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Chapter 1

Introduction

This thesis is concerned with signaling pathways leading to regulation of gene expression.
I develop methodology to address two problems specific to gene silencing experiments:
First, gene perturbation effects cannot be controlled deterministically and have to be
modeled stochastically. Second, direct observations of intervention effects on other path-
way components are often not available. This first chapter gives a concise background
on gene regulation and cell signaling and explains the experimental technique of RNA
interference (RNAi). Gene silencing by RNAi has drastically reduced the time required
for genome-wide screens for gene function, but no work has been done so far to adapt
statistical methodology to the specific needs of RNAi data.

1.1 Signal transduction and gene regulation

The success of genome sequencing projects has led to the identification of almost all
the genes responsible for the biological complexity of several organisms. The next
important task is to assign a function to each of these genes. Genes do not work in
an isolated way. They are connected in highly structured networks of information
flow through the cell. Inference of such cellular networks is the main topic of this
thesis.

Eukaryotic cells Eukaryotes are organisms with cells containing nuclei, in which
the genetic material is organized. Eukaryotes comprise multicellular animals, plants,
and fungi as well as unicellular organisms. In contrast, prokaryotes, such as bacteria,
lack nuclei and other complex cell structures. All cells have a membrane, which en-
velopes the cell and separates its interior from its environment. Inside the membrane,
the salty cytoplasm takes up most of the cell volume. The most prominent structure
inside the eukaryotic cell is the nucleus containing DNA, the carrier of genetic infor-
mation. Deoxyribonucleic acid (DNA) is a double-helix formed by two anti-parallel
complementary strands composed of the nucleotides adenine, guanine, cytosine, and
thymine. The double-helix is packaged into a highly organized and compact nucleo-
protein structure called chromatin. The fundamental dogma of molecular biology is
that DNA produces ribonucleic acid (RNA) which in turn produces proteins. The
functional units in the DNA that code for RNA or proteins are called genes. The
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Chapter 1 Introduction

Figure 1.1: Gene expression in a nutshell. A protein is produced in response to an
external signal. See text for details. Reproduced from [94].

DNA is the same in all cells, but the amount of gene products is not. The diversity of
cell types and tissues in complex organisms like humans results from different genes
being active.

Gene activity Gene expression is a highly regulated process by which a cell can
answer to external signals and adapt to changes in the environment. Fig. 1.1 shows
the basic principles of gene expression in eukaryotic cells. In the upper left part of
the figure, a signal reaches the cell membrane and is recognized by a transmembrane
receptor. Binding of a ligand to a receptor initiates an intracellular response. In this
way receptors play a unique and important role in cellular communication and signal
transduction. In our example, the signal activates a transcription factor protein in
the cytoplasm. The activated transcription factor enters the cell nucleus and acts
on the promoter region of a gene in the genome. The promoter region contains
the information to turn the gene on or off. Depending on its function the bound
transcription factor activates or inhibits gene expression. In the case of an activator,
a process called transcription is started. A protein called RNA polymerase II (RNAP
II) starts to copy the information contained in the gene into messenger RNA (mRNA).
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1.1 Signal transduction and gene regulation

The nuclear mRNA contains two kinds of regions: exons, which are exported from
the nucleus as part of the mature mRNA, and introns, which are removed from the
mature mRNA by a process called splicing. The spliced mRNA is transported from
the nucleus into the cytoplasm. There it is translated into a protein poly-peptide
sequence, which then folds into a three-dimensional protein structure.

Fig. 1.1 depicts the expression of a single gene and does not show the influence of other
genes and proteins on the expression state. Regulation takes place at all levels, e.g.,
in signal propagation, in transcription, in translation, and in protein degradation. At
each single step many regulatory processes can concur. A transcription factor, for ex-
ample, can be regulated transcriptionally and non-transcriptionally. Transcriptional
regulation means control of the transcription factor mRNA level. Non-transcriptional
regulation means controlling the activity level of the transcription factor protein by
binding to a ligand, by dissociation of an inhibitor protein, by a protein modifica-
tion like phosphorylation, or by cleavage of a larger precursor [71]. Of particular
interest for this thesis are transcriptional regulatory networks and signal transduction
pathways.

Transcriptional regulatory networks The process described in Fig. 1.1 can be
iterated if the protein produced is again a transcription factor, which enters the
nucleus and starts to activate or inhibit gene expression of other genes in the genome.
Networks of transcription factors and their targets, which again could be transcription
factors, are called transcriptional regulatory networks or gene regulatory networks.
Reconstruction of regulatory networks is a prospering field in bioinformatics. This
is mainly due to the availability of genome-wide measurements of gene-expression by
microarrays, which provide a bird’s eye view on gene activity in the cell and promise
new insights into regulatory relationships [95, 118, 41].

Signal transduction pathways The second important process is indicated by a
single arrow in the upper left corner of Fig. 1.1 leading from the receptor to the ac-
tivation of a transcription factor. This arrow represents complex biochemical signal
transduction pathways, which connect external signals to a transcriptional response.
The main steps in signal propagation are protein interactions and modifications that
do not act on a transcriptional level. We will explain essential parts of signaling
pathways by the example of the immune deficiency pathway (Imd), which governs
defense reactions against Gram-negative bacteria in Drosophila melanogaster. It is
related to the mammalian tumor necrosis factor signaling pathways, as it uses struc-
turally and functionally similar components [59]. The Imd pathway will play a cen-
tral role in the application of the methodology developed in this thesis to a study of
Drosophila immune response in chapter 4. Fig. 1.2 shows a schematic sketch of this
pathway [111].

Immune induction of genes encoding antibacterial peptides like Diptericins relies on
a transcription factor called Relish. In its inactive state Relish carries inhibitory se-
quences in the form of several ankyrin repeat domains. To activate Relish, it has to be
phosphorylated and then cleaved from these inhibitory domains. Here we see a clear
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Chapter 1 Introduction

difference to gene regulatory networks. Relish is not regulated on a transcriptional
level, it just changes from an inactive into an active form, while the total amount of
protein stays the same. This principle is often found in biology and ensures a quick
response of the cell to a stimulus. Many pathway components mediating between

Figure 1.2: The Imd pathway in
Drosophila. Reproduced from
[111]

the receptor at the cell membrane and activation of
Relish are known. The phosphorylation of Relish be-
fore proteolytic cleavage is mediated by the IKK com-
plex, which can directly phosphorylate Relish in vitro.
TAK1 is a candidate for activation of the signalosome-
equivalent IKKβ-IKKγ. IMD is a partner of an ex-
tensive receptor-adaptor complex, which detects in-
fection by Gram-negative pathogens [111]. However,
the precise roles of pathway components are often un-
known and the object of intense research at present.
Fig 1.2 also shows that signaling cascades form cy-
cles and forks, and that different pathways may be
connected by sharing components. Boutros et al. [12]
found a fork in the signaling pathway below TAK1
leading to a Relish-independent response of cytoskele-
tal regulators via the JNK-pathway.

Cellular signaling pathways regulate essential pro-
cesses in living cells. In many cases, alterations of

these molecular mechanisms cause serious diseases including cancer. Understanding
the organization of signaling pathways is hence a principal problem in modern biol-
ogy. The next section describes RNA interference, which can be used in genome-wide
screens to identify new pathway components and to order pathways in regulatory
hierarchies.

1.2 Gene silencing by RNA interference

Physicist Richard Feynman once said: “What I cannot create, I do not understand”.
This quote stresses the importance of action for understanding. A complex system
is not understood solely by passive contemplation, it needs active manipulation by
the researcher. In biology this fact is long known. Functional genomics has a long
tradition of inferring the inner working of a cell—by breaking it. “What I cannot
break, I do not understand” is the credo of functional genomics research.

Until recently external interventions have been labor intensive and time consuming.
With methods making use of RNA interference (RNAi), this situation has changed.
RNAi [38] is a cellular mechanism of post-transcriptional gene silencing. It is promi-
nent in functional genomics research for two reasons. The first one is the physio-
logical role it plays in gene regulation. The traditional role of RNA was a passive
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1.2 Gene silencing by RNA interference

intermediate in the translation of information from genes to proteins. Discovering
its regulatory function is arguably one of the most important advances in molecular
biology in decades. The second reason is that screens triggering RNAi of target genes
can be applied on a genomic scale and allow rapid identification of genes contributing
to cellular processes and pathways [19].

The RNAi mechanism RNAi is the disruption of a gene’s expression by a double
stranded RNA (dsRNA) in which one strand is complementary to a section of the
gene’s mRNA. It is described in detail in several recent reviews [85, 92, 15]. Fig. 1.3
gives an overview over the RNAi pathway. In an RNAi
assay dsRNAs get introduced into the cell. In the cyto-
plasm they are processed by an enzyme of the Dicer fam-
ily into small interfering RNAs (siRNAs). In mammals
dsRNA molecules longer than 30 bp provoke interferon
response, an antiviral defense mechanism, which results
in the global shutdown of protein synthesis. RNAi can
still be started by introducing siRNA molecules directly.
Next, siRNA is assembled into an RNA-induced silencing
complex (RISC). In fruitflies and mammals, the antisense
strand is directly incorporated into RISC and activates it.
In worms and plants the antisense strand might first be
used in an amplification process, in which new long dsR-
NAs are synthesized, which are again cleaved by Dicer.
Finally, antisense siRNA strands guide the RISCs to com-
plementary RNA molecules, where they cleave and destroy
the cognate RNA. This process leaves the genomic DNA
intact but suppresses gene expression by RNA degrada-
tion.

Bioinformatic challenges of RNAi RNA interference
poses many challenges to research in computational bi-
ology. The first one is a better understanding of the
RNAi mechanism by mathematical modeling and simu-

Figure 1.3: The RNAi
pathway. Reproduced from
www.ambion.com.

lations [51]. Other challenges are specific to analyzing large-scale RNAi screens and
include (i.) storage and preprocessing of data from RNAi experiments [113], (ii.) se-
quence analysis to identify unique siRNA targets and guard against off-target ef-
fects [91], and (iii.) ordering pathway components into regulatory hierarchies from
phenotypic effects in RNAi silencing assays. This thesis contributes to the latter
challenge. It proposes probabilistic models to infer pathway topologies from RNAi
gene silencing data. Experimental techniques using the RNAi mechanism have dras-
tically reduced the time required for testing downstream effects of gene silencing [19],
but no work has been published so far to adapt statistical methodology to the spe-
cific needs of RNAi data. We will focus on two problems peculiar to RNAi. The
first becomes apparent when comparing RNAi knockdowns to DNA knockouts, the
second when deciding which phenotypes to observe.
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Chapter 1 Introduction

Knockouts and knockdowns Genetic studies can be divided into forward or
reverse screens [122]. In a forward screen, genes are mutated at random. To attribute
a phenotype to a specific gene, the mutation must first be identified. This process
is time-consuming and not easily applicable for all species. Additionally, some genes
may always be missed by random sampling [19]. In contrast to random mutagenesis,
reverse screens target specifically chosen genes for down regulation. This is what we
will be concerned with in this thesis. The most direct way to silence a gene is by a
gene knockout at the DNA level. Gene knockouts create animals or cell lines in which
the target gene is non-functional [61]. It is difficult to interpret data from knockout
mutants and to decide whether the phenotype is a direct effect of the non-functional
gene or whether it is the result of the cell trying to compensate for the gene-loss.
The danger of compensatory effects is less prominent for intervention techniques
which allow faster down-regulation of target genes. In most cases, silencing genes by
RNAi results in almost complete protein depletion after only a few days. Compared
to gene knockouts, this makes silencing by RNAi more applicable in genome-wide
screens and reduces compensatory effects at the same time. Two features make
RNAi kockdowns “softer” than DNA knockouts. First, in an RNAi experiment the
protein is not necessarily eliminated from the cells completely. A small amount of
mRNA might escape degradation and protein can last a long time in the cell, if
protein turnover is slow. This may mask or weaken phenotypes. On the other hand,
this phenomenon may be useful in cases where a fully silenced gene would be lethal.
Then the softer silencing by RNAi may still allow observations of phenotypes of
the living cell. Second, even though transfection efficiency is typically high in RNAi
experiments, transfection of cultured cells often results in a mixed population of cells,
where some escape the RNAi effect. The observed phenotype is then an average over
affected and not-affected cells.

In summary, all perturbation experiments push a gene’s expression level towards
a “no expression” state. Only in knockouts, however, the intervention leads to a
completely non-functional gene. In RNAi experiments the gene is still active, but
silenced. It is less active than normal due to human intervention. Hence, we do not
fix the state of the gene, but push it towards lower activities. In addition this pushing
is randomized to some extent: the experimentalist knows that he has silenced the
gene, but in large-scale screens he cannot quantify the effect. This is the first problem
approached in this thesis.

Phenotypic readout The term “phenotype” can refer to any morphologic, bio-
chemical, physiological or behavioral characteristic of an organism. A number of
phenotypes can be observed as results of perturbations [19]. Many genetic studies
use cell proliferation versus cell death as a binary phenotype to screen for essential
genes. Recently, large-scale identification of “synthetic lethal” phenotypes among
nonessential genes, in which the combination of mutations in two genes causes cell
death, provided a means for mapping genetic interactions [26]. To find genes es-
sential for a pathway of interest, reporter genes or fluorescent markers are used to
monitor activity of a signaling pathway [50]. Alternatively, visible phenotypes like
cell growth and viability are screened for [13]. A global view of intervention effects
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1.3 Thesis organization

can be achieved by transcriptional phenotypes measured on microarrays. These can
either be global time courses in development [31] or differential expression of single
genes [61, 12]. Also other cellular features like activation or modification states of pro-
teins could be used as phenotypes of interventions. What singles out the phenotypes
described above is that they are accessible to large scale screens by high-throughput
techniques.

