 0.6,
 alpha = 0.4,
 gradientPalette = NULL,
 zlim = NULL,
 s = 1,
 v = 0.8,
 min.group.size = 1,
)
show.legend = FALSE,
mark.clusters = FALSE,
mark.cluster.cex = 2,
shuffle.colors = FALSE,
legend.x = "topright",
gradient.range.quantile = 0.95,
verbose = TRUE,
unclassified.cell.color = "gray70",
group.level.colors = NULL,
...
)

Arguments

emb dataframe with x and y coordinates
groups factor annotations for rows on emb for visualizing cluster annotations
colors color or numeric values for rows on emb for visualizing gene expression
cex point size
alpha point opacity
gradientPalette palette for colors if numeric values provided
zlim range for colors
s saturation of rainbow for group colors
v value of rainbow for group colors
min.group.size minimum size of group in order for group to be colored
show.legend whether to show legend
mark.clusters whether to mark clusters with name of cluster
mark.cluster.cex cluster marker point size
shuffle.colors whether to shuffle group colors
legend.x legend position ie. 'topright', 'topleft', 'bottomleft', 'bottomright'
gradient.range.quantile quantile for mapping colors to gradient palette
verbose verbosity
unclassified.cell.color cells not included in groups will be labeled in this color
group.level.colors set group level colors. Default uses rainbow.
...
Additional parameters to pass to BASE::plot

Value

embedding plot
Examples

data(vel)
curr <- vel$current
proj <- vel$projected

vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE,
use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE,
scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1,
distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)

plotEmbedding(vv$fdg_coords)

plotVeloviz

Plot function

Description
Plot function

Usage
plotVeloviz(
 vig, # output of buildVeloviz
 layout.method = igraph::layout_with_fr, # igraph method to use for generating 2D graph representation, default = igraph::layout_with_fr
 clusters = NA, # cluster annotations for cells in data
 cluster.method = igraph::cluster_louvain, # igraph method to use for clustering if clusters are not provided, default = igraph::cluster_louvain
 col = NA, # colors to use for plotting
 alpha = 0.05, # transparency for plotting graph nodes
 verbose = TRUE # logical for verbosity setting, default = FALSE
)

Arguments
vig # output of buildVeloviz
layout.method # igraph method to use for generating 2D graph representation, default = igraph::layout_with_fr
clusters # cluster annotations for cells in data
cluster.method # igraph method to use for clustering if clusters are not provided, default = igraph::cluster_louvain
col # colors to use for plotting
alpha # transparency for plotting graph nodes
verbose # logical for verbosity setting, default = FALSE

Value
cells (rows) x 2 coordinates of force-directed layout of VeloViz graph
Examples

```r
data(vel)
curr <- vel$current
proj <- vel$projected

vv <- buildVeloviz(curr = curr, proj = proj, normalize.depth = TRUE,
                    use.ods.genes = TRUE, alpha = 0.05, pca = TRUE, nPCs = 20, center = TRUE,
                    scale = TRUE, k = 5, similarity.threshold = 0.25, distance.weight = 1,
                    distance.threshold = 0.5, weighted = TRUE, verbose = FALSE)

plotVeloviz(vv)
```

projectedNeighbors

Computes composite distances between all cell pairs and returns k-nearest neighbors and edge weights needed to build VeloViz graph.

Description

Computes composite distances between all cell pairs and returns k-nearest neighbors and edge weights needed to build VeloViz graph.

Usage

```r
projectedNeighbors(
  observed,
  projected,
  k,
  distance_metric = "L2",
  similarity_metric = "cosine",
  distance_weight = 1,
  distance_threshold = 1,
  similarity_threshold = -1
)
```

Arguments

- **observed**: PCs (rows) x cells (columns) matrix of observed transcriptional state projected into PC space
- **projected**: PCs (rows) x cells (columns) matrix of projected transcriptional states. Cells should be in same order as in observed
- **k**: Number of nearest neighbors to assign each cell
- **distance_metric**: Method to compute distance component of composite distance. "L1" or "L2", default = "L2"
reduceDimensions

similarity_metric
Method to compute similarity between velocity and cell transition matrices. "cosine" or "pearson", default = "cosine"

distance_weight
Weight of distance component of composite distance, default = 1

distance_threshold
Quantile threshold for distance component above which to remove edges, default = 1 i.e. no edges removed

similarity_threshold
Similarity threshold below which to remove edges, default = -1 i.e. no edges removed

Value
kNNs cells (rows) x k (columns) matrix of indices of each cell’s nearest neighbors computed based on composite distance. Edges removed based on distance or similarity threshold will be NA.

edge_weights cells (rows) x k (columns) matrix of edge weights computed based on composite distance. Edges removed based on distance or similarity threshold will be NA.

all_dists cells x cells matrix of all pairwise composite distances

dist_comp Components of composite distance: invDist distance component, negSim similarity component

See Also
graphViz

Examples

```r
data(vel)
curr <- vel$current
proj <- vel$projected

projectedNeighbors(curr, proj, 10)
```

reduceDimensions
Reduce dimension using Principal Components Analysis via svds from RSpectra

Description
Reduce dimension using Principal Components Analysis via svds from RSpectra
Usage

reduceDimensions(
 matnorm,
 center = TRUE,
 scale = TRUE,
 max.ods.genes = 2000,
 nPCs = 50,
 verbose = TRUE,
 plot = FALSE,
 details = FALSE
)

Arguments

 matnorm matrix on which to perform PCA
 center logical to mean center gene expression before PCA, default = TRUE
 scale logical to scale gene expression variance before PCA, default = TRUE
 max.ods.genes number of most highly expressed overdispersed genes to include, default = 2000
 nPCs number of principal components to reduce to return, default = 50
 verbose logical for verbosity setting, default = TRUE
 plot plot singular values vs number of components
 details logical to return pca object, default = FALSE

Value

 matrix of cell scores in nPCs components

Examples

 data(vel)
 curr <- vel$current

 curr.norm <- normalizeDepth(curr)
 curr.norm <- log10(curr.norm+1)
 reduceDimensions(curr.norm, nPCs=3)

vel

MERFISH velocity subset

Description

 output of velocyto.R::gene.relative.velocity.estimates for 40 cell subset of MERFISH data. Used to run examples
Usage

vel

Format

list of 1:

vel velocity output containing current observed ("current") and predicted future ("projected") estimates

Source

https://www.pnas.org/content/116/39/19490

Description

Package for creating RNA velocity informed embeddings for single cell transcriptomics
Index

* datasets
 pancreas, 9
 vel, 14

asNNGraph, 2

buildVeloviz, 3

graphViz, 5, 13

normalizeDepth, 7
normalizeVariance, 7

pancreas, 9
plotEmbedding, 9
plotVeloviz, 11
projectedNeighbors, 4, 6, 12

reduceDimensions, 13

vel, 14
veloviz, 15