
MLSeq: Machine Learning Interface to RNA-Seq

Data

Dincer Goksuluk1
†
, Gokmen Zararsiz1, Selcuk Korkmaz2, Vahap Eldem3, Ahmet

Ozturk1, Ahmet Ergun Karaagaoglu4 and Bernd Klaus5

1 Erciyes University, Faculty of Medicine, Department of Biostatistics, Ankara, TURKEY
2 Trakya University, Faculty of Medicine, Department of Biostatistics, Edirne, TURKEY

3 Istanbul University, Faculty of Science, Department of Biology, Istanbul, TURKEY
4 Hacettepe University, Faculty of Medicine, Department of Biostatistics, Kayseri, TURKEY

5 EMBL Heidelberg, Heidelberg, Germany

March 5, 2025

NOTE: MLSeq has major changes from version 1.20.1 and this will bump following versions to 2.y.z in
the next release of Bioconductor (ver. 3.8). Most of the functions from previous versions were changed
and new functions are included. Please see Beginner’s Guide before continue with the analysis.

Abstract

MLSeq is a comprehensive package for application of machine-learning algorithms in classification of
next-generation RNA-Sequencing (RNA-Seq) data. Researchers have appealed to MLSeq for various
purposes, which include prediction of disease outcomes, identification of best subset of features (genes,
transcripts, other isoforms), and sorting the features based on their predictive importance. Using this
package, researchers can upload their raw RNA-seq count data, preprocess their data and perform a
wide range of machine-learning algorithms. Preprocessing approaches include deseq median ratio and
trimmed mean of M means (TMM) normalization methods, as well as the logarithm of counts per mil-
lion reads (log-cpm), variance stabilizing transformation (vst), regularized logarithmic transformation
(rlog) and variance modeling at observational level (voom) transformation approaches. Normalization
approaches can be used to correct systematic variations. Transformation approaches can be used to
bring discrete RNA-seq data hierarchically closer to microarrays and conduct microarray-based clas-
sification algorithms. Currently, MLSeq package contains 90+ microarray-based classifiers including
the recently developed voom-based discriminant analysis classifiers. Besides these classifiers, MLSeq
package also includes discrete-based classifiers, such as Poisson linear discriminant analysis (PLDA)
and negative binomial linear discriminant analysis (NBLDA). Over the preprocessed data, researchers
can build classification models, apply parameter optimization on these models, evaluate the model
performances and compare the performances of different classification models. Moreover, the class
labels of test samples can be predicted with the built models. MLSeq is a user friendly, simple and
currently the most comprehensive package developed in the literature for RNA-Seq classification. To
start using this package, users need to upload their count data, which contains the number of reads
mapped to each transcript for each sample. This kind of count data can be obtained from RNA-
Seq experiments, also from other sequencing experiments such as ChIP-sequencing or metagenome
sequencing. This vignette is presented to guide researchers how to use this package.

MLSeq version: 2.25.0

Contents

1 Introduction 2

1

https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html
https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html

2 Preparing the input data 2

3 Splitting the data 3

4 Available machine-learning models 4

5 Normalization and transformation 5

6 Model building 6
6.1 Optimizing model parameters . 6
6.2 Defining control list for selected classifier . 7

7 Predicting the class labels of test samples 9

8 Comparing the performance of classifiers 10

9 Determining possible biomarkers using sparse classifiers 12

10 Updating an MLSeq object using update 12
10.1 Transitions between continuous, discrete and voom-based classifiers 14

11 Session info 15

1 Introduction

With the recent developments in molecular biology, it is feasible to measure the expression levels of
thousands of genes simultaneously. Using this information, one major task is the gene-expression based
classification. With the use of microarray data, numerous classification algorithms are developed and
adapted for this type of classification. RNA-Seq is a recent technology, which uses the capabilities of
next-generation sequencing (NGS) technologies. It has some major advantages over microarrays such
as providing less noisy data and detecting novel transcripts and isoforms. These advantages can also
affect the performance of classification algorithms. Working with less noisy data can improve the predic-
tive performance of classification algorithms. Further, novel transcripts may be a biomarker in related
disease or phenotype. MLSeq package includes several classification algorithms, also normalization and
transformation approaches for RNA-Seq classification.

In this vignette, you will learn how to build machine-learning models from raw RNA-Seq count data.
MLSeq package can be loaded as below:

library(MLSeq)

2 Preparing the input data

MLSeq package expects a count matrix that contains the number of reads mapped to each transcript for
each sample and class label information of samples in an S4 class DESeqDataSet.