Primary and secondary effects To describe the second problem tackled in this
thesis, we need to distinguish between primary and secondary effects of interven-
tions. We speak of a primary effect, if perturbing a pathway component results in
an observable change at another pathway component. To achieve this change a com-
plex machinery could have been involved. Thus, primary effects are not indicators
of direct interactions between molecules. They are primary in the sense that they
only involve pathway components and allow direct observations of information flow in
the network. A primary effect can, e.g., be observed in a transcriptional regulatory
network when silencing a transcription factor leads to an expression change at its
target genes. Unfortunately, in the case of signaling pathways primary effects will
mostly not be visible in large-scale datasets. For example, when silencing a kinase
we might not be able to observe changes in the activation states of other proteins
involved in the pathway. The only information we may get is that genes downstream
of the pathway show expression changes, or that cell proliferation or growth changed.
Effects, which are not observable at other pathway components, but only as pheno-
typical features downstream the pathway, will be called secondary effects. Secondary
effects provide only indirect information about information flow and pathway struc-
ture. Reconstructing features of signaling pathways from secondary effects is the
second problem addressed in this thesis.

Why probabilistic models? There are several reasons to use probabilistic models
for regulatory networks and signaling pathways. First of all, the measurement noise
in todays experimental techniques is notoriously high. Second, gene perturbation
experiments always entail uncertainty of experimental effects. The most important
reason for probabilistic models comes from the biological system itself. Signal trans-
duction, gene expression and its regulation are a stochastic processes [106, 110, 98].
There are two types of noise: intrinsic noise due to stochastic events during gene
expression, and extrensic noise due to cellular heterogeneity [106]. Intrinsic noise is
responsible for differences between identical reporters in the same cell, and extren-
sic noise for differences between identical reporters in different cells. Probabilistic
models take care of all these kinds of noise.

1.3 Thesis organization

In summary, there are two problems to be addressed when modelling data from RNAi
experiments. First, how to account for the uncertainty of intervention effects in a
noisy environment. Second, how to infer signaling pathways if direct observations of
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Chapter 1 Introduction

gene silencing effects on other network components may not be visible in the data.
This thesis proposes novel methodology to address both questions. It is organized as
follows.

Statistical models of cellular networks Chapter 2 gives an overview of recent ap-
proaches to visualize the dependency structure between genes. Even though reverse
engineering is a fast developing area of research, the methods used can be organized
by a few basic concepts. Statistical network methods encode statements of conditional
independence: can the correlation observed between two genes be attributed to other
genes in the model? Methods implementing this idea include graphical Gaussian
models and Bayesian networks. Bayesian networks are the most powerful and flex-
ible statistical model encoding the highest resolution of dependency structure. The
methodology described here will be the basis for building models for interventional
data in the following chapters.

Inferring transcriptional regulatory networks In chapter 3, we develop a theory of
learning from gene perturbations in the framework of conditional Gaussian networks.
The basic assumption is that effects of silencing genes in the model can be observed
at other genes in the model. To model the uncertainty involved in real biological
experiments, perturbations are modelled stochastically—and not deterministically as
in classical theory. This answers the first question raised by RNAi data.

Inferring signal transduction pathways The methods described so far elucidate
the dependence structure between observed mRNA quantities. Chapter 4 goes one
step further. It shows that expression data from perturbation experiments allows
to infer even features of signaling pathways acting by non-transcriptional control.
The signaling pathway is reconstructed from indirect observations. This answers the
second question raised by RNAi data. The proposed algorithm reconstructs pathway
features from the nested structure of affected downstream genes. Pathway features
are encoded as silencing schemes. They contain all information to predict a cell’s
behaviour to an external intervention. Simulation studies confirm small sample size
requirements and high accuracy. Limits of pathway reconstruction only result from
the information content of indirect observations. The practical use is exemplified
by analyzing an RNAi data set investigating the response to microbial challenge in
Drosophila melanogaster.
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Chapter 2

Statistical models of cellular
networks

In this chapter I describe statistical models to visualize the correlations structure of genes.
The methods can be distinguished by how deeply they purge influences of other genes
from the observed correlations (section 2.1). The most prominent models are Bayesian
networks (section 2.2). To learn them from data I discuss score based approaches in
section 2.3. Section 2.4 reviews benchmarking of models and section 2.5 shows how
my own approaches developed in the following chapters relate to recent developments in
literature.

2.1 Conditional independence models

Let a set V of p network components be given. In probabilistic models we treat each
component v ∈ V as a random variable Xv and the set of all components in the model
as a random vector X = (X1, . . . , Xp). The dataset M consists of N measurements,
that is, realizations x1, . . . ,xN of the random vector X. We think of it as a p × N
matrix with genes corresponding to rows and measurements to columns.

Network components are identified with nodes in a graph. The goal will be to find
an edge set E representing the dependency structure of the network components. We
will call the graph T = (V, E) the topology of the cellular network. Depending on the
model, T can be directed or undirected, cyclic or acyclic. In the important special
case, where T is a directed acyclic graph (DAG), we call it D. The biological meaning
of a “network component” depends on what kind of data we analyze. Most of the
time it will be microarray data and the network is a transcriptional gene regulatory
network. So, we will mostly speak of network components as genes. But the same
methods can also be applied to protein data, even though only few examples can be
found in literature [148, 68, 114].

9



Chapter 2 Statistical models of cellular networks

2.1.1 Coexpression networks

Biological processes result from concerted action of interacting molecules. On this
general observation builds a simple idea, which underlies the first approaches to
cluster expression profiles [37, 126] and is still widely used in functional genomics.
It is called the guilt-by-association heuristic: if two genes show similar expression
profiles, they are supposed to follow the same regulatory regime. To put it more
pointedly: coexpression hints at coregulation. Coexpression networks are constructed
by computing a similarity score for each pair of genes. If similarity is above a certain
threshold, the gene pair gets connected in the graph, if not, it remains unconnected.
Wolfe et al. [147] argue that networks of coexpressed genes provide a widely applicable
framework for assigning gene function. They show that coexpression agrees well with
functional similarity as it is encoded in the Gene Ontology [5].

Building coexpression networks The first critical point in building a coexpression
network is how to formalize the notion of similarity of expression profiles. Several
measures have been proposed. The most simple similarity measure is correlation. In
a Gaussian model, zero correlation corresponds to statistical independence. Correla-
tion networks are easy to interpret and can be accurately estimated even if p � N ,
that is, the number of genes is much larger than the number of samples. Stuart et al.
[133] build a graph from coexpression across multiple organisms (humans, flies, worms
and yeast). They find many coexpression relationships to be conserved over evolu-
tion. This implies a selective advantage and thus functional relationship between
these gene-pairs. Bickel [10] generalizes correlation networks to time series data by
introducing a time-lag for correlation.

Correlation is a linear measure of independence, non-linear dependencies between
genes are not necessarily found. This problem can be avoided using networks built
from pair-wise mutual information [18]. Another flexible similarity measure are
kernel-functions [116], which are extensively used in wide parts of Machine Learning.
Yamanishi et al. [148] use kernel functions for supervised network reconstruction.
They show that the kernel formalism gives a unified framework for integrating differ-
ent types of data including expression profiles and protein-interaction graphs. Then,
they tune kernel parameters in known parts of a protein-interaction graph and use
them to infer unknown parts. Kato et al. [68] weight the different data sources ac-
cording to noise and information content when combining them in the kernel.

When comparing different types of tissues, e.g., healthy cells versus tumor cells, it
may be interesting to find genes highly correlated under one condition, but losing this
correlation under the second condition. Kostka and Spang [70] call this behaviour
differential coexpression and interpret it as gain or loss of a regulatory mechanism.
They introduce a correlation-based method to identify sets of differentially coex-
pressed genes.

The second critical point is how to assess significance of results. Many pairs of genes
will show similar behaviour in expression profiles by chance even though they are

10



2.1 Conditional independence models

not biologically related. A practical, though time-consuming strategy consists in
permuting the data matrix and comparing the network obtained on real data with
the distribution of similarity scores achieved in the permutations. Bickel [10] uses
permutations to estimate the false discovery rate of spurious connections. In the
supervised setting of Yamanishi et al. [148] cross-validation can be applied to choose
optimal parameters.

Problems of coexpression based approaches Fig. 2.1 shows several reasons,
why three genes X, Y and Z can be found to be coexpressed. We cannot distinguish
direct from indirect dependencies by just looking at similar expression patterns. High
similarity of expression tells us little about the underlying biological mechanisms.

X Y Z X Z

Y
X Z

Y

H

Figure 2.1: Three reasons, why X, Y , and Z are coexpressed. They could be regulated
in a cascade (left), or one regulates both others (middle), or there is a common “hidden”
regulator (right), which is not part of the model.

There are two possible solutions. Functional genomics has a long tradition of per-
turbing the natural state of a cell to infer gene-function from the observed effects.
Interventions allow to decide between the three models in Fig. 2.1, because each one
results in different predictions of effects, which can be compared to those obtained in
experiments. Statisticians devised a different cure. Statistical methods search for cor-
relations which cannot be explained by other variables. The theoretical background
is the notion of conditional independence. Statistical methods filter out correlations,
which can be attributed to other genes.

Conditional independence Conditional independence is defined as follows: Let
X, Y, Z be random variables with joint distribution P . We say that X is conditionally
independent of Y given Z (and write X ⊥ Y | Z) if and only if

P (X = x, Y = y | Z = z) = P (X = x | Z = z) · P (Y = y | Z = z) (2.1)

This is the same as saying

P (X = x | Y = y, Z = z) = P (X = x | Z = z)

and is a direct generalization of the independence condition for X and Y , namely,

P (X = x, Y = y) = P (X = x) · P (Y = y).

The same definitions hold if conditioning is not on a single variable Z but on a set
of variables Z. For an interpretation, we can think of random variables as abstract
pieces of knowledge obtained from, say, reading books [72]. Then X ⊥ Y | Z means:

11



Chapter 2 Statistical models of cellular networks

“Knowing Z, reading Y is irrelevant for reading X”; or in other words: “If I already
know Z, then Y offers me no new information to understand X.” Variable Z can
explain the correlation between X and Y .

The statistical models we discuss in the following all build on conditional indepen-
dence. To decide on an edge between X and Y in the graph, they ask questions of
the form “Is X independent of Y given Z?”, but differ with respect to what Z stands
for: either all other variables except for X and Y , or single third variables, or any
subset of all the other variables. Coexpression networks can be seen as the special
case Z = ∅, which encodes marginal dependencies.

2.1.2 Full conditional models

Full conditional models ask: “Can the correlation observed between two genes be
explained by all other genes in the model?” Nodes i and j are connected by an edge
if and only if

Xi 6⊥ Xj | Xrest. (2.2)

where “rest” denotes the set of all variables in V without i and j. Full conditional
models become especially simple in a Gaussian setting. Assume that X ∼ N(µ, Σ),
where Σ is invertible. Let K = Σ−1 be the concentration matrix of the distribution
(also called the precision matrix ). The value −kij/

√
kiikjj is called the partial cor-

relation coefficient between genes i and j [72]. Then, it holds for i, j ∈ V with i 6= j
that

Xi ⊥ Xj | Xrest ⇔ kij = 0. (2.3)

This relation is used to define Gaussian graphical models (GGMs) [72, 35]. A GGM
is an undirected graph on vertex set V . To each vertex i ∈ V corresponds a random
variable Xi ∈ X. The edge set of a GGM is defined by vanishing partial correlations.
Vertices i and j are adjacent if and only if kij 6= 0. An example is shown in Fig. 2.2.

2 3

4

1 Figure 2.2: Example of a full conditional model. Missing
edges between nodes indicate independencies of the form
Xi ⊥ Xj | Xrest. We can read from the graph that
X1 ⊥ X4 | {X2, X3} and X2 ⊥ X3 | {X1, X4} and
X2 ⊥ X4 | {X1, X3}.

The estimation of a GGM from data is a three-step process. First estimate the
covariance matrix Σ, e.g., by the sample covariance matrix Σ̂ = 1

N−1
(M − M̄)(M −

M̄)T , where M̄ denotes the sample mean. Then, invert Σ̂ to obtain an estimate K̂ of
the precision matrix K. Finally, employ statistical tests [72, 124, 33, 32] to decide,
which entries in K̂ are significantly different from zero.

Comparison to correlation networks Correlation graphs visualize the structure
encoded in the correlation matrix Σ, which tells us about the similarity of expression
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2.1 Conditional independence models

profiles. In GGMs, we model via the precision matrix K = Σ−1, which tells us,
how much correlation remains after we corrected for the influence of all other genes.
GGMs not only filter out high correlations, which can be attributed to other genes,
but may also draw attention to genes which are only very weakly correlated with a
gene of interest, but highly related in terms of partial correlations in the context of
the other neighboring genes in the GGM. These genes can be overlooked in correlation
networks [30, 84].

GGMs have another clear advantage over correlation networks. Directly or indirectly,
almost all genes will be correlated. Thus, the correlation coefficient is a weak criterion
for dependence, but zero correlation is a strong indicator for independence. On the
other hand, partial correlation coefficients usually vanish. They provide a strong
measure of dependence and, correspondingly, only a weak criterion of independence
[115].

Problems of GGMs Full conditional relationships can only be accurately esti-
mated if the number of samples N is relatively large compared to the number of
variables p. If the number of genes to be analyzed exceeds the number of distinct
expression measurements (that is, if p � N), the correlation matrix of expression
profiles between genes does not have full rank and cannot be inverted [115]. The
p � N -situation is true for almost all genomic applications of graphical models.
There are basically two ways out: either improve the estimators of partial corre-
lations or resort to a simpler model. The basic idea in all of these approaches is
that biological data are high-dimensional but sparse, in the sense that only a small
number of genes will regulate one specific gene of interest. We end this section with
examples of improved estimators and describe more strongly regularized models in
the following section.

