Using MLP

Nandini Raghavan, An De Bondt, Tobias Verbeke
April 11, 2025

Contents
1__Introductionl 1
2 Example Use| 2
2.1 Preliminariesl L e e e e e e e e e 2
2.2 Prepare P Values| 2
2.3 Prepare Gene Sets| 2
A Run MIPl o oo e 4
2.5 Visualize MLP Resultsl e 6
[2.5.1 Quantile Curves| o L 6
BB2 Bar PIOT . - « v v o v et e e e e e e 7
[2.5.3 Gene Ontology Graph| e 8
2.6 Visualize Individual Genesin a Gene Set]. 9
[B_References| 10

1 Introduction

Profiling technologies like gene expression profiling made it possible to quantify and compare relative gene
expression profiles across a series of conditions and this for thousands of genes at a time. In order to under-
stand the biology behind the difference between e.g. treatment and control, one might look at the function
of individual genes which are differentially expressed. Another approach is to test which biological processes
are significantly affected. Genes can be grouped into gene sets e.g. based on the biological process they are
involved in. Coordinated differential expression of a set of functionally related genes could be more relevant
than differential expression of a few unrelated genes, scattered across multiple gene sets.

The idea of the MLP methodology is to test whether there are gene sets enriched in small p-values (MLP denotes
mean minus log p-value). The method does not require a cut-off value for significance at gene level. Also a
distinction between up- or downregulated genes is not needed. Both of these principles taken together makes it
possible to find, in one go, affected gene sets consisting of e.g. 50% inhibitors and 50% inducers.

The MLP methodology involves the use of (a) a test statistic to quantify the extent of the differential expression
and (b) a resampling scheme to judge whether the difference is possibly real or attributable to chance. This
process can be repeated for all gene sets of interest. The starting point for the MLP methodology is a list of
p-values, or any similar statistics, that can quantify the degree of differential expression for each gene measured.
These can be generated by a variety of methods used for calculating p-values based on gene expression data,
several of them have been incorporated in the limma package. [Smyth et al., 2003 Smyth, 2005

In this vignette, we show an example to identify biological processes that are affected in the considered experi-
ment. The Gene Ontology Consortium|is dealing with the classification of genes based on 3 criteria:

e the biological process they are involved in
e the molecular function they have
o their cellular localisation

The analysis behind the results below is focussing on identifying affected gene sets based on biological processes.

http://www.statsci.org/smyth/pubs/limma-biocbook-reprint.pdf
http://www.geneontology.org/

2 Example Use

The example data is from an expression profiling experiment with 2 sample groups, comparing wild-type mice
with animals of which 1 gene has been knocked out. FEach of the groups consist of 6 mice. The expression
array used is the Affymetrix’ Mouse430 2. The gene expression measurements have been summarized using

GC-RMA ([rizarry et al., 2003 and [Wu et al., 2004) based on Entrez Gene probeset definitions [Dai et al., 2005

2.1 Preliminaries

> require(MLP)
> require(limma)
library (AnnotationDbi)

A\

Load the needed libraries and the preprocessed data.

> pathExampleData <- system.file("exampleFiles'", "expressionSetGcrma.rda", package = "MLP")
> load(pathExampleData)
> annotation(expressionSetGcrma) <- "mouse4302"

It is advisable to make use of the annotation packages of the BrainArray groulﬂ at the University of Michigan,
but as these packages are unfortunately not officially part of BioConductor (and on the build servers used to
build packages [and corresponding vignettes]), the code above allows for using the sub-optimal Affymetrix
annotation.

2.2 Prepare P Values

Estimate the fold changes and standard errors by fitting a linear model for each gene.

calculation of the statistics values via limma

group <- as.numeric(factor(pData(expressionSetGcrma)$subGroupl, levels = c("WT", "K0")))-1
design <- model.matrix(~group)

fit <- 1mFit(exprs(expressionSetGcrma), design)

fit2 <- eBayes(fit)

results <- limma:::topTable(fit2, coef = "group", adjust.method = "fdr", number = Inf)
pvalues <- results[,"P.Value"]

names (pvalues) <- rownames (results)

since we moved towards using "_at', next step should be needed as well

names (pvalues) <- sub("_at", "", names(pvalues))

V V.V VVVVVVYV

2.3 Prepare Gene Sets

Create an object with the overview of the groups of genes you would like to consider. This object is a list of
class geneSetMLP, where the slot names correspond to the gene set identifier and the slot content is a character
vector of Entrez Gene identifiers for those genes belonging to that gene set. This object can be created using
the getGeneSets function. This function has 3 parameters:

e species = a string being 'Human’, "Mouse’, 'Rat’, ‘Dog’ or ’'Rhesus’
e geneSetSource = a string or a data.frame (more info below)
e entrezldentifiers = a character vector of Entrez Gene identifiers for which gene statistics are available