After mapping the RNA-Seq reads to a reference genome or transcriptome, number of reads mapped
to the reference genome can be counted to measure the transcript abundance. It is very important that
the count values must be raw sequencing read counts to implement the methods given in MLSeq . There
are a number of functions in Bioconductor packages which summarizes mapped reads to a count data
format. These tools include featureCounts in Rsubread [1], summarizeOverlaps in GenomicRanges [2]
and easyRNASeq [3]. It is also possible to access this type of count data from Linux-based softwares as
htseq-count function in HTSeq [4] and multicov function in bedtools [5] softwares. In this vignette, we
will work with the cervical count data. Cervical data is from an experiment that measures the expression
levels of 714 miRNAs of human samples [6]. There are 29 tumor and 29 non-tumor cervical samples and
these two groups can be treated as two separate classes for classification purpose. We can define the file

2

https://www.bioconductor.org/packages/release/bioc/html/Rsubread.html
https://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://www.bioconductor.org/packages/release/bioc/html/easyRNASeq.html

path with using system.file:

filepath <- system.file("extdata/cervical.txt", package = "MLSeq")

Next, we can load the data using read.table:

cervical <- read.table(filepath, header=TRUE)

After loading the data, one can check the counts as follows. These counts are the number of mapped
miRNA reads to each transcript.

head(cervical[,1:10]) # Mapped counts for first 6 features of 10 subjects.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

let-7a 865 810 5505 6692 1456 588 9 4513 1962 10167

let-7a* 3 12 30 73 6 2 0 199 10 173

let-7b 975 2790 4912 24286 1759 508 33 6162 1455 18110

let-7b* 15 18 27 119 11 3 0 116 17 233

let-7c 828 1251 2973 6413 713 339 23 2002 476 3294

let-7c* 0 0 0 1 0 0 0 3 0 3

Cervical data is a data.frame containing 714 miRNA mapped counts given in rows, belonging to
58 samples given in columns. First 29 columns of the data contain the miRNA mapped counts of non-
tumor samples, while the last 29 columns contain the count information of tumor samples. We need to
create a class label information in order to apply classification models. The class labels are stored in
a DataFrame object generated using DataFrame from S4Vectors. Although the formal object returned
from data.frame can be imported into DESeqDataSet, we suggest using DataFrame in order to prevent
possible warnings/errors during downstream analyses.

class <- DataFrame(condition = factor(rep(c("N","T"), c(29, 29))))

class

DataFrame with 58 rows and 1 column

condition

<factor>

1 N

2 N

3 N

4 N

5 N

... ...

54 T

55 T

56 T

57 T

58 T

3 Splitting the data

We can split the data into two parts as training and test sets. Training set can be used to build classifi-
cation models, and test set can be used to assess the performance of each model. The ratio of splitting

3

https://www.bioconductor.org/packages/release/bioc/html/S4Vectors.html

data into two parts depends on total sample size. In most studies, the amount of training set is taken
as 70% and the remaining part is used as test set. However, when the number of samples is relatively
small, the split ratio can be decreased towards 50%. Similarly, if the total number of samples are large
enough (e.g 200, 500 etc.), this ratio might be increased towards 80% or 90%. The basic idea of defining
optimum splitting ratio can be expressed as: ‘define such a value for splitting ratio where we have enough
samples in the training and test set in order to get a reliable fitted model and test predictions.’ For our
example, cervical data, there are 58 samples. One may select 90% of the samples (approx. 52 subjects)
for training set. The fitted model is evantually reliable, however, test accuracies are very sensitive to
unit misclassifications. Since there are only 6 observations in the test set, misclassifying a single subject
would decrease test set accuracy approximately 16.6%. Hence, we should carefully define the splitting
ratio before continue with the classification models.

library(DESeq2)

set.seed(2128)

We do not perform a differential expression analysis to select differentially

expressed genes. However, in practice, DE analysis might be performed before

fitting classifiers. Here, we selected top 100 features having the highest

gene-wise variances in order to decrease computational cost.

vars <- sort(apply(cervical, 1, var, na.rm = TRUE), decreasing = TRUE)

data <- cervical[names(vars)[1:100],]

nTest <- ceiling(ncol(data) * 0.3)

ind <- sample(ncol(data), nTest, FALSE)

Minimum count is set to 1 in order to prevent 0 division problem within

classification models.

data.train <- as.matrix(data[,-ind] + 1)

data.test <- as.matrix(data[,ind] + 1)

classtr <- DataFrame(condition = class[-ind,])

classts <- DataFrame(condition = class[ind,])

Now, we have 40 samples which will be used to train the classification models and have remain-
ing 18 samples to be used to test the model performances. The training and test sets are stored in a
DESeqDataSet using related functions from DESeq2 [7]. This object is then used as input for MLSeq .

data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr,

design = formula(~condition))

data.testS4 = DESeqDataSetFromMatrix(countData = data.test, colData = classts,

design = formula(~condition))

4 Available machine-learning models

MLSeq contains more than 90 algorithms for the classification of RNA-Seq data. These algorithms include
both microarray-based conventional classifiers and novel methods specifically designed for RNA-Seq data.
These novel algorithms include voom-based classifiers [8], Poisson linear discriminant analysis (PLDA) [9]
and Negative-Binomial linear discriminant analysis (NBLDA) [10]. Run availableMethods for a list of
supported classification algorithm in MLSeq .