Several papers suggest ways to estimate GGMs in a p � N -situation. Kishino and
Waddell [69] propose gene selection by setting very low partial correlation coefficents
to zero. As they state, the estimate still remains unstable. Schäfer and Strimmer [115]
improve all three steps of GGM construction. First they sample with replacement
from the dataset to obtain many bootstrap [36] samples. Then, they estimate Σ by
the mean covariance matrix achieved over all bootstrap replicates. Instead of the
usual matrix inverse, they use the Moore-Penrose pseudoinverse, which is based on
a singular value decomposition of Σ̂ and can be applied also to singular matrices.
Finally, they use false discovery rate multiple testing for the selection of edges to be
included in the GGM.

2.1.3 First order conditional independence

First order conditional independence models ask: “Can the correlation between two
genes be explained by a single third gene?” In contrast to GGMs, first order condi-
tional independence models condition not on the whole rest, but only on single third
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Chapter 2 Statistical models of cellular networks

genes. Draw an edge between vertices i and j (i 6= j) if and only if the correlation
coefficient ρij 6= 0 and no third variable can explain the correlation:

Xi 6⊥ Xj | Xk for all k ∈ V \ {i, j}, (2.4)

This general idea can be implemented in different ways: Basso et al. [7] build a model
based on conditional mutual information. The resulting method is called ARACNe
and was successfully applied to expression profiles of human B cells. In a Gaussian
setting, first order conditional independence models were proposed by several authors
[144, 145, 79, 27]. Testing for first order conditional independence involves only
triples of genes at a time. Thus, the problem for GGMs in high dimensions no
longer exists. Wille and Bühlmann [144] prove: if the full conditional independence
graph (the GGM) contains no cycles, then the first order conditional independence
graph coincides with the full conditional independence graph. Wille et al. [145] use
sparse Gaussian graphical modelling to identify modules of closely related genes and
candidate genes for cross-talk between pathways in the Isoprenoid gene network in
Arabidopsis thaliana.

2.2 Bayesian networks

In the last sections we have seen methods to build graphs from
marginal dependencies Xi 6⊥ Xj,

full conditional dependencies Xi 6⊥ Xj | Xrest,
first order dependencies Xi 6⊥ Xj | Xk for all k ∈ rest.

The logcial next step is to ask for independencies of all orders. In the resulting graph,
two vertices i and j are connected if no subset of the other variables can explain the
correlation, that is, if

Xi 6⊥ Xj | XS for all S ⊆ V \ {i, j}. (2.5)

This includes testing marginal, first order and full conditional independencies. Thus,
the number of edges will be less compared to the models in the previous sections.
The graph encoding independence statements of the form (2.5) for all pairs of nodes
is still undirected. It can be shown that knowing independences of all orders gives
a more advanced picture of correlation structure. The collection of independence
statements already implies directions of some of the edges in the graph [96, 97, 127].
The resulting directed probabilistic model is called a Bayesian network.

Definition A (static) Bayesian network is a graphical representation of the de-
pendency structure between the components of a random vector X. The individual
random variables are associated with the vertices of a directed acyclic graph (DAG)
D, which describes the dependency structure. Each node is descibed by a local prob-
ability distribution (LPD) and the joint distribution p(x) over all nodes factors as

p(x) =
∏
v∈V

p(xv | xpa(v), θv), (2.6)
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2.2 Bayesian networks

where θv denotes the parametrization of the local distribution. The DAG structure
implies an ordering of the variables. The parents of each node are those varibles that
render it independent of all other predecessors. The factorization of the joint distri-
bution in Eq. 2.6 is the key property of Bayesian networks. It allows to segment the
set of variables into families, which can be treated individually. This basic definition
of Bayesian networks poses a number of further questions, which will be answered in
the following:

1. How do the local probability distributions p(xv | xpa(v), θv) look like?

2. How is conditional independence defined for DAGs?

3. How can we learn a Bayesian network structure from data?

4. Are there natural limits to structure learning?

Local probability distributions (LPDs) Bayesian network models differ with re-
spect to assumptions on the local probability distributions p(xv|xpa(v), θv) attached
to each node v ∈ V . Basically, there are two types of parametric LPDs used in prac-
tice: multinomial distributions for discrete nodes and Gaussian distributions (normal
distributions) for continuous nodes. The general model in statistics is a mixture of
a discrete and a continuous part. Additionally, there are approaches to use non-
parametric regression models linking parents to children. In the following, we will
shortly introduce each of these models.

• Discrete LPDs. A discrete node v with discrete parents pa(v) follows a multinomial
distribution:

Xv | xpa(v), θv ∼ Multin(1, θv|xpa(v)
) (2.7)

It is parametrized by a set of probability vectors θv = {θv|xpa(v)
}, one for each

configuration xpa(v) of parents of v.

• Gaussian LPDs. A continuous node v with continuous parents pa(v) follows a
normal distribution:

Xv | xpa(v), θv ∼ N(µv, σ
2
v), (2.8)

where the mean µv = β
(0)
v +

∑
i∈pa(v) β

(i)
v xi is a linear combination of parent states.

The normal distribution is parametrized by a vector θv = (βv, σ
2
v) containing re-

gression coefficients βv = (β
(i)
v )i∈pa(v) for each parent node and a variance for Xv.

• Conditional Gaussian (CG) networks. CG networks are a combination of discrete
and Gaussian networks. Continuous nodes follow a Gaussian distribution and are
allowed discrete and continuous parents, while discrete nodes follow a multinomial
distribution and are restricted to discrete parents. Thus, the network can be
divided into a completely discrete part and a mixed part containing discrete and
continuous nodes. CG networks constitute the general class of graphical models
studied in statistics [72].

• Regression trees. Segal et al. [119, 120] use regression trees as LPDs. These capture
the local structure in the data [42, 21], whereas the DAG describes the global
structure. Each regression tree is a rooted binary tree with parents in the DAG as
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Chapter 2 Statistical models of cellular networks

internal nodes. Each leaf node of the tree is associated to a univariate Gaussian
distribution.

• Non-parametric regression. Instead of the parametric approaches discussed so far,
the relationship between parents and children in the DAG can also be modeled
by non-parametric regression models [64, 65, 66, 134]. The result is a non-linear
continuous model. This is an advantage over multinomial or Gaussian Bayesian
networks, which are either discrete or linear.

• Boolean logic LPDs. Bulashevska and Eils [16] constrain LPDs to noisy logic func-
tions like OR, AND for activatory parent-child relations or NOR, NAND for in-
hibitory. This has the advantage of simplifying and regularizing the model, while
at the same time making it easier to interpret.

• Kinetic modeling. Nachman et al. [89] use non-linear Michaelis-Mentens dynamics
to model how the transcription rate of a gene depends on its regulators. This
approach combines Bayesian networks with a biochemically realistic quantitative
model of gene regulation.

Conditional independence in directed graphs In Fig. 2.2 we saw how to read off
independence statements from a full conditional independence graph. How does this
work in the case of Bayesian networks? The answer is given by the definition of d-
separation [97] (“d” for directed). A path q in a DAG D is said to be d-separated (or
blocked) by a set of nodes S if and only if at least one of the following two conditions
holds:

1. q contains a chain i→ m→ j or a fork i← m→ j such that the middle node m
is in S, or

2. q contains an inverted fork (or collider) i→ m← j such that the middle node m
is not in S and such that no descendent of m is in S.

If all paths between i and j are blocked by S then (and only then) holds Xi ⊥
Xj | XS. The three archetypical situations can be seen in Fig. 2.3. The definition of
d-separation, also called the Global Markov condition, allows to read statements of
statistical indepence off the DAG structure.

X

Y

Z X

Y

Z X

Y

Z

chain fork collider

X ⊥ Z | Y X ⊥ Z | Y X 6⊥ Z | Y

Figure 2.3: The three archetypi-
cal situations in the definition of d-
separation. In the chain and the
fork, conditioning on the middle node
makes the others independent. In a
collider, X and Z are marginally inde-
pendent, but get dependent once Y is
known.

Markov equivalence Many Bayesian networks may represent the same statements
of conditional independence. They are statistically undistinguishable and we call
them Markov equivalent. All equivalent networks share the same underlying undirect
graph (called the skeleton) but may differ in the direction of edges, which are not
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2.3 Score based structure learning

part of a v-structure, that is, a child with unmarried parents (same as a collider in
Fig. 2.3). This was shown by Verma and Pearl [139]. It poses a theoretical limit on
structure learning from data: even with infinitely many samples, we cannot resolve
the structures in an equivalence class.

Acyclicity in a cyclic world Bayesian networks allow the highest resolution of
correlation structure. Still, they suffer from a severe shortcoming: they are acyclic.
With cycles, we cannot decompose the joint distribu-
tion as in Eq. 2.6. Biological networks are all known
to contain feedback loops and cycles [4]. Modeling
the cell cycle with an acyclic model [44] may not be
the best idea. Fortunately, the cycle problem can be
solved by assuming that the system evolves over time.
This is shown in Fig. 2.4. We no longer model a static
random vector X but a time series X[1], . . . ,X[T ] of
observing X at T timepoints. If we assume that Xv

at time t+1 can only have parents at time t, then cy-
cles “unroll” and the resulting model is again acyclic
and tractable: it is called a Dynamic Bayesian net-

A A

B B

A

B

t+1t
Figure 2.4: The cycle unrolls
into an acyclic graph over differ-
ent time slices.

work (DBN) [45, 87]. DBNs found many applications in computational biology
[154, 9, 157]. They are often combined with hidden variables [101], which can also
capture non-transcriptional effects [8, 104, 105, 89, 93].

2.3 Score based structure learning

In correlation networks, GGMs and sparse GGMs we use statistical tests for each
gene pair to decide whether the data support an edge or not. The number of tests
to be done in these models is limited, even though it can be big in the case of sparse
GGMs. For Bayesian networks we would have to test independence of a gene pair for
every subset of the other genes. This is called constraint-based learning of Bayesian
networks. The examples discussed in [97, 127] involve only a handful of variables. For
bigger problems testing gets infeasible very quickly. In applications in computational
biology the network structure is thus mostly estimated by score based techniques.

2.3.1 Maximum likelihood scores

Maximum likelihood A straight-forward idea for model selection is to choose the
DAG D, which allows the best fit to data M . This means maximizing the likelihood
p(M |D, θ) as a function of θ. A score for DAG D is then given by

scoreML(D) = max
θ

p(M |D, θ) (2.9)
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Chapter 2 Statistical models of cellular networks

Unfortunately, the likelihood is not an appropriate score to decide between models
since it tends to overfitting. Richer models with more edges will provably have better
likelihood than simpler ones. A standard solution to this problem is to penalize the
maximum likelihood score according to model complexity. An often used example of
this general strategy is scoring with the Bayesian information criterion.

Bayesian information criterion (BIC) Contrary to what the name suggests, the
BIC score [117] is not a Bayesian score. It is a regularized maximum likelihood
estimate, which penalizes the maximal likelihood of the model with respect to the
number of model parameters to control overfitting. It is defined as

scoreBIC(D) = max
θ

p(M |D, θ)− d

2
log N, (2.10)

where d is the number of parameters. The BIC score can also be used to learn
Bayesian networks with missing values or hidden variables. The likelihood has then to
be maximized via the Expectation-Maximization (EM) algorithm. In such a scenario,
the BIC score was used by Nachman et al. [89] to learn kinetic models of transcription
factors and their targets. They treated protein activities and kinetic constants as
hidden variables. In cases, where the likelihood is accessible to conjugate analysis, a
full Bayesian approach is preferred over ML or BIC.

2.3.2 Bayesian scores

In Bayesian structure learning we evaluate the posterior probability of model topology
D given data M :

scoreBayes = p(D|M) =
p(M |D) · p(D)

p(M)
(2.11)

The term p(M) is an average of data likelihoods over all possible models. We do not
need to compute it for relative model scoring. The term p(D) is a prior over model
structures. The main term is the marginal likelihood p(M |D), which equals the full
model likelihood averaged over parameters of local probability distributions, that is,

p(M |D) =

∫
Θ

p(M |D, θ)p(θ|D) dΘ. (2.12)

This is the reason, why the LPD parameters θ do not enter Eq. 2.11. They are treated
as nuisance parameters and have been integrated out. It is important to note that
the LPD parameters were not maximized as would be done in a maximum likelihood
estimate or in a BIC score. Averaging instead of maximizing prevents the Bayesian
score from overfitting.

Marginal likelihood of network structure The marginal likelihood p(M |D) is the
key component of Bayesian scoring metrics. Its computation depends on the choice
of local probability distributions and local priors in the Bayesian network model. To
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solve integral (2.12) analytically, the prior p(θ|D) must fit to the likelihood p(M |D, θ).
Statistically, this fit is called “conjugacy”. A prior distribution is called conjugate to
a likelihood, if the posterior is of the same distributional form as the prior [49]. If
no conjugate prior is available, the marginal likelihood has to be approximated. We
shortly discuss the LPDs introduced in section 2.2.

• Discrete LPDs. The marginal likelihood for discrete Bayesian networks was first
computed by Cooper and Herskovits [23]. It is further discussed by Heckerman et
al. [58]. The conjugate prior for the multinomial distribution is the Dirichlet
prior [49]. Assuming independence of the prior for each node and each parent
configuration, the score decomposes into independent contributions for each family
of nodes.

• Gaussian LPDs. Corresponding results exist for Gaussion networks using a Normal-
Wishart prior [48]. The marginal likelihood again decomposes into node-wise con-
tributions.

• CG networks. Conditional Gaussian networks are a mix of discrete and Gaussian
nodes [11]. We discuss the computation of marginal likelihood in detail in sec-
tion 3.4.2. Discrete and Gaussian marginal likelihoods are treated there as special
cases.

• Regression trees. The marginal likelihood at each node of the DAG further splits
into independent components for each leaf of the local regression tree. Conjugate
analysis and analytic results are possible using normal-gamma priors for each leaf
node [42, 21].

• Non-parametric regression. Conjugate analysis and analytic computation of the
marginal likelihood are not possible. Imoto et al. [64] use a Laplace approximation
to approach the true marginal likelihood.

• Boolean logic LPDs. Conjugate analysis and analytic computation of the marginal
likelihood are not possible. Instead, Bulashevska and Eils [16] use Gibbs sampling
to estimate the model posterior p(D|M) and the parameter posterior p(θ|M).