The geneSetSource can be a string, i.e. *GOBP’, GOMF’, >GOCC’, *KEGG’ or ’REACTOME’. The downstream
analysis in these cases will identify gene sets, publicly available, as defined by the |Gene Ontology Consortium
for the first 3 , the Kyoto Encyclopedia of Genes and Genomes and REACTOME! For the latter, species must
be one of "Human’, "Mouse’, 'Rat’ or 'Dog’. The geneSetSource can also be a data.frame with at least the
following 4 columns:

e PATHWAYID = identifier of the gene set
e PATHWAYNAME = description of the gene set

e TAXID = taxonomy identifier (9606, 10090, 10116 or 9615 for respectively Human, Mouse, Rat or Dog)

1See here.

http://www.bepress.com/jhubiostat/paper1/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.reactome.org
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp

e GENEID = Entrez Gene identifier belonging to that gene set

As an example, submitting the GO biological processes information as a data.drame would look like the
data.frame below. In such a data.frame, the details of each gene set (identifier and description), is repeated as
many times as the number of genes in that gene set and this for each species enclosed in the database.

PATHWAYID TAXID PATHWAYNAME GENEID
G0:0000002 10090 mitochondrial genome maintenance 18975
G0:0000002 10090 mitochondrial genome maintenance 19819
G0:0000002 10090 mitochondrial genome maintenance 27393
G0:0000002 10090 mitochondrial genome maintenance 27395
G0:0000002 10090 mitochondrial genome maintenance 27397
G0:0000002 10090 mitochondrial genome maintenance 57813
G0:0000002 10090 mitochondrial genome maintenance 83945
G0:0000002 10090 mitochondrial genome maintenance 226153
G0:0000002 10090 mitochondrial genome maintenance 382985
G0:0000002 10116 mitochondrial genome maintenance 83474
G0:0000002 10116 mitochondrial genome maintenance 291824
12 G0:0000002 10116 mitochondrial genome maintenance 298933
13 G0:0000002 10116 mitochondrial genome maintenance 309441
14 G0:0000002 10116 mitochondrial genome maintenance 309762
15 GO:0000002 10116 mitochondrial genome maintenance 360481

© 0N O WN -

o
= O

> geneSet <- getGeneSets(species = "Mouse",

+ geneSetSource = "GOCC",

+ entrezldentifiers = names(pvalues)
+)

> tail(geneSet, 3)

$°G0:1990923"
[1] "57746" "71981" "241624"

$°G0:1990971"
[1] "100952" "246707"

$°G0:1990972"
[1] "70945" "105450"

As mentioned above, the returned object is a list of class geneSetMLP. This object has attributes which are
used for the downstream analysis.

> str(attributes(geneSet))

List of 5
$ names : chr [1:1958] "G0:0000015" "GO:0000109" "GO:0000110" "GO:0000111"
$ species : chr "Mouse"

$ geneSetSource: chr "GOCC"

$ descriptions : Named chr [1:1958] "phosphopyruvate hydratase complex" "nucleotide-excision repair co
.- attr(x, "names")= chr [1:1958] "GO:0000015" "GO:0000109" "G0:0000110" "G0O:0000111"

$ class : chr [1:2] "geneSetMLP" "list"

2.4 Run MLP

Run the actual MLP. To retrieve exact reproducible results, the seed is set in advance. The MLP function has
10 parameters, many of them can remain on their default values:

geneSet = object of class geneSetMLP created by getGeneSets

geneStatistic = named numeric vector corresponding to a gene-specific statistic, such as a p-value. The
names are the corresponding Entrez Gene identifiers. This vector has the same length as the character
vector submitted as entrezIdentifiers to the getGeneSets function.

minGenes = minimal number of genes for a gene set to be considered in the analysis, default 5
maxGenes = maximal number of genes for a gene set to be considered in the analysis, default 100

rowPermutations = logical indicating whether critical values for the geneSet are computed using a per-
mutation of the geneStatistics, default TRUE. The alternative is column permutations which requires
a matrix of p-values corresponding to permutations of the original samples to be input. This latter option
has not been fully implemented.

nPermutations = number of permutations to be used for calculating the critical value for a certain
geneSet.

smoothPValues = logical indicating whether smoothing is desirable or not, default TRUE

probabilityVector = vector of probabilities at which critical value curves for the geneSet are to be
calculated. Default is ¢(0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, 0.99999) corresponding to p-values of respectively
0.5, 0.1, 0.01, 0.001 etc.

df = degrees of freedom for the smoothing parameter used in smoothPValues. The higher, the more
smooth, default 9.

addGeneSetDescription = logical indicating whether adding gene sets annotation to the MLP output is
desirable or not, default TRUE.