4

https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html

5 Normalization and transformation

Normalization is a crucial step of RNA-Seq data analysis. It can be defined as the determination and
correction of the systematic variations to enable samples to be analyzed in the same scale. These system-
atic variations may arise from both between-sample variations including library size (sequencing depth)
and the presence of majority fragments; and within-sample variations including gene length and sequence
composition (GC content). In MLSeq , two effective normalization methods are available. First one is
the “deseq median ratio normalization”, which estimates the size factors by dividing each sample by the
geometric means of the transcript counts [7]. Median statistic is a widely used statistics as a size factor
for each sample. Another normalization method is “trimmed mean of M values (TMM)”. TMM first
trims the data in both lower and upper side by log-fold changes (default 30%) to minimize the log-fold
changes between the samples and by absolute intensity (default 5%). After trimming, TMM calculates a
normalization factor using the weighted mean of data. These weights are calculated based on the inverse
approximate asymptotic variances using the delta method [11]. Raw counts might be normalized using
either deseq-median ratio or TMM methods.

After the normalization process, it is possible to directly use the discrete classifiers, e.g. PLDA and
NBLDA. In addition, it is possible to apply an appropriate transformation on raw counts and bring the
data hierarchically closer to microarrays. In this case, we can transform the data and apply a large
number of classifiers, e.g. nearest shrunken centroids, penalized discriminant analysis, support vector
machines, etc. One simple approach is the logarithm of counts per million reads (log-cpm) method, which
transforms the data from the logarithm of the division of the counts by the library sizes and multiplication
by one million (Equation 1). This transformation is simply an extension of the shifted-log transformation
zij = log2 xij + 1.

zij = log2

(
xij + 0.5

X.j + 1
× 106

)
(1)

Although log-cpm transformation provides less-skewed distribution, the gene-wise variances are still
unequal and possibly related with the distribution mean. Hence, one may wish to transform data into
continuous scale while controlling the gene-wise variances. Anders and Huber [12] presented variance
stabilizing transformation (vst) which provides variance independent from mean. Love et al. [7] presented
regularized logarithmic (rlog) transformation. This method uses a shrinkage approach as used in DESeq2

paper. Rlog transformed values are similar with vst or shifted-log transformed values for genes with higher
counts, while shrunken together for genes with lower counts. MLSeq allows researchers perform one of
transformations log-cpm, vst and rlog. The possible normalization-transformation combinations
are:

� deseq-vst: Normalization is applied with deseq median ratio method. Variance stabilizing trans-
formation is applied to the normalized data

� deseq-rlog: Normalization is applied with deseq median ratio method. Regularized logarithmic
transformation is applied to the normalized data

� deseq-logcpm: Normalization is applied with deseq median ratio method. Log of counts-per-million
transformation is applied to the normalized data

� tmm-logcpm: Normalization is applied with trimmed mean of M values (TMM) method. Log of
counts-per-million transformation is applied to the normalized data.

The normalization-transformation combinations are controlled by preProcessing argument in classify.
For example, we may apply rlog transformation on deseq normalized counts by setting preProcessing =

"deseq-rlog". See below code chunk for a minimal working example.

Support Vector Machines with Radial Kernel

fit <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-rlog", ref = "T",

control = trainControl(method = "repeatedcv", number = 2,

5

https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html

repeats = 2, classProbs = TRUE))

show(fit)

Furthermore, Zararsiz et al. [8] presented voomNSC classifier, which integrates voom transforma-
tion [13] and NSC method [14, 15] into a single and powerful classifier. This classifier extends voom
method for RNA-Seq based classification studies. VoomNSC also makes NSC algorithm available for
RNA-Seq technology. The authors also presented the extensions of diagonal discriminant classifiers [16],
i.e. voom-based diagonal linear discriminant analysis (voomDLDA) and voom based diagonal quadratic
discriminant analysis (voomDQDA) classifiers. All three classifiers are able to work with high-dimensional
(n < p) RNA-Seq counts. VoomDLDA and voomDQDA approaches are non-sparse and use all features
to classify the data, while voomNSC is sparse and uses a subset of features for classification. Note
that the argument preProcessing has no effect on voom-based classifiers since voom transformation is
performed within classifier. However, we may define normalization method for voom-based classifiers us-
ing normalize arguement. As an example, consider fitting a voomNSC model on deseq normalized counts:

set.seed(2128)

Voom based Nearest Shrunken Centroids.

fit <- classify(data = data.trainS4, method = "voomNSC",

normalize = "deseq", ref = "T",

control = voomControl(tuneLength = 20))

trained(fit) ## Trained model summary

We will cover trained model in section Optimizing model parameters.

6 Model building

The MLSeq has a single function classify for the model building and evaluation process. This function
can be used to evaluate selected classifier using a set of values for model parameter (aka tuning parameter)
and return the optimal model. The overall model performances for training set are also returned.