• Kinetic modeling. Again, conjugate analysis is not possible. Nachman et al. [89]
use the BIC score for model selection.

Likelihood equivalence It is sensible to postulate that DAGs in the same equiv-
alence class get the same score. The score should not distinguish between undistin-
guishable models. This requirement limits the choice of permissible prior parameters
when computing the marginal likelihood. We discuss here the discrete case of a multi-
nomial node with a Dirichlet prior [58]. The Dirichlet parameters are a set {αiδ |ipa(δ)

},
each element corresponding to a discrete node δ in state iδ with discrete parent con-
figuration ipa(δ). Likelihood equivalence constrains the Dirichlet parameters to the
form

αiδ |ipa(δ)
= α · P (Iδ = iδ, Ipa(δ) = ipa(δ)), (2.13)

where P is a prior distribution over the joint states of node δ and its parents [58].
The scale parameter α of the Dirichlet prior—often interpreted as “equivalent sample
size” or “prior strength”—is positive and independent of δ. It plays an important
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role for regularization of network structure (see section 2.3.3). Two ad hoc choices
are: for all iδ ∈ Iδ and ipa(δ) ∈ Ipa(δ) set

αiδ |ipa(δ)
=

{
1 [23],
α/|Iδ||Ipa(δ)| [17].

Both choices result in different scoring metrics. Heckerman et al. [58] call the first
score the K2 metric after the K2 algorithm introduced in [23]. It is not likelihood
equivalent. Heckerman calls the second score a BDeu metric. The name is an
acronym for a Bayesian score using a D irichlet prior, which is likelihood equivalent
and uniform. It corresponds to the choice of a uniform prior in Eq. 2.13. How can
likelihood equivalence be guaranteed generally? Heckerman et al. [58] and Geiger
and Heckerman [48] introduce methods to deduce the parameter priors for all pos-
sible networks from one joint prior distribution in the discrete and continuous case,
respectively. Bøttcher [11] generalizes the results to CG networks.

Structure prior Structure priors p(D) help to focus inference on reasonable mod-
els by including biological prior knowledge or integrating different data sources. In
some applications the task is not to learn a structure from scratch but to refine a
prior network built from biological prior knowledge. The first idea is to restrict the
search space to a—conveniently defined—vicinity V(P) of the prior network P . All
the DAGs in the restricted search space are considered equally likely. This can be
interpreted as a rigid structure prior of the form

p(D) =

{
1/|V(P)| if D ∈ V(P)

0 else
(2.14)

A smoother way to guarantee that DAGs similar to the prior network P get higher
prior probability is the following. We measure the confidence of edge (v, w) by a
value 0 < κvw ≤ 1. A structure prior can then be defined proportional to a product
of weights κvw over all edges (v, w):

p(D) ∝
∏

v,w∈V

κvw. (2.15)

The normalization constant, which would be necessary to make the right-hand side
a density, can be ignored when computing relative posterior probabilities. What are
smart choices of κvw? There are several approaches suggested in literature, which are
shortly described here.

1. Heckerman et al. [58] assume constant penalty κvw ≡ κ for all edges, in which D
and P differ. Thus, p(D) ∝ κε where ε is the number of edges in which D differs
from the prior DAG P .

2. Another approach [65, 134] uses a network prior in an iterative scheme. They
construct a Bayesian network from microarray data, propose putative transcription
factors from the network structure, and search for common motifs in the DNA
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sequences of children and grand-children of transcription factors. Then, they re-
learn the network by penalizing edges without motif evidence harder than edges
with motif evidence.

3. Bernard et al. [9] define weights from p-values of binding location data. They
assume that p-values follow an exponential distribution if the edge is present and
a uniform distribution if it is not. By Bayes’ rule they derive probabilities for an
edge to be present given the p-values from the location data. The free parameter
of the exponential distribution is then integrated out. The final probabilities Pvw

are used as weights in a structure prior.

Fig. 2.5 shows a comparison of these three prior definitions. They can be organized
by the weights κvw they give for the presence or absence of an edge given prior
information in.

D
[58] 1 0

1 1 κ
Prior P

0 κ 1

D
[65] 1 0

1 e−ξ1 1
0 e−ξ2 1

D
[9] 1 0

p-value Pvw 1− Pvw

Figure 2.5: Comparison of edge weights suggested by Heckerman et al. [58],
Imoto et al. [65] and Bernard et al. [9]. Rows correspond to prior information. In
the left two examples the prior can be described binary, on the right it is expressed as
a p-value derived from a second data set. In the middle table holds ξ1 < ξ2, i.e. edges
with motif evidence contribute more than edges without.

Discretization Most often used in applications is the Bayesian score for discrete
data. When learning gene regulatory networks from microarray data, we first need
to preprocess the continuous gene expression values and discretize them. In general,
discretization may be carried out for computational efficiency, or because background
knowledge suggests that the underlying variables are indeed discrete. Discretizing
continuous variables results in a loss of information. At the same time, this can be a
loss of noise. Discretized data can be more stable with respect to random variations
of the mRNA measurements. Several methods to discretize microarray data were
proposed in literature:

1. Friedman et al. [44] discretize expression values into three categories, depending
on whether the expression rate is significantly lower than, similar to, or greater
than control, respectively.

2. Pe’er et al. [99] introduce an adaptive discretization procedure. They model the
expression level of a gene in different experiments as samples from a mixture of
normal distributions, where each normal component corresponds to a specific state.
Then they use standard k-means clustering to estimate such a mixture.

3. Hartemink et al. [56] use a discretization coalescence method, which incrementally
reduces the number of discretization levels for each gene while preserving as much
total mutual information between genes as possible.

21



Chapter 2 Statistical models of cellular networks

4. In the previous three approaches, expression levels were discretized before and
independently of structure learning. Suboptimal discretization policies will lead
to degraded network structure. To avoid this, Steck and Jaakkola [129] derive
a scoring function to efficiently jointly optimize the discretization policy and the
structure of the graphical model.

This section provides us with all the methodology we need to decide between candi-
date regulatory structures by Bayesian scoring. Once we have decided on a discretiza-
tion policy and on the value of Dirichlet parameters, we need to compute the marginal
likelihood of the data for every candidate structure. Biological prior knowledge can
be incorporated via a structure prior to bias our choice towards reasonable models.
Chapter 3 will give a detailed account of how to compute the marginal likelihood for
discrete and Gaussian networks on observational and interventional data.

2.3.3 Regularization

Regularization is a technique used in Machine Learning to ensure uniqueness of solu-
tion and to fight overfitting by constraining admissible models [116, 83]. Regulariza-
tion is always needed in p� N - situations. We already saw examples of regularization
in section 2.1, when Gaussian graphical models were adapted to the p� N -situation
[115, 144]. Different methods were proposed for Bayesian networks.

1. Steck and Jaakkola [128] show that a small scale parameter α in Eq. 2.13 leads
to a strong regularization of the model structure and a sparse graph given a suf-
ficiently large data set. In particular, the empty graph is obtained in the limit
of a vanishing scale parameter. This is diametrically opposite to what one may
expect in this limit, namely the complete graph from an unregularized maximum
likelihood estimate.

2. Another way to regularize Bayesian networks is to constrain the forms, the local
probability distributions can take. Bulashevska and Eils [16] suggest learning
noisy logic gates for parent-child relationships. The drawback is that Bayesian
conjugate analysis, which leads to the analytic solution of the marginal likelihood,
is no longer possible and Gibbs sampling has to be applied.

3. Module networks [119, 120] constrain the number of parameters in the model by
assuming that groups of genes (so called modules) share the same dependence on
regulators. Learning module networks involves an iteration of assigning genes to
modules and searching for dependencies between modules.

2.3.4 Model selection and assessment

Exhaustive search To search for the DAG with highest score is mathematically
trivial: compute the score for every possible DAG and choose the one that achieves
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the highest value. What makes exhaustive search computationally infeasible is the
huge number of DAGs. The number of DAGs on n edges is

an =
n∑

k=1

(−1)k−1

(
n

k

)
2k(n−k) an−k (2.16)

with a0 = 1 [108]. The number of DAGs increases explosively, as the first few steps
in the recursion show: 1, 1, 3, 25, 543, 29 281, 3 781 503, 1 138 779 265. That means,
we have to think of some heuristic strategy to find high-scoring Bayesian networks
without enumerating all possible ones.

Defining search space First we need to decide how to describe models of interest.
This defines the model space, in which we search for models describing the data
well. To apply search heuristics we have to equip search space with a neighborhood
relation, that is, operators to move from one point of the search space to the next
one.

1. The most simple search space results from defining a neighborhood relation on
DAGs. Two DAGs are neighbors if they differ by one edge, which is either missing
in one of them or directed the other way round.

2. Madigan et al. [78] and Chickering [20] restrict the search space to Markov equiva-
lence classes of DAGs which uniquely describe a joint distribution. Thus, no time
is lost in evaluating DAG models which are equivalent anyway.

3. Friedman and Koller [43] search over orders of nodes rather than over network
structures. They argue that the space of orders is smaller and more regular than
the space of structures, and has a much smoother posterior landscape.

Search heuristics Most of the following search algorithms can be applied to all
search spaces, even though they are usually applied to DAGs. They return a single
best network.

1. A simple and fast but still powerful method is hillclimbing by greedy search. First,
choose a point in search space to start from, e.g. a random graph or the empty
graph. Compute the posterior probability for all graphs in the neighborhood of
the current graph. Select the graph with highest score. Iterate until no graph in
the neighborhood has a larger score than the current graph. This procedure gets
you to local maxima of the Bayesian scoring metric. The K2-algorithm [23] is a
variant of greedy search, which assumes that the order of nodes is known.

2. The sparse candidate algorithm [46] restricts the number of possible parents for
each node by searching for pairs of nodes which are highly dependent.

3. The ideal parent algorithm [90, 89] constructs a parent profile perfectly explaining
the child behaviour and uses it to guide parent selection and to restrict the search
space.

4. Peña et al. [100] grow Bayesian networks starting from a target gene of interest.
They iteratively add to the Bayesian network parents and children of all the genes
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already included in it. The algorithm stops after a predefined number of steps and
thus, intuitively, highlights the surrounding area of the seed gene without having
to compute the complete Bayesian network over all genes.

5. Friedman [39, 40] introduces the structural EM algorithm to learn Bayesian net-
works in the presence of missing values or hidden variables. It is an extension
of the Expectation-Maximization (EM) algorithm that performs structure search
inside the EM procedure.

Assessing uncertainty The problem with optimal models is, as Edwards [35] puts
it: “Any method (or statistician) that takes a complex multivariate dataset and, from
it, claims to identify one true model, is both naive and misleading”. The emphasis
is on “one true model”. Better than choosing a single best model is to explore the
whole posterior distribution. Direct sampling from the posterior is impossible due
to the intractability of the denominator in Eq. 2.11, but there are other methods
available.

1. The most we know about the data distribution is the empirical distribution of
observations in the dataset. A classical approach to assess variability in the data
is bootstrapping [36]. The strategy is to sample with replacement from the obser-
vations in the data set to get a number of bootstrap datasets, and then learn a
network on every bootstrap dataset. The relative frequency of network features in
the resulting network structures can be used as a measure of reliability [44, 99].

2. Bootstrap samples can contain multiple copies of identical data points. This im-
plies strong statistical dependencies between variables when given a small dataset.
As a consequence, the resulting network structure can be considerably biased to-
wards denser graphs. Steck and Jaakkola [131] propose a correction for this bias.

3. As a simple way to avoid the bootstrap-bias Steck and Jaakkola [129] use the
leave-k-out method. Instead of resampling with replacement, k cases are left out
of the dataset when estimating a model. Repeating this many times also gives an
estimate of model variability.

4. Markov Chain Monte Carlo (MCMC) is a simulation technique, which can be used
to sample from the posterior p(D|M). Given a network structure, a new neigh-
boring structure is proposed. This new structure is accepted with the Metropolis
Hastings acceptance criterion [57]. The iteration of this procedure produces a
Markov chain that under fairly general conditions converges in distribution to
the true posterior. MCMC is used by Husmeier [62] to learn dynamic Bayesian
networks. Madigan et al. [78] use MCMC over Markov equivalence classes and
Friedman and Koller [43] over orders of nodes.

2.4 Benchmarking

Graphical models visualize a multivariate dependency structure. They can only an-
swer biological questions if they succeed in reliably and accurately reconstructing bi-
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2.5 A roadmap to network reconstruction

ologically relevant features of cellular networks. Unfortunately, rigorous assessment
and benchmarking of methods are still rare.

• One of the first evaluation studies is by Smith et al. [125]. They sample data from
a songbird’s brain model and report excellent recovery success when learning a
Bayesian network from it.

• Zak et al. [155] develop a realistic 10 gene network, where the biological processes
at the different levels of transcription, translation and post-translational modifica-
tions were modeled with systems of differential equations. They show that linear
and log-linear methods fail to recover the network structure.

• Husmeier [62] uses the same simulation network [155] to specify sensitivity and
specificity of dynamic Bayesian networks. He demonstrates how the network in-
ference performance varies with the training set size, the degree of inadequacy of
prior assumptions, and the experimental sampling strategy. By analyzing ROC
curves Husmeier can show fair performance of DBNs.

• Wimberly et al. [146] test 10 algorithms, including Boolean and Bayesian networks,
on a simulation [14] of the genetic network of the sea urchin embryo [25]. They
report that reconstruction is unreliable with all methods and that the performance
of the better algorithms quickly degrades as simulations become more realistic.

• Basso et al. [7] show that their own method, ARACNe, compares favorably
against static Bayesian networks on a simulated network with 19 nodes [154]—
but only if the dataset includes several hundreds of observations. On the other
hand, Hartemink [55] finds dynamic Bayesian networks to be even more accurate
than ARACNe on the same dataset.