> set.seed(111)
> mlpOut <- MLP(

+

+
+
+
+
+
+
+
+
>

GO:
GO:
GO:
GO:
GO:
GO:

GO:
GO:
GO:
GO:
GO:
GO:

geneSet = geneSet,
geneStatistic = pvalues,
minGenes = 5,
maxGenes = 100,
rowPermutations = TRUE,
nPermutations = 50,
smoothPValues = TRUE,
probabilityVector = ¢(0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, 0.99999),
df = 9)
head (mlpOut)
totalGeneSetSize testedGeneSetSize geneSetStatistic geneSetPValue
0042613 12 10 0.9461005 0.01505527
0002177 27 26 0.7294286 0.02474211
0005879 59 51 0.6391869 0.02732731
0032010 6 6 0.9860122 0.02759251
0097208 10 9 0.8748984 0.02874050
0042611 40 18 0.7644952 0.02909998
geneSetDescription
0042613 MHC class II protein complex
0002177 manchette
0005879 axonemal microtubule
0032010 phagolysosome
0097208 alveolar lamellar body
0042611 MHC protein complex

Some properties of the MLP procedure , as well as some parts of the implemented procedure, assume that
the geneStatistic has a uniform distribution between 0 and 1 under the null hypothesis for a given analysis.
The returned object is a data.frame of class MLP with at least 4 columns:

totalGeneSetSize = total number of genes in the corresponding gene set

submitted

geneSetStatistic = mean of the -logl0 of the genes tested in that geneSet

o geneSetPValue = p-value associated with the geneSetStatistic

This object has attributes which are used for visualising the analysis results.

> str(attributes(mlpOut))

testedGeneSetSize = number of genes in the corresponding geneSet for which a gene statistic has been

List of 6
$ names : chr [1:5] "totalGeneSetSize" "testedGeneSetSize" "geneSetStatistic"
$ class : chr [1:2] "MLP" "data.frame"
$ row.names : chr [1:896] "GD:0042613" "GO0:0002177" "G0D:0005879" "G0O:0032010"
$ species : chr "Mouse"
$ geneSetSource : chr "GOCC"
$ quantileCurveInformation:List of 5
.$ x0 : Named num [1:896] 3.61 8.54 8.6 4.58 2.45 ...
..- attr(*, "names")= chr [1:896] "G0:0000109" "G0:0000118" "G0O:0000123" "GO:0000124"
..$ yO : Named num [1:896] 0.502 0.439 0.417 0.443 0.42 ...
..— attr(*, "names")= chr [1:896] "G0:0000109" "GO:0000118" "G0:0000123" "G0:0000124"

..$ xtp: num [1:896, 1:7] 0.432 0.442 0.442 0.435 0.422 ...

..- attr(x, "dimnames")=List of 2
..$: chr [1:896] "GO:0000109" "GO:0000118" "GO:0000123" "G0O:0000124"
..$: chr [1:7] "Curve0.5" "Curve0.9" "Curve0.95" "Curve0.99"

..$ qi : num [1:7] 0.5 0.9 0.95 0.99 0.999 ...
..$ 1qi: NULL

"geneS

2.5 Visualize MLP Results

Three different types of plots are made available. The type of the plot is indicated with the type argument
which can be one of

plot(., type = "quantileCurves")
plot(., type = "barplot")
plot(., type = "GOgraph")

I

2.5.1 Quantile Curves

This visualisation shows the relationship between the geneSetStatistic and the size of the gene sets. It also
indicates the quantiles of interest as specified as probabilityVector in the MLP function. The most significant
gene sets are plotted above the smooth curve.

> pdf("mlpQuantileCurves.pdf", width = 10, height = 10)
> plot(mlpOut, type = "quantileCurves')
> tmp <- dev.off()

1.0

0.8

0.6

MLP

0.4

0.2

Figure 1: Example of a quantile curve for the MLP results. Every dot represents a gene set. Every line
represents a smoothing of the quantile per gene set size.