6.1 Optimizing model parameters

MLSeq evaluates k-fold repeated cross-validation on training set for selecting the optimal value of tuning
parameter. The number of parameters to be optimized depends on the selected classifier. Some classi-
fiers have two or more tuning parameter, while some have no tuning parameter. Suppose we want to fit
RNA-Seq counts to Support Vector Machines with Radial Basis Function Kernel (svmRadial) using deseq
normalization and vst transformation,

set.seed(2128)

Support vector machines with radial basis function kernel

fit.svm <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = trainControl(method = "repeatedcv", number = 5,

repeats = 10, classProbs = TRUE))

show(fit.svm)

##

An object of class "MLSeq"

Model Description: Support Vector Machines with Radial Basis Function Kernel (svmRadial)

6

##

Method : svmRadial

##

Accuracy(%) : 95

Sensitivity(%) : 94.12

Specificity(%) : 95.65

##

Reference Class : T

The model were trained using 5-fold cross validation repeated 10 times. The number of levels for
tuning parameter is set to 10. The length of tuning parameter space, tuneLength, may be increased to
be more sensitive while searching optimal value of the parameters. However, this may drastically increase
the total computation time. The tuning results are obtained using setter function trained as,

trained(fit.svm)

Support Vector Machines with Radial Basis Function Kernel

##

40 samples

100 predictors

2 classes: 'N', 'T'

##

No pre-processing

Resampling: Cross-Validated (5 fold, repeated 10 times)

Summary of sample sizes: 31, 33, 32, 32, 32, 32, ...

Resampling results across tuning parameters:

##

C Accuracy Kappa

0.25 0.8424603 0.6937976

0.50 0.9103571 0.8204990

1.00 0.9329365 0.8639560

2.00 0.9486508 0.8933900

4.00 0.9433730 0.8801816

8.00 0.9505952 0.8975496

16.00 0.9461508 0.8889782

32.00 0.9458730 0.8870002

64.00 0.9360714 0.8668239

128.00 0.9405159 0.8725831

##

Tuning parameter 'sigma' was held constant at a value of 0.006054987

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.006054987 and C = 8.

The optimal values for tuning parameters were sigma = 0.00605 and C = 8. The effect of tuning
parameters on model accuracies can be graphically seen in Figure 1.

plot(fit.svm)

6.2 Defining control list for selected classifier

For each classifier, it is possible to define how model should be created using control lists. We may catego-
rize available classifiers into 3 partitions, i.e continuous, discrete and voom-based classifiers. Continuous
classifiers are based on caret’s library while discrete and voom-based classifiers use functions from MLSeq’s

7

https://cran.r-project.org/web/packages/caret/index.html
https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html

Cost

A
cc

ur
ac

y
(R

ep
ea

te
d

C
ro

ss
-V

al
id

at
io

n)

0.84

0.86

0.88

0.90

0.92

0.94

0 50 100

Figure 1: Tuning results for fitted model (svmRadial)

Table 1: Control functions for classifiers.

Function Classifier

discreteControl PLDA, PLDA2, NBLDA
voomControl voomDLDA, voomDQDA, voomNSC
trainControl All others.

library. Since each classifier category has different control parameters to be used while building model,
we should use corresponding control function for selected classifiers. We provide three different control
functions, i.e (i) trainControl for continuous, (ii) discreteControl for discrete and (iii) voomControl
for voom-based classifiers as summarized in Table 1.

Now, we fit svmRadial, voomDLDA and PLDA classifiers to RNA-seq data and find the optimal value
of tuning parameters, if available, using 5-fold cross validation without repeats. We may control model
building process using related function for the selected classifier (Table 1).

Define control list

ctrl.svm <- trainControl(method = "repeatedcv", number = 5, repeats = 1)

ctrl.plda <- discreteControl(method = "repeatedcv", number = 5, repeats = 1,

tuneLength = 10)

ctrl.voomDLDA <- voomControl(method = "repeatedcv", number = 5, repeats = 1,

tuneLength = 10)

Support vector machines with radial basis function kernel

fit.svm <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = ctrl.svm)

8

Poisson linear discriminant analysis

fit.plda <- classify(data = data.trainS4, method = "PLDA", normalize = "deseq",

ref = "T", control = ctrl.plda)

Voom-based diagonal linear discriminant analysis

fit.voomDLDA <- classify(data = data.trainS4, method = "voomDLDA",

normalize = "deseq", ref = "T", control = ctrl.voomDLDA)

The fitted model for voomDLDA, for example, is obtained using folowing codes. Since voomDLDA has
no tuning parameters, the training set accuracy is given over cross-validated folds.

trained(fit.voomDLDA)

##

Voom-based Diagonal Linear Discriminant Analysis (voomDLDA)

##

40 samples

100 predictors

2 classes: 'N', 'T' (Reference category: 'T')

##

Normalization: DESeq median ratio.

Resampling: Cross-Validated (5 fold, repeated 1 times)

Summary of sample sizes: 32, 32, 32, 32, 32

Summary of selected features: All features are selected.

##

Model Accuracy

voomDLDA 0.9250000

##

There is no tuning parameter for selected method.