All in all the results are not promising. Graphical models from microarray data need
a big sample size and capture only parts of biologically relevant networks. One reason
for this shortcoming is that the models we discussed so far all use purely observational
data, where the cellular network was not perturbed experimentally. In simulations
[156, 82] and on real data [114] it was found that data from perturbation experiments
greatly improve performance in network reconstruction. Thus, the following section 3
will introduce methodology for learning from effects of interventions in a probabilistic
framework suitable to capture the noise inherent in biological experiments. This helps
to improve the accuracy of network reconstruction.

2.5 A roadmap to network reconstruction

Fig. 2.6 organizes network reconstruction methods with respect to basic questions:
Does the data include gene knockout or knockdown experiments? If not, we call it
purely observational data; if yes, we call it interventional data. Is the model proba-
bilistic or deterministic? Does the model allow for changes over time? If yes, we call
it dynamic, else static. Does the model describe transcriptional regulatory networks?
And if yes: are additional non-transcriptional effects taken into account?
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Chapter 2 Statistical models of cellular networks

In the leaf nodes of the decision tree methods fall together that are methodologically
similar. Some branches in the tree are missing. Mostly, the reason is not that it
would be impossible to follow them, but simply that we found no approach doing
it.
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Figure 2.6: A guide to the literature on network reconstruction. The methods dis-
cussed in this section all fall into the left branch of the tree. The next two sections will
deal with learning transcriptional regulatory networks and non-transcriptional pathways
from interventions. The main contributions of this dissertation are soft interventions
and learning from secondary effects.

Fig. 2.6 shows representative examples and relates our own methods to other ap-
proaches. The main contributions of this dissertation are soft interventions and
learning from secondary effects. They can be found in the right-most branch of
the tree. Both are static probabilistic models for interventional data. Soft inter-
ventions are used for gene regulation networks, in which effects of interventions can
be observed at the other genes in the model. Learning from secondary effects infers
non-transcriptional pathway features from expression data. This model expands the
mRNA centered view of graphical models to non-transcriptional parts of signaling
pathways.
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Chapter 3

Inferring transcriptional regulatory
networks

The last chapter described statistical models to infer the topology of cellular networks by
elucidating the correlation structure of pathway components. This chapter extends these
models to include direct observations of intervention effects at other pathway components
(section 3.1). The main contribution is a general concept of probabilistic interventions in
Bayesian networks. My approach generalizes deterministic interventions, which fix nodes
to certain states (section 3.2). I propose “pushing” variables in the direction of target
states without fixing them (section 3.3) and formalize this idea in a Bayesian framework
based on conditional Gaussian networks (section 3.4).

3.1 Graphical models for interventional data

In modern biology, the key to inferring gene function and regulatory pathways are
experiments with interventions into the normal course of action in a cell. A common
technique is to perturb a gene of interest experimentally and to study which other
genes’ activities are affected. A number of deterministic and probabilistic techniques
have been proposed to infer regulatory dependencies from primary effects. In this
section, we will give an overview over recent approaches, which are extensions of the
methods discussed in the last chapter.

Linking causes with effects Rung et al. [112] build a directed graph by drawing an
edge (i, j) if perturbing gene i results in a significant expression change at gene j. The
authors focus on features of the network that are robust over a range of significance
cutoffs. The inferred networks do not distinguish between direct and indirect effects.
In this sense they are similar to co-expression networks. Fig. 3.1 shows the difference
between a causal network and a network of affected components. In graph-theoretic
terminology, the second network is the transitive closure of the first one.

Distinguishing direct from indirect effects A transitively closed network can
be used as a starting point for further analysis. Wagner [142, 141, 140] uses graph-
theoretic methods of transitive reduction [1, 75] to find the most parsimonious sub-
graph explaining all observed effects. These methods are deterministic and do not
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Chapter 3 Inferring transcriptional regulatory networks
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C

A Figure 3.1: From the causal network (left) it is
easy to deduce how effects spread through the
pathway (right). The harder problem is to de-
duce the causal pathway from observing effects
of interventions (going from right to left).

account for measurement noise. Wang and Cooper [143] describe a Bayesian gener-
alization of the Wagner algorithm [140] yielding a distribution over possible causal
relationships between genes.

Boolean networks A simple deterministic model of regulatory networks are Boolean
networks: they are defined by a directed (and possibly cyclic) graph. Nodes corre-
spond to genes and can take values 0 and 1. For each node exists a boolean function
relating parent states to the child state. Perturbations allow to infer the structure
and the logic of Boolean networks [63, 2, 3].

Correlation Rice et al. [107] build correlation graphs on knockout data. They
assume that the data contain measurements of the unperturbed cell and several repli-
cates of measurements for every gene knockout. For each gene i, they combine the
wild-type data with the intervention data of this gene and compute on the joint data
the correlation of gene i to all other genes. In the final graph, there is an arrow
(i, j) whenever gene j was highly correlated to gene i. Since the correlation was com-
puted on knockout data, the graph encodes causation and not only correlation. The
big disadvantage of the method is the need for many (≥ 10) replicates of knockout
experiments for every gene in the model. Data are used more efficiently by several
regression methods.

Regression Rogers and Girolami [109] use sparse Bayesian regression based on a
Gaussian linear model. They regress each gene onto all other genes by combining
all the data corresponding to knockouts of genes other than the particular gene of
interest. The measurements of the knockout gene are ignored when predicting this
gene’s expression from the other genes. In the next section we will see that this
strategy is the same as Pearl’s ideal interventions used in Bayesian networks [97]. A
prior on model parameters constrains most regression coefficients to zero and enforces
a sparse solution. Non-zero regression coefficients are indicated by arrows in the
regulation network. The resulting graph is a special case of a Gaussian graphical
model where directed edges are justified because the dataset contained knockouts of
predictor variables.

Other regression methods for network reconstruction are derived from a branch of
engineering called system identification [77]. Functional relations between network
components are inferred from measurements of system dynamics. Several papers
[151, 47, 28, 29] use multiple regression to model the response of genes and proteins
to external perturbations.

Bayesian networks Bayesian networks represent the finest resolution of correla-
tion structure. As shown in section 2.2, they present a prominent approach to derive
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3.2 Ideal interventions and mechanism changes

a theoretical model for regulatory networks and pathways. Genes are represented by
vertices of a network and the task is to find a topology, which explains dependencies
between the genes. When learning from observational data only, groups of Bayesian
networks may be statistically indistinguishable [139] as discussed in section 2.2. In-
formation about effects of interventions helps to resolve such equivalence classes by
including causal knowledge into the model [136, 137]. The final goal is to learn a
graph structure, which not only represents statistical dependencies, but also causal
relations between genes.

The following sections develop a theory for learning Bayesian network structure when
data from different gene perturbation experiments is available. Section 3.2 reviews
classical theory on modelling interventions in Bayesian networks. It shows that these
concepts do not fit to realistic biological situations. A more appropriate model is
introduced in section 3.3. It develops a theory of soft interventions, which push an
LPD towards a target state without fixing it. A soft intervention can be realized by
introducing a “pushing parameter” into the local prior distribution, which captures
the pushing strength. We propose a concrete parametrization of the pushing parame-
ter in the classical cases of discrete and Gaussian networks. Ideal interventions, which
have been formally described by choosing a Dirac prior [137], can then be interpreted
as infinite pushing.

Section 3.4 summarizes the results in the general setting of conditional Gaussian
networks. This extends the existing theory on learning with hard interventions in
discrete networks to learning with soft interventions in networks containing discrete
and Gaussian variables. The concluding Section 3.4.3 deals with probabilistic soft
interventions. In this set-up the pushing parameter becomes a random variable and
we assign a prior to it. Hence, we account for the experimentalist’s lack of knowledge
on the actual strength of intervention by weighted averaging over all possible values.

3.2 Ideal interventions and mechanism changes

It is crucial that models reflect the way data was generated in the perturbation exper-
iments. In Bayesian structure learning, Tian and Pearl [137] show that interventions
can be modeled by imposing different parameter priors when the gene is actively
perturbed or passively observed. They only distinguish between two kinds of inter-
ventions: most generally, interventions that change the local probability distribution
of the node within a given family of distributions, and as a special case, interventions
that fix the state of the variable deterministically. The first is called a mechanism
change. It does not assume any prior information on how the local probability distri-
bution changes. The second type of intervention, which fixes the state of the variable,
is called a do-operator [97]. We will shortly describe both approaches to motivate
our own model, which can be seen as lying intermediate these two extremes.

Ideal interventions Pearl [97] proposes an idealized do-operator model, in which
the manipulation completely controls the node distribution. The influence of parent
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Chapter 3 Inferring transcriptional regulatory networks

nodes is removed and the LPD p(xv|xpa(v), θv) degenerates to a point mass at the
target state x′v, that is,

p(xv|xpa(v), θv)
do(Xv=x′

v)−−−−−−→ p(xv) =

{
1 if xv = x′v
0 else.

(3.1)

Fixing a variable to a state tells us nothing about its “natural” behaviour. When
considering a single variable, data in which it was experimentally fixed has to be
omitted. Cooper and Yoo [24] show: the marginal likelihood for data including
interventional cases is of the same form as for observational cases only, but the counts
go only over observations where a node was not fixed by external manipulation. We
will discuss this result more deeply in section 3.4.

We will call Pearl’s model a hard (pushing) intervention: it is directed to a target
state and fixes the LPD deterministically. Hard interventions are used in almost all
applications of interventional learning in Bayesian networks [152, 153, 130, 138, 99,
88, 22, 24].

A simulation study To test the effect of ideal interventions on structure learning,
we conducted a simulation study on a small network of five nodes. Here, exhaus-
tive enumeration is still possible and we can assess the complete score landscape.
The simulation evaluated reconstruction accuracy with varying levels of noise and
three different dataset sizes. The LPDs are convex combinations of signal and noise
regulated by a parameter κ. The technical set-up is summarized in Fig. 3.2.

X5

X3 X2

X1

X4

Figure 3.2: The network topology used in the simulation. All random
variables can take three values. For each parent state, the LPDs are
a convex combination κ · signal + (1 − κ) · noise, where “noise” is a
uniform distribution over the three states and “signal” propagates the
parent state. If X2 and X3 disagree, X4 chooses uniformly between the
two signals. More technical details are found in [82].

Varying κ in steps of 0.1 in the intervall [0, 0.9] we sampled two datasets of the
same size: one only containing passive observations, and one sampled after ideal
interventions at each node with equal number of replicates for each intervention
experiment. On both datasets we scored all possible DAGs on 5 nodes and counted
differences between the true and the top scoring topology. As errors we counted
missing and spurious edges and also false edge directions. All these features are
important when interpreting network topologies biologically.

The results of 5 repetitions can be seen in Fig. 3.3. The more data and the clearer the
signal, the more pronounced is the advantage of active interventional learning over
purely observational learning. While observational learning results in three equivalent
topologies with the same high score, interventional learning resolves these ambiguities
and yields a single best model. In summary, interventions are critical for effective
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Figure 3.3: Results of simulation experiments. The red dashed line corresponds to
learning from observational data, the green solid line from learning with interventions.
The bigger the sample-size and the clearer the signal, the larger is the gap between
both lines.

inference, particularly to establish directionality of the connections. Recently, this
finding has been confirmed in other simulations [156] and on real data [114].

Mechanism changes Tian and Pearl [137] propose a model for local spontaneous
changes that alter LPDs. They assume that no knowledge is available on the nature
of the change, its location, or even whether it took place. Tian and Pearl derive a
Bayesian score for structure learning by splitting the marginal likelihood for a node,
at which a local change occurred, into two parts: one for the cases obtained before
the change and one for the cases obtained after the change. A hard intervention
as in Eq. (3.1) can be incorporated in this framework by assigning an informative
prior distribution to the second part of the marginal likelihood. Tian and Pearl [137]
show that the assumption (or knowledge) that only a single causal mechanism has
changed, increases power in structure learning. Previously indistinguishable equiva-
lent topologies may now be distinguished.

Problems Both hard interventions and mechanism changes face problems when
being applied to real biological data from gene silencing experiments. Pearl’s model
of ideal interventions contains a number of idealizations: manipulations only affect
single genes and results can be controlled deterministically. The first assumption
may not be true for drug treatment and even in the case of single-gene knockouts
there may be compensatory effects involving other genes. The second assumption
is also very limiting in realistic biological scenarios. Often the experimentalist lacks
knowledge about the exact size of perturbation effects. Due to measurement error or
noise inherent in the observed system it may often happen that a variable, at which
an intervention took place, is observed in a state different from the target state. In
Pearl’s framework, a single observation of this kind results in a marginal likelihood
of zero. Mechanism changes, on the other hand, are also not suited to model real
biological experiments, even though they capture uncertainty on intervention strength
and accuracy. In real applications to reverse screens, at least the target of intervention
is known and there is an expected response of the target to the intervention. Gene
perturbations are directed in the sense that the experimental technique used tells us
whether we should expect more or less functional target mRNA in the cell.
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Chapter 3 Inferring transcriptional regulatory networks

In summary, we need interventional data for successfull small-sample network recon-
struction. Hard interventions (do-operations) are deterministic, mechanism changes
are undirected. Both frameworks do not fit realistic biological situations. If we treat
gene perturbation experiments as unfocussed mechanism changes we lose valuable
information about what kind of intervention was performed. If we model them by a
do-operator, we underestimate the stochastic nature of biological experiments. Thus,
we need a concept of interventions, which is more directed than general mechanism
changes, but still softer than deterministic fixing of variables. In the following, we fo-
cus on interventions, which specifically concentrate the local distribution at a certain
node around some target state. We will call them pushing interventions, they are
examples of mechanism changes with prior knowledge. We generalize hard pushing
interventions (do-operator) to soft pushing interventions : the local probability distri-
bution only centers more around the target value without being fixed. We follow Tian
and Pearl [137] in splitting the marginal likelihood locally in two parts and assigning
informative prior distributions. All interventions we will discuss are external manip-
ulations of single nodes. None of them models global changes in the environment,
which would change the dependency structure over the whole network and not just
in a single family of nodes. Thus, we can start explaining soft interventions in the
next section by concentrating on a single node in a Bayesian network.