2.5.2 Bar Plot

For this type of plot there are some extra parameters of interest:
e nRow = number of gene sets to include in the graph, default is 20

e barColors = vector of colors, default is a shade of grey per bar. The 3 possible shadings correspond to
the % of genes in a gene set tested as compared to the total number of genes, the darker, the bigger the
portion of genes tested.

e ylab =label for the y-axis

> pdf("mlpBarplot.pdf", width = 10, height = 10)

> op <- par(mar = c(30, 10, 6, 2))

> plot(mlpOut, type = "barplot", ylab = "-logl0(gene set p-value)')
> par(op)

>

tmp <- dev.off()

-log10(gene set p-value)

0.

o
o
2]

1.0 15
|

MHC class Il protein complex (10-12)
manchette (26-27)

axonemal microtubule (51-59)
phagolysosome (6-6)

alveolar lamellar body (9-10)

MHC protein complex (18-40)
phagocytic vesicle membrane (55-62)
filamentous actin (29-35)

secondary lysosome (19-22)

host cellular component (6-9)
symbiont—containing vacuole (5-7)
symbiont—containing vacuole membrane (5-7)
host cell cytoplasm (5-7)

host cell part (5-7)

host intracellular part (5-7)

host cell cytoplasm part (5-7)

host intracellular region (5-7)
Atg12-Atg5-Atg16 complex (6-6)

endoplasmic reticulum chaperone complex (11-12)

s19s auab DO Uo WBWIEa) By} Jo 1983

cochlear hair cell ribbon synapse (6-6)

Figure 2: Example of a barplot for the MLP results. The height of a bar represents the significance (-
log10(geneSetPValue)) of the gene set indicated on the x-axis. The number between brackets represent the
number of genes within that gene set (number of genes for which a gene statistic has been submitted as well as
the total number of genes).

2.5.3 Gene Ontology Graph

As the title indicates, this type of plot is only possible if the geneSetSource was 'GOBP’, 'GOMEF’ or "GOCC’.
Also for this type of plot there is some extra parameters:

e nRow = number of gene sets as basis to create the graph, default is low, i.e. 5. The higher this number,
the more populated the graph gets.

e nCutDescPath = number of characters at which the pathway description should be cut (depends on figure
size)

pdf ("mlpGOgraph.pdf", width = 8, height = 6)

op <- par(mar = c(0, 0, 0, 0))

plot (mlpOut, type = "GOgraph", nRow = 10, nCutDescPath = 15)
par (op)

tmp <- dev.off()

vV V. Vv Vv Vv

O least (scores 0.4)
O medium (scores 1)
E most (scores 1.6)

Go graph

Figure 3: Example of a GOgraph for the MLP results. Every elipse represents a gene set. The color indicates
the significance, the more green, the more significant. The connectors indicate the parent - child relationship.
The number between brackets represent the number of genes within that gene set (number of genes for which
a gene statistic has been submitted as well as the total number of genes)

2.6

Visualize Individual Genes in a Gene Set

To know which genes contribute most to the significance of a gene set or to focus on a certain gene set of
interest, you can plot the significance of each gene beloning to that gene set. This plot shows the significance
(-logl0(geneStatistic)) of the genes within the gene set of interest. The plotGeneSetSignificance function
needs 4 parameters and there is also one optional parameter:

geneSet — object of class geneSetMLP created by getGeneSets
geneSetIdentifier = identifier of the gene set of interest

geneStatistic = named numeric vector which should have a uniform distribution between 0 and 1. The
names are the corresponding Entrez Gene identifiers.

annotationPackage — string representing the annotation package used to retrieve gene symbols and gene
descriptions

barColors = optional color vector

> geneSetID <- rownames (mlpOut)[1]

> pdf ("geneSignificance.pdf", width = 10, height = 10)
> op <- par(mar = c(25, 10, 6, 2))

> plotGeneSetSignificance(

+ geneSet = geneSet,

+ geneSetIdentifier = geneSetlID,

+ geneStatistic = pvalues,

+ annotationPackage = annotation(expressionSetGcrma)
+)

> par(op)

> tmp <- dev.off()

Significance

NA:NA

NA:NA

NA:NA

NA:NA

NA:NA

NA:NA

NA:NA

NA:NA

NA:NA

NA:NA

x3|dwoo uigloid || SseP DHIN £T92700:09 18s duab ul panjoAul saual palsel Jo aoueoyubls

Figure 4: Example of a gene significance plot for a gene set of interest. The height of a bar represents the
significance (-logl0(geneStatistic)) of the gene indicated on the x-axis.

Ne

3 References

Raghavan N, De Bondt AM, Talloen W, Moechars D, Gohlmann HW, Amaratunga D. The high-level similarity
of some disparate gene expression measures. Bioinformatics. 2007 Nov 15;23(22):3032-8. Epub 2007 Sep
24 . PMID: 17893087

Raghavan N, Amaratunga D, Cabrera J, Nie A, Qin J, McMillian M. On methods for gene function scoring as
a means of facilitating the interpretation of microarray results. J Comput Biol. 2006 Apr; 13(3):798-809.PMID:
16706726

10

	Introduction
	Example Use
	Preliminaries
	Prepare P Values
	Prepare Gene Sets
	Run MLP
	Visualize MLP Results
	Quantile Curves
	Bar Plot
	Gene Ontology Graph

	Visualize Individual Genes in a Gene Set

	References