Cross-validated model accuracy is given.

7 Predicting the class labels of test samples

Class labels of the test cases are predicted based on the model characteristics of the trained model, e.g.
discriminating function of the trained model in discriminant-based classifiers. However, an important
point here is that the test set must have passed the same steps with the training set. This is especially
true for the normalization and transformation stages for RNA-Seq based classification studies. Same
preprocessing parameters should be used for both training and test sets to affirm that both sets are on
the same scale and homoscedastic each other. If we use deseq median ratio normalization method, then
the size factor of a test case will be estimated using gene-wise geometric means, mj , from training set as
follows:

ŝ∗ =
m∗∑n
j=1 mj

, m∗ = mediani

{
x∗
i

(
∏n

j=1 xij)1/n

}
(2)

A similar procedure is applied for the transformation of test data. If vst is selected as the transforma-
tion method, then the test set will be transformed based on the dispersion function of the training data.
Otherwise, if rlog is selected as the transformation method, then the test set will be transformed based
on the dispersion function, beta prior variance and the intercept of the training data.

MLSeq predicts test samples using training set parameters. There are two functions in MLSeq to
be used for predictions, predict and predictClassify. The latter function is an alias for the generic
function predict and was used as default method in MLSeq up to package version 1.14.z. Default function

9

for predicting new observations replaced with predict from version 1.16.z and later. Hence, both can be
used for same purpose.

Likely training set, test set should be given in DESeqDataSet class. The predictions can be done using
following codes,

#Predicted class labels

pred.svm <- predict(fit.svm, data.testS4)

pred.svm

[1] T T N T N N T T T T T T N N N N T T

Levels: N T

Finally, the model performance for the prediction is summarized as below using confusionMatrix

from caret.

pred.svm <- relevel(pred.svm, ref = "T")

actual <- relevel(classts$condition, ref = "T")

tbl <- table(Predicted = pred.svm, Actual = actual)

confusionMatrix(tbl, positive = "T")

Confusion Matrix and Statistics

##

Actual

Predicted T N

T 11 0

N 1 6

##

Accuracy : 0.9444

95% CI : (0.7271, 0.9986)

No Information Rate : 0.6667

P-Value [Acc > NIR] : 0.006766

##

Kappa : 0.88

##

Mcnemar's Test P-Value : 1.000000

##

Sensitivity : 0.9167

Specificity : 1.0000

Pos Pred Value : 1.0000

Neg Pred Value : 0.8571

Prevalence : 0.6667

Detection Rate : 0.6111

Detection Prevalence : 0.6111

Balanced Accuracy : 0.9583

##

'Positive' Class : T

##

8 Comparing the performance of classifiers

In this section, we discuss and compare the performance of the fitted models in details. Before we fit
the classifiers, a random seed is set for reproducibility as set.seed(2128). Several measures, such as

10

https://cran.r-project.org/web/packages/caret/index.html

overall accuracy, sensitivity, specificity, etc., can be considered for comparing the model performances. We
compared fitted models using overall accuracy and sparsity measures since the prevalence of positive and
negative classes are equal. Sparsity is used as the measure of proportion of features used in the trained
model. As sparsity goes to 0, less features are used in the classifier. Hence, the aim might be selecting a
classifier which is sparser and better in predicting test samples, i.e higher in overall accuracy.

We selected SVM, voomDLDA and NBLDA as non-sparse classifiers and PLDA with power trans-
formation, voomNSC and NSC as sparse classifiers for the comparison of fitted models. Raw counts are
normalized using deseq method and vst transformation is used for continuous classifiers (NSC and SVM).

set.seed(2128)

Define control lists.

ctrl.continuous <- trainControl(method = "repeatedcv", number = 5, repeats = 10)

ctrl.discrete <- discreteControl(method = "repeatedcv", number = 5, repeats = 10,

tuneLength = 10)

ctrl.voom <- voomControl(method = "repeatedcv", number = 5, repeats = 10,

tuneLength = 10)

1. Continuous classifiers, SVM and NSC

fit.svm <- classify(data = data.trainS4, method = "svmRadial",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = ctrl.continuous)

fit.NSC <- classify(data = data.trainS4, method = "pam",

preProcessing = "deseq-vst", ref = "T", tuneLength = 10,

control = ctrl.continuous)

2. Discrete classifiers

fit.plda <- classify(data = data.trainS4, method = "PLDA", normalize = "deseq",

ref = "T", control = ctrl.discrete)

fit.plda2 <- classify(data = data.trainS4, method = "PLDA2", normalize = "deseq",

ref = "T", control = ctrl.discrete)

fit.nblda <- classify(data = data.trainS4, method = "NBLDA", normalize = "deseq",

ref = "T", control = ctrl.discrete)

3. voom-based classifiers

fit.voomDLDA <- classify(data = data.trainS4, method = "voomDLDA",

normalize = "deseq", ref = "T", control = ctrl.voom)

fit.voomNSC <- classify(data = data.trainS4, method = "voomNSC",

normalize = "deseq", ref = "T", control = ctrl.voom)

4. Predictions

pred.svm <- predict(fit.svm, data.testS4)

pred.NSC <- predict(fit.NSC, data.testS4)

... truncated

Among selected predictors, we can select one of them by considering overall accuracy and sparsity at
the same time. Table 2 showed that SVM has the highest classification accuracy. Similarly, voomNSC
gives the lowest sparsity measure comparing to other classifiers. Using the performance measures from
Table 2, one may decide the best classifier to be used in classification task.