3.3 Pushing interventions at single nodes

A Bayesian network is a graphical representation of the dependency structure be-
tween the components of a random vector X. The individual random variables are
associated with the vertices of a directed acyclic graph (DAG) D, which describes the
dependency structure. Once the states of its parents are given, the probability dis-
tribution of a given node is fixed. Thus, the Bayesian network is completely specified
by the DAG and the local probability distributions (LPDs). Although this defini-
tion is quite general, there are basically three types of Bayesian networks which are
used in practice: discrete, Gaussian and conditional Gaussian (CG) networks. CG
networks are a combination of the former two and will be treated in more detail in
Section 3.4, for the rest of this section we focus on discrete and Gaussian networks. In
discrete and Gaussian networks, LPDs are taken from the family of the multinomial
and normal distribution, respectively. In the theory of Bayesian structure learning,
the parameters of these distributions are not fixed, but instead a prior distribution is
assumed [23, 48, 11]. The priors usually chosen because of conjugacy are the Dirichlet
distribution in the discrete case and the Normal-inverse-χ2 distribution in the Gaus-
sian case. Averaging the likelihood over these priors yields the marginal likelihood –
the key quantity in structure learning (see section 2.3.2).

An intervention at a certain node in the network can in this setting easily be modeled
by a change in the LPDs’ prior. When focusing on (soft) pushing interventions, this
change should result in an increased concentration of the node’s LPD around the
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3.3 Pushing interventions at single nodes

target value. We model this concentration by introducing a pushing parameter w,
which measures the strength of the pushing. A higher value of w results in a stronger
concentration of the LPD. We now explain in more detail how this is done for discrete
and Gaussian networks. Since the intervention only affects single variables and the
joint distribution p(x) in a Bayesian network factors according to the DAG structure
in terms only involving a single node and its parents, it will suffice to treat families
of discrete and Gaussian nodes separately.

3.3.1 Pushing by Dirichlet priors

We denote the set of discrete nodes by ∆ and a discrete random variable at node δ ∈ ∆
by Iδ. The set of possible states of Iδ is Iδ. The parametrization of the discrete LPD
at node δ is called θδ. For every configuration ipa(δ) of parents, θδ contains a vector
of probabilities for each state iδ ∈ Iδ. Realizations of discrete random variables
are multinomially distributed with parameters depending on the state of discrete
parents. The conjugate prior is Dirichlet with parameters also depending on the
state of discrete parents:

Iδ | ipa(δ), θδ ∼ Multin(1, θδ|ipa(δ)
),

θδ|ipa(δ)
∼ Dirichlet(αδ|ipa(δ)

).
(3.2)

We assume that the αδ|ipa(δ)
are chosen to respect likelihood equivalence [58]. A

pushing intervention at node δ amounts to changing the prior parameters αδ|ipa(δ)

such that the multinomial density concentrates at some target value j. We formalize
this by introducing a pushing operator P defined by

P(αδ|ipa(δ)
, wδ, j) = αδ|ipa(δ)

+ wδ · 1j, (3.3)

where 1j is a vector of length |Iδ| with all entries zero except for a single 1 at state j.
The pushing parameter wδ ∈ [0,∞] determines the strength of intervention at node
δ: if wδ = 0 the prior remains unchanged, if wδ =∞ the Dirichlet prior degenerates
to a Dirac distribution and fixes the LPD to the target state j. Figure 3.4 shows a
three-dimensional example of increasing pushing strength wδ.

3.3.2 Pushing by Normal-inverse-χ2 priors

The set of Gaussian nodes will be called Γ and we denote a Gaussian random variable
at node γ ∈ Γ by Yγ. In the purely Gaussian case it depends on the values of parents
Ypa(γ) via a vector of regression coefficients βγ. If we assume that βγ contains a first

entry β
(0)
γ , the parent-independent contribution of Yγ, and attach to Ypa(γ) a leading

1, we can write for Yγ the following regression model

Yγ | βγ, σ
2
γ ∼ N(Y>

pa(γ)βγ, σ2
γ),

βγ | σ2
γ ∼ N(mγ, σ2

γM
−1
γ ),

σ2
γ ∼ Inv-χ2(νγ, s2

γ).

(3.4)

33



Chapter 3 Inferring transcriptional regulatory networks

Figure 3.4: Examples of pushing a discrete variable with three states. Each triangle
represents the sample space of the three-dimensional Dirichlet distribution (which is
the parameter space of the multinomial likelihood of the node). The left plot shows a
uniform distribution with Dirichlet parameter α = (1, 1, 1). The other two plots show
effects of pushing with increasing weight: w = 3 in the middle and w = 10 at the
right. In each plot 1000 points were sampled.

The regression coefficients follow a multivariate normal distribution with mean mγ

and covariance matrix σ2
γM

−1
γ , where σ2

γ is the variance of node Yγ. The variance fol-
lows an inverse-χ2 distribution. We assume that the prior parameters mγ,Mγ, νγ, s

2
γ

are chosen as in ref. [11].

As for discrete nodes, we implement a pushing intervention by adapting the prior
distributions of model parameters. Pushing the distribution of Yγ to target value k
involves moving the mean by adapting the distribution of regression coefficients and
concentrating the distribution by decreasing the variance σ2

γ. To this end, we propose
to exchange mγ and s2

γ by (m̄γ, s̄
2
γ) = P((mγ, s

2
γ), wγ, k) defined by

m̄γ = e−wγ ·mγ + (1− e−wγ ) · k11,

s̄2
γ = s2

γ/(wγ + 1),
(3.5)

where k11 is a vector of length |ipa(γ)|+ 1 with all entries zero except the first, which
is k. We use P for the pushing operator as in the case of discrete nodes; which
one to use will be clear from the context. Again wγ ∈ [0,∞] represents intervention
strength. The exponential function maps the real valued w into the interval [0, 1].
The interventional prior mean m̄ is a convex combination of the original mean m
with a “pushing” represented by k11. If wγ = 0 the mean of the normal prior and the
scale of the inverse-χ2 prior remain unchanged. As wγ → ∞ the scale s̄2 goes to 0,
so the prior for σ2 tightens at 0. At the same time, the regression coefficients of the
parents converge to 0 and β0 approaches target value k. All in all, with increasing wγ

the distribution of Yγ peaks more and more sharply at Yγ = k. Note that the discrete
pushing parameter wδ and the Gaussian pushing parameter wγ live on different scales
and will need to be calibrated individually.

3.3.3 Hard pushing

Hard pushing means to make sure that a certain node’s LPD produces almost surely
a certain target value. It has been proposed by Tian and Pearl [137] to model this by
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3.3 Pushing interventions at single nodes

imposing a Dirac prior on the LPD of the node. Although the Dirac prior is no direct
member of neither the Dirichlet nor the Normal-inverse-χ2 family of distributions it
arises for both of them when taking the limit w →∞ for the pushing strength. Tian
and Pearl [137] give an example for discrete networks by

p(θδ|ipa(δ)
| do(Xδ = x′δ)) = d(θi′δ |ipa(δ)

− 1)
∏
iδ 6=i′δ

d(θiδ |ipa(δ)
), (3.6)

where d(·) is the Dirac function: d(x) = 1, if x = 0, and d(x) = 0 else. This choice of
the local prior distribution ensures that

θiδ |ipa(δ)
=

{
1 for Iδ = i′δ,

0 else,

in agreement with the definition of hard interventions in Eq. (3.1). We can easily
extend this approach to Gaussian networks by defining a prior density as

p(βγ, σ
2
γ | do(Yγ = k)) = d(β(0)

γ − k)
∏

i∈pa(γ)

d(β(i)
γ ) · d(σ2

γ). (3.7)

Averaging over this prior sets the variance and the regression coefficients to zero,
while β

(0)
γ is set to k. Thus, the marginal distribution of Yγ is fixed to state k with

probability one.

3.3.4 Modeling interventions by policy variables

Hard interventions can be modeled by introducing a policy variable as an additional
parent node of the variable at which the intervention is occuring [97, 127, 73]. In
the same way we can use policy variables to incorporate soft interventions. For each
node v, we introduce an additional parent node Fv (“F” for “force”), which is keeping
track of whether an intervention was performed at Xv or not, and if yes, what the
target state was. For a discrete variable Iδ, the policy variable Fδ has state space
Iδ ∪ ∅ and we can write

p(θδ|ipa(δ),fδ
) =

{
Dirichlet(αδ|ipa(δ)

) if Fδ = ∅,
Dirichlet(ᾱδ|ipa(δ)

) if Fδ = j,
(3.8)

where ᾱδ|ipa(δ)
= P(αδ|ipa(δ)

, wδ, j) is derived from αδ|ipa(δ)
as defined in Eq. (3.3). For

a continuous variable Yγ, the policy variable Fγ has state space IR ∪ ∅ and we can
write

p(βγ|fγ , σ
2
γ|fγ

) =

{
N(mγ, σ

2
γM

−1
γ ) · Inv-χ2(νγ, s

2
γ) if Fγ = ∅,

N(m̄γ, σ
2
γM

−1
γ ) · Inv-χ2(νγ, s̄

2
γ) if Fγ = k,

(3.9)

where (m̄γ, s̄
2
γ) = P((mγ, s

2
γ), wγ, k) as defined in Eq. (3.5). Equations (3.8) and

(3.9) will be used in section 3.4.2 to compute the marginal likelihood of conditional
Gaussian networks from a mix of interventional and non-interventional data.
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Chapter 3 Inferring transcriptional regulatory networks

3.4 Pushing in conditional Gaussian networks

We summarize the results of the last section in the general framework of conditional
Gaussian networks and compute the marginal likelihood for learning from soft inter-
ventions.

3.4.1 Conditional Gaussian networks

Conditional Gaussian (CG) networks are Bayesian networks encoding a joint dis-
tribution over discrete and continuous variables. We consider a random vector X
splitting into two subsets: I containing discrete variables and Y containing contin-
uous ones. The dependencies between individual variables in X can be represented
by a directed acyclic graph (DAG) D with node set V and edge set E. The node set
V is partitioned as V = ∆ ∪ Γ into nodes of discrete (∆) and continuous (Γ) type.
Each discrete variable corresponds to a node in ∆ and each continuous variable to
a node in Γ. The distribution of a variable Xv at node v only depends on variables
Xpa(v) at parent nodes pa(v). Thus, the joint density p(x) decomposes as

p(x) = p(i,y) = p(i)p(y|i)

=
∏
δ∈∆

p(iδ|ipa(δ)) ·
∏
γ∈Γ

p(yγ|ypa(γ), ipa(γ)). (3.10)

The discrete part, p(i), is given by an unrestricted discrete distribution. The distri-
bution of continuous random variables given discrete variables, p(y|i), is multivariate
normal with mean and covariance matrix depending on the configuration of discrete
variables. Since discrete variables do not depend on continuous variables, the DAG
D contains no edges from nodes in Γ to nodes in ∆.

For discrete nodes, the situation in CG networks is exactly the same as in the pure case
discussed in Section 3.3: The distribution of Iδ|ipa(δ) is multinomial and parametrized
by θδ. Compared to the purely Gaussian case treated in Section 3.3, we have for
Gaussian nodes in CG networks an additional dependency on discrete parents. This
dependency shows in the regression coefficients and the variance, which now not only
depend on the node, but also on the state of the discrete parents:

Yγ | βγ|ipa(γ)
, σ2

γ|ipa(γ)
∼ N(Y>

pa(γ)βγ|ipa(γ)
, σ2

γ|ipa(γ)
). (3.11)

As a prior distribution we again take the conjugate normal-inverse-χ2 distribution as
in Eq. (3.4). For further details on CG networks we refer to references [72, 11].
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3.4 Pushing in conditional Gaussian networks

3.4.2 Learning from interventional and non-interventional data

Assuming an uniform prior over network structures D, the central quantity to be
calculated is the marginal likelihood p(M |D). In the case of only one type of data it
can be written as

p(M |D) =

∫
Θ

p(M |D, θ) p(θ|D) dθ. (3.12)

Here p(θ|D) is the prior on the parameters θ of the LPDs. If the dataset contains
both interventional and non-interventional cases, the basic idea is to choose param-
eter priors locally for each node as in Eq. (3.8) and Eq. (3.9) according to whether
a variable was perturbed in a certain case or not. We will see that this strategy
effectively leads to a local split of the marginal likelihood into an interventional and
a non-interventional part.

A family-wise view of marginal likelihood To compute the marginal likelihood
of CG networks on interventional and non-interventional data, we rewrite Eq. (3.12)
in terms of single nodes such that the theory of (soft) pushing from Section 3.3 can
be used. In the computation we will use the following technical utilities:

1. The dataset M consists of N cases x1, . . . ,xN , which are sampled independently.
Thus we can write p(M |D, θ) as a product over all single case likelihoods p(xc|D, θ)
for c = 1, . . . , N .

2. The joint density p(x) factors according to the DAG D as in Eq. (3.10). Thus,
for each case xc we can write p(xc|D, θ) as a product over node contributions
p(xc

v|xc
pa(v), θv) for all v ∈ V .

3. We assume parameter independence: the parameters associated with one variable
are independent of the parameters associated with other variables, and the param-
eters are independent for each configuration of the discrete parents [58]. Thus, all
dependencies between variables are encoded in the network structure. Parameter
independence allows us to decompose the prior p(θ|D) in Eq. (3.12) into node-wise
priors p(θv|ipa(v)

|D) for a given parent configuration ipa(v).

4. All interventions are soft pushing. For a given node, intervention strength and
target state stay the same in all cases in the data, but of course different nodes
may have different pushing strengths and target values. This constraint just helps
us to keep the following formulas simple and can easily be dropped.