In this tutorial, we compared only few classifiers and showed how to train models and predict new
samples. We should note that the model performances depends on several criterias, e.g normalization and

11

Table 2: Classification results for cervical data.

Classifier Accuracy Sparsity

SVM 0.944
NSC 0.889 0.910
PLDA (Transformed) 0.889 1.000
NBLDA 0.833
voomDLDA 0.889
voomNSC 0.722 0.020

transformation methods, gene-wise overdispersions, number of classes etc. Hence, the model accuracies
given in this tutorial should not be considered as a generalization to any RNA-Seq data. However, gen-
eralized results might be considered using a simulation study under different scenarios. A comprehensive
comparison of several classifiers on RNA-Seq data can be accessed from Zararsiz et al. [17].

9 Determining possible biomarkers using sparse classifiers

In an RNA-Seq study, hundreds or thousands of features are able to be sequenced for a specific dis-
ease or condition. However, not all features but usually a small subset of sequenced features might be
differentially expressed among classes and contribute to discrimination function. Hence, determining dif-
ferentially expressed (DE) features are one of main purposes in an RNA-Seq study. It is possible to select
DE features using sparse algorithm in MLSeq such as NSC, PLDA and voomNSC. Sparse models are
able to select significant features which mostly contributes to the discrimination function by using built-in
variable selection criterias. If a selected classifier is sparse, one may return selected features using getter
function selectedGenes. For example, voomNSC selected 2% of all features. The selected features can
be extracted as below:

selectedGenes(fit.voomNSC)

[1] "miR-143" "miR-125b"

We showed selected features from sparse classifiers on a venn-diagram in Figure 2. Some of the
features are common between sparse classifiers. voomNSC, PLDA, PLDA2 (Power transformed) and
NSC, for example, commonly discover 2 features as possible biomarkers.

10 Updating an MLSeq object using update

MLSeq is developed using S4 system in order to make it compatible with most of the BIOCONDUCTOR
packages. We provide setter/getter functions to get or replace the contents of an S4 object returned from
functions in MLSeq . Setter functions are useful when one wishes to change components of an S4 object
and carry out its effect on the remaining components. For example, a setter function method<- can be
used to change the classification method of a given MLSeq object. See following code chunks for an example.

set.seed(2128)

ctrl <- discreteControl(method = "repeatedcv", number = 5, repeats = 2,

tuneLength = 10)

PLDA without power transformation

fit <- classify(data = data.trainS4, method = "PLDA", normalize = "deseq",

ref = "T", control = ctrl)

12

Figure 2: Venn-diagram of selected features from sparse classifiers

show(fit)

##

An object of class "MLSeq"

Model Description: Poisson Linear Discriminant Analysis (PLDA)

##

Method : PLDA

##

Accuracy(%) : 92.68

Sensitivity(%) : 94.12

Specificity(%) : 91.67

##

Reference Class : T

Now, we may wish to see the results from PLDA classifier with power transformation. We can either
change the corresponding arguement as method = "PLDA2" and run above codes or simply use the generic
function update after related replacement method method<-. Once the method has been changed, a note
is returned with MLSeq object.

method(fit) <- "PLDA2"

show(fit)

##

An object of class "MLSeq"

Model Description: Poisson Linear Discriminant Analysis with Power Transformation (PLDA2)

##

NOTE: MLSeq object is modified but not updated.

Update 'MLSeq' object to get true classification accuracies.

##

13

Method : PLDA2

##

Accuracy(%) : 92.68

Sensitivity(%) : 94.12

Specificity(%) : 91.67

##

Reference Class : T

It is also possible to change multiple arguments at the same time using related setter functions. In
such cases, one may run metaData(...) for a detailed information on fitted object.

ref(fit) <- "N"

normalization(fit) <- "TMM"

metaData(fit)

class: MLSeqMetaData, in S4 class

Updated: NO

Modified: YES

Modified Elements (3): method, ref, normalization

Initial Data: A DESeqDataSet object

It can bee seen from metaData(fit) that several modifications have been requested for fitted model
but it is not updated. We should run update to carry over the effect of modified object into MLSeq object.
One should note that the updated object should be assigned to the same or different object since update
does not overwrite fitted model.

fit <- update(fit)

##

##

Update is successfull...

show(fit)

##

An object of class "MLSeq"

Model Description: Poisson Linear Discriminant Analysis with Power Transformation (PLDA2)

##

Method : PLDA2

##

Accuracy(%) : 95

Sensitivity(%) : 95.65

Specificity(%) : 94.12

##

Reference Class : N

10.1 Transitions between continuous, discrete and voom-based classifiers

The control lists and some of the arguments in classify need to be specified depending on the selected
classifier. This constraint should be carefully taken into account while updating an MLSeq object. We
may wish to move from continuous based classifier to discrete or voom-based classifier, and vice versa.
Consider we want to change classifier to “rpart” for fit.

14

method(fit) <- "rpart"

update(fit)

Warning in stop(warning("Incorrect elements in ’control’ argument. It should be defined

using ’trainControl(...)’ function.")): Incorrect elements in ’control’ argument. It should

be defined using ’trainControl(...)’ function.

Error in .local(object, ...) :

Incorrect elements in 'control' argument. It should be defined using 'trainControl(...)' function.

Since the control list for continuous and discrete classifiers should be specified using related control
function, the update process will end up with an error unless the control list is also modified. First, we
specify appropriate control list and then change the classifier. Next, we may update fitted object as given
below:

control(fit) <- trainControl(method = "repeatedcv", number = 5, repeats = 2)

'normalize' is not valid for continuous classifiers. We use 'preProcessing'

rather than 'normalize'.

preProcessing(fit) <- "tmm-logcpm"

fit <- update(fit)

##

##

Update is successfull...

show(fit)

##

An object of class "MLSeq"

Model Description: Classification and Regression Tree (CART) (rpart)

##

Method : rpart

##

Accuracy(%) : 85.37

Sensitivity(%) : 83.33

Specificity(%) : 88.24

##

Reference Class : N

Similar transitions can be done for voom-based classifiers. For a complete list of package functions,
please see package manuals.

11 Session info

sessionInfo()

R Under development (unstable) (2025-03-01 r87860 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows Server 2022 x64 (build 20348)

##

15

Matrix products: default

LAPACK version 3.12.0

##

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8

[3] LC_MONETARY=English_United States.utf8

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

##

time zone: America/New_York

tzcode source: internal

##

attached base packages:

[1] grid stats4 stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] xtable_1.8-4 pamr_1.57

[3] VennDiagram_1.7.3 futile.logger_1.4.3

[5] edgeR_4.5.6 limma_3.63.8

[7] DESeq2_1.47.5 SummarizedExperiment_1.37.0

[9] Biobase_2.67.0 MatrixGenerics_1.19.1

[11] matrixStats_1.5.0 GenomicRanges_1.59.1

[13] GenomeInfoDb_1.43.4 IRanges_2.41.3

[15] S4Vectors_0.45.4 BiocGenerics_0.53.6

[17] generics_0.1.3 MLSeq_2.25.0

[19] caret_7.0-1 lattice_0.22-6

[21] ggplot2_3.5.1 knitr_1.49

##

loaded via a namespace (and not attached):

[1] pROC_1.18.5 formatR_1.14 rlang_1.1.5

[4] magrittr_2.0.3 e1071_1.7-16 compiler_4.5.0

[7] vctrs_0.6.5 reshape2_1.4.4 stringr_1.5.1

[10] pkgconfig_2.0.3 crayon_1.5.3 XVector_0.47.2

[13] prodlim_2024.06.25 UCSC.utils_1.3.1 purrr_1.0.4

[16] xfun_0.51 jsonlite_1.9.1 recipes_1.1.1

[19] highr_0.11 DelayedArray_0.33.6 BiocParallel_1.41.2

[22] parallel_4.5.0 cluster_2.1.8 R6_2.6.1

[25] stringi_1.8.4 parallelly_1.42.0 rpart_4.1.24

[28] lubridate_1.9.4 Rcpp_1.0.14 iterators_1.0.14

[31] future.apply_1.11.3 Matrix_1.7-2 splines_4.5.0

[34] nnet_7.3-20 timechange_0.3.0 tidyselect_1.2.1

[37] abind_1.4-8 timeDate_4041.110 codetools_0.2-20

[40] listenv_0.9.1 tibble_3.2.1 plyr_1.8.9

[43] withr_3.0.2 evaluate_1.0.3 future_1.34.0

[46] lambda.r_1.2.4 survival_3.8-3 proxy_0.4-27

[49] kernlab_0.9-33 pillar_1.10.1 foreach_1.5.2

[52] sSeq_1.45.0 munsell_0.5.1 scales_1.3.0

[55] globals_0.16.3 class_7.3-23 glue_1.8.0

[58] tools_4.5.0 data.table_1.17.0 ModelMetrics_1.2.2.2

[61] gower_1.0.2 locfit_1.5-9.12 ipred_0.9-15

[64] colorspace_2.1-1 nlme_3.1-167 GenomeInfoDbData_1.2.13

[67] cli_3.6.4 futile.options_1.0.1 S4Arrays_1.7.3

[70] lava_1.8.1 dplyr_1.1.4 gtable_0.3.6

16

[73] digest_0.6.37 SparseArray_1.7.6 lifecycle_1.0.4

[76] hardhat_1.4.1 httr_1.4.7 statmod_1.5.0

[79] MASS_7.3-65

References

[1] Yang Liao, Gordon K Smyth, and Wei Shi. featurecounts: an efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics, 30(7):923–930, 2014. URL https:

//doi.org/10.1093/bioinformatics/btt656.