These four assumptions allow a family-wise view of the marginal likelihood. Before
we present it in a formula, it will be helpful to introduce a batch notation. In CG
networks, the parameters of the LPD at a certain node depend only on the configu-
ration of discrete parents. This holds for both discrete and Gaussian nodes. Thus,
when evaluating the likelihood of data at a certain node, it is reasonable to collect

37



Chapter 3 Inferring transcriptional regulatory networks

all cases in a batch, which correspond to the same parent configuration:

p(M |D, θ) =
∏
c∈M

p(xc|D, θ)

=
∏
c∈M

∏
v∈V

p(xc
v|xc

pa(v), θv)

=
∏
v∈V

∏
ipa(v)∈Ipa(v)

∏
c:ic

pa(v)
=ipa(v)

p(xc
v|icpa(v),ypa(v), θv) (3.13)

The last formula is somewhat technical: If the node v is discrete, then ypa(v) will be
empty, and usually not all parent configuration ipa(v) are found in the data, so some
terms of the product will be missing. For each node we gather the cases with the
same joint parent state in a batch Bipa(v)

= {c ∈ 1, . . . , N : icpa(v) = ipa(v)}. When
learning with interventional data, we have to distinguish further between observations
of a variable which were obtained passively and those that are result of intervention.
Thus, for each node v we split the batch Bipa(v)

into one containing all observational
cases and one containing the interventional cases:

Bobs
ipa(v)

= {c ∈ 1, . . . , N : icpa(v) = ipa(v) and no intervention at v},
Bint

ipa(v)
= {c ∈ 1, . . . , N : icpa(v) = ipa(v) and intervention at v}.

If there is more than one type of intervention applied to node v, the batch containing
interventional cases has to be split accordingly. Using this notation we can now write
down the marginal likelihood for CG networks in terms of single nodes and parents:

p(M |D) =
∏
v∈V

∏
ipa(v)

∫
Θ

∏
o∈Bobs

ipa(v)

p(xo
v|ipa(v),y

o
pa(v), θv) p′(θv|D) dθv ×

∏
v∈V

∏
ipa(v)

∫
Θ

∏
e∈Bint

ipa(v)

p(xe
v|ipa(v),y

e
pa(v), θv) p′′(θv|D, wv) dθv.

(3.14)

At each node, we use distributions and priors as defined in Eq. (3.8) for discrete
nodes and Eq. (3.9) for Gaussian nodes. The non-interventional prior p′ corresponds
to Fv = ∅ and the interventional prior p′′ corresponds to Fv equalling some target
value. We denoted the intervention strength explicitly in the formula, since we will
focus on it further when discussing probabilistic soft interventions in Section 3.4.3.
Equation (3.14) consists of an observational and an interventional part. Both can
further be split into a discrete and a Gaussian part, so we end up with four terms to
consider.

Discrete observational part To write down the marginal likelihood of discrete
observational data, we denote by niδ |ipa(δ)

the number of times we passively observe

Iδ = iδ in batch Bobs
ipa(δ)

, and by αiδ |ipa(δ)
the corresponding pseudo-counts of the Dirich-

let prior. Summation of αiδ |ipa(δ)
and niδ |ipa(δ)

over all iδ ∈ Iδ is abbreviated by αipa(δ)
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and nipa(δ)
, respectively. Then, the integral in the observational part of Eq. (3.14) can

be computed as follows:∫
Θ

∏
o∈Bobs

ipa(v)

p(xo
v|ipa(v),y

o
pa(v), θv) p′(θv|D) dθv =

=

∫
Θ

(∏
iδ∈Iδ

θ
niδ |ipa(δ)

iδ |ipa(δ)

)(
Γ(αipa(δ)

)∏
iδ

Γ(αiδ |ipa(δ)
)

∏
iδ∈Iδ

θ
αiδ |ipa(δ)

−1

iδ |ipa(δ)

)
dθv

=
Γ(αipa(δ)

)∏
iδ

Γ(αiδ |ipa(δ)
)

∫
Θ

∏
iδ∈Iδ

θ
αiδ |ipa(δ)

+niδ |ipa(δ)
−1

iδ |ipa(δ)
dθv (3.15)

=
Γ(αipa(δ)

)∏
iδ

Γ(αiδ |ipa(δ)
)
·
∏

iδ
Γ(αiδ |ipa(δ)

+ niδ |ipa(δ)
)

Γ(αipa(δ)
+ nipa(δ)

)
(3.16)

The first equations follow from substituting the densities of likelihood and prior into
the integral. The last equation results from the fact that the Dirichlet distribution
integrates to one and thus the Dirichlet integral in line (3.15) is equal to the inverse
normalizing constant of Dirichlet(αiδ |ipa(δ)

+ niδ |ipa(δ)
).

The formula in Eq. 3.16 describes the score constribution of a single node with fixed
parent configuration. The marginal likelihood of the discrete data M∆ can be written
as the local contributions of Eq. (3.16) multiplied over all possible nodes and parent
configurations, that is,

pobs(M∆ | D) =
∏
δ∈∆

∏
ipa(δ)

(
Γ(αipa(δ)

)

Γ(αipa(δ)
+ nipa(δ)

)

∏
iδ∈Iδ

Γ(αiδ |ipa(δ)
+ niδ |ipa(δ)

)

Γ(αiδ |ipa(δ)
)

)
. (3.17)

This result was first obtained by Cooper and Herskovits [23] and is further discussed
by Heckerman et al. [58].

Discrete interventional part Since interventions are just changes in the prior,
the marginal likelihood of the interventional part of discrete data is of the same
form as Eq. (3.17). The prior parameters αiδ |ipa(δ)

are exchanged by α′
iδ |ipa(δ)

=

P(αiδ |ipa(δ)
, wδ, j) as given by Eq. (3.3), and the counts niδ |ipa(δ)

are exchanged by

n′
iδ |ipa(δ)

taken from batch Bint
ipa(δ)

.

In the limit wδ →∞ this part converges to one and vanishs from the overall marginal
likelihood p(M |D). Thus, in the limit we achieve the result of Cooper and Yoo [24]
and Tian and Pearl [137].

Gaussian observational part All cases in batch Bobs
ipa(γ)

are sampled independently

from a normal distribution with fixed parameters. If we gather them in a vector yγ

(of length b = |Bobs
ipa(γ)
|) and the corresponding states of continuous parents as rows in

a matrix Pγ (of dimension b×(|pa(γ)|+1)), we yield the standard regression scenario

yγ | βγ, σ
2
γ ∼ N(Pγβγ, σ

2
γI), (3.18)
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Chapter 3 Inferring transcriptional regulatory networks

where I is the b×b identity matrix. As a prior distribution over regression coefficients
βγ and variance σ2

γ we choose normal-inverse-χ2 as shown in Eq. (3.4). Marginalizing
with respect to βγ and σ2

γ yields a multivariate t-distribution of dimension b, with
location vector Pγmγ, scale matrix s(I + PγM

−1
γ P>

γ ), and νγ degrees of freedom.
This can be seen by the following argument. To increase readability, we drop the
index “γ” in the following equations. Then, Eq. (3.18) can be rewritten as

y = Pβ + ε with ε ∼ N(0, σ2I). (3.19)

The prior distribution of β|σ2 is Gaussian with mean m and variance σ2M−1. Thus
we can write

Pβ | σ2 ∼ N(Pm, σ2PM−1P>) (3.20)

Since ε is independent of β when conditioning on σ2 we conclude that

y | σ2 ∼ N(Pm, σ2(I + PM−1P>)). (3.21)

The prior for σ2 is inverse-χ2 with scale s and ν degrees of freedom. Marginalizing
with respect to σ2 yields

y ∼ tb(Pm, s(I + PM−1P>), ν). (3.22)

Note that all the distribution parameters above are specific for node γ. When using
data from different batches, every parameter additionally carries an index “ipa(γ)”
indicating that it depends on the state of the discrete parents of the Gaussian node
γ. Multiplying t-densities for all nodes and configurations of discrete parents—the
outer double-product in Eq. (3.14)—yields the marginal likelihood of the Gaussian
part.

Gaussian interventional part Here we consider cases in batch Bint
ipa(γ)

. We collect

them in a vector and can again write a regression model like in Eq. (3.18). The
difference to the observational Gaussian case lies in the prior parameters. They
are now given by Eq. (3.5). The result of marginalization is again a t-density with
parameters as above. The only difference is that the pair (m, s) is exchanged by
(m′, s′) = P((m, s), wγ, k). The Gaussian interventional part is then given by a
product of such t-densities over nodes and discrete parent configurations.

If we use the hard intervention prior in Eq. (3.7) instead, the Gaussian interventional
part integrates to one and vanishs from the marginal likelihood in Eq. (3.14). Thus,
we extended the results by Cooper and Yoo [24] to Gaussian networks.

3.4.3 Probabilistic soft interventions

In Section 3.3 we introduced the pushing operator P(·, wv, tv) to model a soft inter-
vention at a discrete or Gaussian node v. The intervention strength wv is a parameter,
which has to be chosen before network learning. There are several possibilities, how
to do it. If there is solid experimental experience on how powerful interventions are,
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3.4 Pushing in conditional Gaussian networks

this can be reflected in an appropriate choice of wv. An obvious problem is that
wv needs to be determined on a scale that is compatible with the Bayesian network
model. If there is prior knowledge on parts of the network topology, the parameter wv

can be tuned until the result of network learning fits the prior knowledge. Note again
that by the parametrization of pushing given in Section 3.3, the pushing strengths
for discrete and Gaussian nodes live on different scales and have to be calibrated
separately.

However, a closer inspection of the biological background in chapter 1, which mo-
tivated the theory of soft pushing interventions, suggests to treat the intervention
strength wv as a random variable. In gene silencing an inhibiting molecule (a double-
stranded RNA in case of RNAi) is introduced into the cell. This usually works in a
high percentage of affected cells. In the case of success, the inhibitor still has to spread
throughout the cell to silence the target gene. This diffusion process is stochastic and
consequently causes experimental variance in the strength of the silencing effect.

These observations suggest to assign a prior distribution p(wv) to the intervention
strength. That is, we drop the assumption of having one intervention strength in all
cases, but instead average over possible values of wv. For simplicity we assume there
is only a limited number of possible values of wv, say, w

(1)
v , . . . , w

(k)
v , with an arbitrary

discrete distribution assigned to them. Then we can express our inability to control
the pushing strength in the experiment deterministically by using a mixed prior of
the form

p(θv|D) =
k∑

i=1

qk p(θv|D, w(k)
v ). (3.23)

Here, the mixture coefficients qk = p(w
(k)
v ) are the prior probabilities of each possible

pushing strength. The terms p(θv|D, w
(k)
v ) correspond to Dirichlet densities in the

discrete case and Normal-inverse-χ2 densities in the Gaussian case. In RNAi exper-
iments, w

(1)
v , . . . , w

(k)
v can be estimated from the empirical distribution of measured

RNA degradation efficiencies in repeated assays. Mixed priors as in Eq. (3.23) are of-
ten used in biological sequence analysis to express prior knowledge which is not easily
forced into a single distribution. See Durbin et al. [34] for details. If we substitute
the prior p′′(θv|D, wv) in the interventional part of Eq. (3.14) with the mixture prior
in Eq. (3.23), the marginal likelihood of a family of nodes is a mixture of marginal

likelihoods corresponding to certain values w
(k)
v weighted by mixture coefficients qk.

Discussion

Our work extends structure learning from interventional data into two directions:
from learning discrete networks to learning mixed networks and from learning with
hard interventions to learning with soft interventions. Soft interventions are focussed
on a specific target value of the variable of interest and concentrate the local prob-
ability distribution there. We proposed parametrizations for pushing discrete and
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continuous variables using Dirichlet and Normal-inverse-χ2 priors, respectively. We
computed the marginal likelihood of CG networks for data containing both observa-
tional and (soft) interventional cases. In Bayesian structure learning, the marginal
likelihood is the key quantity to compute from data. Using it (and possibly a prior
over network structures) as a scoring function, we can start model search over possible
network structures. For a survey of search heuristics see section 2.3.4.

Since in biological settings the pushing strength is unknown, we proposed using a
mixture prior on it, resulting in a mixture marginal likelihood. This makes the score
for each network more time-consuming to compute. But in applications there is often
a large amount of biological prior knowledge, which limits the number of pathway
candidates from the beginning. When learning network structure we usually don’t
have to optimize the score over the space of all possible DAGs but are limited to a
few candidate networks, which are to be compared. This corresponds to a very rigid
structure prior.

Modeling interventions as soft pushing makes structure learning more robust against
noise. Soft interventions handle major sources of noise inherent in real biological
systems. This is a central benefit of our approach.

Beyond transcriptional networks At the end of chapter 2 we found that visu-
alizing the correlation structure of gene expression may not give us a biologically
meaningful answer. As a first reason for this shortcoming we discussed the need for
interventional data. To address this issue, the present chapter introduced a novel
model of interventions in Bayesian networks. But there is also a second reason, why
a visualization of correlation structure on expression data may not give us the full
picture. We need to have a second look at the rationale, which made us use graphical
models in the first place.

The application of graphical models is motivated by the following consideration: if
the expression of gene A is regulated by proteins B and C, then A’s expression level
is a stochastic function of the joint activity levels of B and C. Expression levels of
genes are taken as a proxy for the activity level of the proteins they encode. This is
the rationale leading to the application of Bayesian networks to expression data [41].
It relies on the assumption that both the regulator and its targets must be tran-
scriptionally regulated, resulting in detectable changes in their expression. Indeed,
recent large-scale analyses of the regulatory networks of Escherichia coli [121] and
S. cerevisiae [74, 86] found a number of cases in which the regulators are themselves
transcriptionally regulated. Simon et al. [123] show direct dependencies of cell cy-
cle transcriptional regulators in yeast between different cell cycle stages. Regulators
that function during one stage of the cell cycle contribute to the regulation of tran-
scriptional activators active in the next stage. These studies show the importance of
transcriptional regulation in controlling gene expression.