[2] Michael Lawrence, Wolfgang Huber, Hervé Pages, Patrick Aboyoun, Marc Carlson, Robert Gentle-
man, Martin T Morgan, and Vincent J Carey. Software for computing and annotating genomic ranges.
PLoS Comput Biol, 9(8):e1003118, 2013. URL https://doi.org/10.1371/journal.pcbi.1003118.

[3] Nicolas Delhomme, Ismaël Padioleau, Eileen E Furlong, and Lars M Steinmetz. easyRNASeq: a
bioconductor package for processing RNA-seq data. Bioinformatics, 28(19):2532–2533, 2012. URL
https://doi.org/10.1093/bioinformatics/bts477.

[4] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq–a Python framework to work with
high-throughput sequencing data. Bioinformatics, 31(2):166–169, Jan 2015. URL https://doi.

org/10.1093/bioinformatics/btu638.

[5] Aaron R Quinlan and Ira M Hall. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics, 26(6):841–842, 2010. URL https://doi.org/10.1093/bioinformatics/

btq033.

[6] Daniela Witten, Robert Tibshirani, Sam Guoping Gu, Andrew Fire, and Weng-Onn Lui. Ultra-
high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis
in a collection of cervical tumours and matched controls. BMC Biology, 8(1):1, 2010. URL https:

//doi.org/10.1186/1741-7007-8-58.

[7] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):1, 2014. URL https://doi.

org/10.1186/s13059-014-0550-8.

[8] Gokmen Zararsiz, Dincer Goksuluk, Bernd Klaus, Selcuk Korkmaz, Vahap Eldem, Erdem Karabulut,
and Ahmet Ozturk. voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data.
PeerJ, 5:e3890, 2017. URL https://doi.org/10.7717/peerj.3890.

[9] Daniela M. Witten. Classification and clustering of sequencing data using a poisson model. The
Annals of Applied Statistics, 5(4):2493–2518, 2011. URL https://doi.org/10.1214/11-AOAS493.

[10] Kai Dong, Hongyu Zhao, Tiejun Tong, and Xiang Wan. NBLDA: negative binomial linear dis-
criminant analysis for RNA-seq data. BMC Bioinformatics, 17(1):369, Sep 2016. URL https:

//doi.org/10.1186/s12859-016-1208-1.

[11] Mark D Robinson and Alicia Oshlack. A scaling normalization method for differential expres-
sion analysis of RNA-seq data. Genome Biology, 11(3):1, 2010. URL https://doi.org/10.1186/

gb-2010-11-3-r25.

[12] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome
Biol, 11(10):R106, 2010. URL https://doi.org/10.1186/gb-2010-11-10-r106.

[13] Charity W Law, Yunshun Chen, Wei Shi, and Gordon K Smyth. Voom: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biology, 15(2):1, 2014. URL https:

//doi.org/10.1186/gb-2014-15-2-r29.

17

https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1093/bioinformatics/bts477
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1186/1741-7007-8-58
https://doi.org/10.1186/1741-7007-8-58
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.7717/peerj.3890
https://doi.org/10.1214/11-AOAS493
https://doi.org/10.1186/s12859-016-1208-1
https://doi.org/10.1186/s12859-016-1208-1
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/gb-2014-15-2-r29

[14] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu. Class prediction
by nearest shrunken centroids, with applications to DNA microarrays. Statistical Science, 18(1):
104–117, 2003. URL https://doi.org/10.1214/ss/1056397488.

[15] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu. Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A, 99(10):
6567–72, May 2002. URL https://doi.org/10.1073/pnas.082099299.

[16] Sandrine Dudoit, Jane Fridlyand, and Terence P. Speed. Comparison of discrimination methods
for the classification of tumors using gene expression data. Journal of the American Statistical
Association, 97(457):77–87, 2002. URL https://doi.org/10.1198/016214502753479248.

[17] Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Gozde Erturk Zararsiz,
Izzet Parug Duru, and Ahmet Ozturk. A comprehensive simulation study on classification of RNA-seq
data. PLoS One, 12(8):e0182507, 2017. URL https://doi.org/10.1371/journal.pone.0182507.

18

https://doi.org/10.1214/ss/1056397488
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1198/016214502753479248
https://doi.org/10.1371/journal.pone.0182507

	Introduction
	Preparing the input data
	Splitting the data
	Available machine-learning models
	Normalization and transformation
	Model building
	Optimizing model parameters
	Defining control list for selected classifier

	Predicting the class labels of test samples
	Comparing the performance of classifiers
	Determining possible biomarkers using sparse classifiers
	Updating an MLSeq object using update
	Transitions between continuous, discrete and voom-based classifiers

	Session info