On the other hand, these observations cannot obscure the fact that models of corre-
lation structure of mRNA levels have only limited explanatory value, as can be seen
by the two following studies. Gygi et al. [54] found that correlation between mRNA
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and protein levels was poor in yeast. Quantitative mRNA data was insufficient to
predict protein expression levels. They found cases where the protein levels varied by
more than 20-fold, even if the mRNA levels stayed the same. Additionally, activation
or silencing of a regulator is in most cases carried out by posttranscriptional protein
modifications [71]. Thus, even knowing the correct expression state is not enough,
we also need to know the activation state of the protein. In summary, activation
levels of proteins cannot be approximated well by expression levels of corresponding
genes. However, the next chapter will show that the situation is not hopeless. We
will show that secondary effects of interventions are visible as expression changes
on microarray data. Transcriptional effects allow to infer regulatory hierarchies in
non-transcriptional parts of a pathway.
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Chapter 4

Inferring signal transduction
pathways

The last chapter dealt with models of primary effects. We assumed that perturbing one
pathway component leads to detectable changes at other pathway components. In this
chapter I introduce a method designed for indirect observations of pathway activity by
secondary effects at downstream genes (section 4.1). I present an algorithm to infer non-
transcriptional pathway features based on differential gene expression in silencing assays.
The main contribution is a score linking models to data (section 4.2). I demonstrate its
power in the controlled setting of simulation studies (section 4.3) and explain its practical
use in the context of an RNAi data set investigating the response to microbial challenge
in Drosophila melanogaster (section 4.4).

4.1 Non-transcriptional modules in signaling
pathways

A cell’s response to an external stimulus is complex. The stimulus is propagated
via signal transduction to activate transcription factors, which bind to promoters
thus activating or repressing the transcription and translation of genes, which in turn
can activate secondary signaling pathways, and so on. We distinguish between the
transcriptional level of signal transduction known as gene regulation and the non-
transcriptional level, which is mostly mediated by post-translational modifications.
While gene regulation leaves direct traces on expression profiles, non-transcriptional
signaling does not. Thus, on microarray data gene regulatory networks can be mod-
elled by methods described in chapters 2 and 3, while non-transcriptional pathways
can not. However, reflections of signaling activity can be perceived in expression
levels of other genes. We explain this in a simplified pathway model and in a real
world example in Drosophila.

A hypothetical pathway Fig. 4.1 shows a hypothetical biochemical pathway
adapted from Wagner [140]. It consists of two transcription factors, a protein ki-
nase and a protein phosphatase and the genes encoding these proteins. The figure
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shows the three biological levels of interest: genome, transcriptome and proteome.
The thick arrows show information flow through the pathway. The transcription
factor expressed by gene 1 binds to the promoter region of gene 2 and activates
it. Gene 2 encodes a protein kinase, which phosphorylates a protein phosphatase
(expressed by gene 3). This event activates the protein phosphatase, which now de-
phosphorylates the transcription factor produced by gene 4. It binds to gene 5 and
induces expression.

The three biological levels of DNA, mRNA and protein are condensed into a graph
model on five nodes. Gene expression data only shows the mRNA level. A model
inferred from expression data will only have two edges, connecting gene 1 to gene 2
and then gene 2 to gene 5. Since genes 3 and 4 only contribute on the protein level,
a model based on correlations on the mRNA level will ignore them. This holds true
for all models descibed in chapter 2.

transcription
factor

protein
kinase

transcription
factor

protein
phosphatase

Protein

Model

DNA

mRNA
binds binds

1 2 3 4 5

phos. de−phos.

Figure 4.1: A hypothetical biochemical pathway adapted from Wagner [140]. It
shows four levels of interest: three biological and one of modeling. Inference from gene
expression data alone only gives a very limited model of the pathway. The contributions
of genes 3 and 4 are overlooked.
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mRNA RNAi

Figure 4.2: The situation changes if we can use interventional data for model building.
Silencing gene 3 by RNAi will cut information flow in the pathway and result in an
expression change at gene 5. This is visible on the mRNA level and can be integrated
in the model. Thus, the expanded model shows an edge from gene 3 to gene 5.
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Interventions at genes in the pathway shed light on the pathway topology. This is
exemplified by an RNAi intervention at gene 3 in Fig. 4.2. Silencing gene 3 will cut
information flow in the pathway and result in an expression change at gene 5. This is
reflected in the model by extending it to include an edge from gene 3 to gene 5. Note
that we have no observation of direct effects of the intervention at gene 4 in mRNA
data. The only information we have are secondary effects at the transcriptional
end of the pathway. This chapter will introduce novel methodology to order genes in
regulatory hierarchies from secondary effects. The procedure is motivated by the logic
underlying a study in Drosophila conducted by Michael Boutros and coworkers.

An example in Drosophila Boutros et al. [12] investigate the response to microbial
challenge in Drosophila melanogaster. They treat Drosophila cells with lipopolysac-
charides (LPS), the principal cell wall components of gram-negative bacteria. Sixty
minutes after applying LPS, a number of genes show a strong reaction. Which genes
and gene products were involved in propagating the signal in the cell? To answer
this question a number of signaling genes are silenced by RNAi. The effects on the
LPS-induced genes are measured by microarrays. The observations are: with only
one exception, the signaling genes show no change in expression when other signaling
genes are silenced. They stay “flat” on the microarrays. Differential expression is
only observed in genes downstream of the signaling pathway: silencing tak reduces
expression of all LPS-inducible transcripts, silencing rel or mkk4/hep reduces expres-
sion of disjoint subsets of induced transcripts, silencing key results in profiles similar
to silencing rel. Gene tak codes for protein TAK1 in Fig. 1.2, key for IKKγ, and rel is
the transcription factor Relish, already discussed in the introduction in chapter 1.

Boutros et al. [12] explain this observation by a fork in the signaling pathway with tak
above the fork, mkk4/hep in one branch, and both key and rel in the other branch.
The interpretation is a Relish-independent response to LPS, which is also triggered
by IMD and TAK but then branches off the Imd pathway. Note that this pathway
topology was found in an indirect way: no information is coming from the expression
levels of the signaling genes. Silencing candidate genes interrupts the information flow
in the pathway, the topology is then revealed by the nested structure of affected gene
sets downstream the pathway of interest. The computational challenge we address is
to derive an algorithm for systematic inference from indirect observations.

Models for primary effects cannot be applied here In chapter 3, we discussed
models to explain primary effects of silencing genes on other genes in the pathway.
Some are deterministic and graph based, some are probabilistic and able to han-
dle noise in the data. All of them aim for transcriptional networks and are unable
to capture non-transcriptional modulation. Some approaches use hidden variables
to capture non-transcriptional effects [89, 104, 105] without making use of inter-
ventional data. To keep model selection feasible they have to introduce a number
of simplifying assumptions: either the hidden nodes do not regulate each other, or
the hidden structure is not identifiable. In both cases, the models do not allow in-
ference of non-transcriptional pathways. In graphical models with hidden variables
non-transcriptional effects are considered nuisance, not the main target of pathway
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reconstruction. In summary, none of the methods designed to infer transcriptional
networks can be applied to reconstruct non-transcriptional pathways from microarray
data. The major problem is: these algorithms require direct observations of expres-
sion changes of signaling genes, which are not fully available in datasets like that of
[12]. There exist only two methodologies comparable to ours in being able to identify
non-transcriptional pathway features from microarray data: physical network models
and epistasis analysis.

Physical network models Yeang et al. [149] introduce a maximum likelihood
based approach to combine three different yeast datasets: protein–DNA, protein–
protein, and single gene knock-out data. The first two data sources indicate direct
interactions, while the knock-out data only contains indirect functional information.
The algorithm searches for topologies which are consistent with observed downstream
effects of interventions. While it is not confined to the transcriptional level of regula-
tion, it also requires that most signaling genes show effects when perturbing others.
It is not designed for a dataset like that of Boutros et al. [12] described above.

Epistasis analysis Our general objective is similar to epistasis analysis with global
transcriptional phenotypes. Regulatory hierarchies can be identified by comparing
single-knockout phenotypes to double-knockout phenotypes. Driessche et al. [31] use
gene expression time-courses as phenotypes and reconstruct a regulatory system in
the development of Dictyostelium discoideum, a soil-living amoeba. Yet, there are
several important differences. First, we model whole pathways and not only single
gene-gene interactions. Second, we treat an expression profile not as one global
phenotype but as a collection of single-gene phenotypes. This will be made clear in
the following overview.

How to learn from secondary effects We present a computational framework
for the systematic reconstruction of pathway features from expression profiles re-
lating to external interventions. The approach is based on the nested structure of
affected downstream genes, which are themselves not part of the model. Here we
give a short overview of the method before presenting it in all details in section 4.2.
The model distinguishes two kinds of genes: the candidate pathway genes, which are
silenced by RNAi, and the genes, which show effects of such interventions in expres-
sion profiles. We call the first ones S-genes (S for “silenced” or “signaling”) and the
second ones E-genes (E for “effects”). Because large parts of signaling pathways are
non-transcriptional, there will be little or no overlap between S-genes and E-genes.
Elucidating relationships between S-genes is the focus of our analysis, the E-genes are
only needed as reporters for signal flow in the pathway. E-genes can be considered
as transcriptional phenotypes. S-genes have to be chosen depending on the specific
question and pathway of interest. E-genes are identified by comparing measurements
of the stimulated and non-stimulated pathway: genes with a high expression change
are taken as E-genes.

The basic idea is to model how interventions interrupt the information flow through
the pathway. Thus, S-genes are silenced while the pathway is stimulated to see which
E-genes are still reached by the signal. Optimally, the gene expression experiments are
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SSS S S

Signal

EEE E

Figure 4.3: A schematic summary of our model. The dashed box indicates one
hypothesis: it contains a directed graph T on genes contributing to a signaling pathway
(S-genes). A signal enters the pathway at one (or possibly more than one) specified
position. Interventions at S-genes interrupt signal flow through the pathway. S-genes
regulate E-genes on the second level. Together the S- and E-genes form an extended
topology T ′. We observe noisy measurements of expression changes of E-genes. The
objective is to reconstruct relationships between S-genes from observations of E-genes
in silencing experiments.

replicated several times. This results in a data set representing every signaling gene
by one or more microarrays. These requirements are the same as in epistasis analysis
[6], but they are not satisfied in all datasets monitoring intervention effects. In the
Rosetta yeast compendium [61], for example, there is no external stimulus by which
the interruption of signal flow through a pathway of interest could be measured.

The main contribution of this chapter is a scoring function, which measures how well
hypotheses about pathway topology are supported by experimental data. Input to
the algorithm is a list of hypotheses about the candidate pathway genes. A hypothesis
is characterized by (1.) a directed graph with S-genes as nodes and (2.) the possibly
many entry points of signal into the pathway. This setting is summarized in Fig. 4.3.
The model is based on the expected response of an intervention given a candidate
topology of S-genes and the position of the intervention in the topology. Pathways
with different topology can show the same downstream response to interventions. All
pathways, which make the same predictions of intervention effects on downstream
genes, are identified by one so called silencing scheme. Sorting silencing schemes
by our scoring function shows how well candidate pathways agree with experimental
data. Output of the algorithm is a strongly reduced list of candidate pathways. The
algorithm is a filter, which helps to direct further research.

Applications beyond RNAi Our motivation to develop this algorithm results from
the novel challenges the RNAi technology poses to bioinformatics. At present RNAi
appears to be the most efficient technology for producing large-scale gene-intervention
data. However, our framework is flexible and any type of external interventions can be
used, which reduces information flow in the pathway. This includes traditional knock-
out experiments and specific protein inhibiting drugs. An important requirement for
any perturbation technique used is high specificity. Off-target effects impair our
method since intervention effects can no longer be uniquely predicted.
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4.2 Gene silencing with transcriptional phenotypes

First, we describe our model for signaling pathways with transcriptional phenotypes.
Predictions from pathway hypotheses are summarized in a silencing scheme. In the
main part of the section, we develop a Bayesian method to estimate a silencing scheme
from data.

4.2.1 Signaling pathway model

Core topology on S-genes The set of E-genes is denoted by E = {E1, . . . , Em},
and the set of S-genes by S = {S1, . . . , Sp}. As a pathway model, we assume a
directed graph T on vertex set S. The structure of T is not further restricted:
there may be cycles and it may decompose into several subgraphs. The external
stimulus acts on one or more of the S-genes as specified by the hypothesis. S-genes
can take values 1 and 0 according to whether signaling is interrupted or not. State 0

corresponds to a node, which is reached by the information flow through the pathway.
This is the natural state when the pathway is stimulated. State 1 describes a node,
which is no longer reached by the signal, because the flow of information is cut by
an intervention at some node upstream in the pathway. An S-gene in state 1 is
in the same state as if the pathway had not been stimulated. While the pathway
is stimulated, experimental interventions break the information flow in the pathway.
An intervention at a particular S-gene first puts this S-gene’s state to 1. The silencing
effect is then propagated along the directed edges of T .

From pathways to silencing schemes We call the subset of S-genes, which are in
state 1 when S-gene S is silenced, the influence region of S. The set of all influence
regions is called a silencing scheme Φ. It summarizes the effects of interventions
predicted from the pathway hypothesis. Mathematically, a silencing scheme is the
transitive closure of pathway T implying a partial order on S. Drawn as a graph,
Φ contains an edge between two nodes whenever they are connected by a directed
path in T . Different pathway models can result in the same silencing scheme. An
example is given in Fig. 4.4. Note that the E-genes do not appear in Φ, which only
describes interactions between S-genes. The E-genes come into play when inferring
silencing schemes. Reduced signaling strength of S-genes due to interventions in the
pathway cannot be observed directly on a microarray, but secondary effects are visible
on E-genes.

Secondary effects on E-genes The extended topology on S ∪E is called T ′. We
assume that each E-gene has a single parent in S. In particular, the E-genes do not
interact with each other. We interpret the set of E-genes attached to one S-gene as
a regulatory module, which is under the common control of the S-gene. The reaction
of E-genes to interventions in the pathway depends on where the parent S-gene is
located in the silencing scheme. E-genes are set to state 1 if their parent S-gene is in
the influence region of an intervention; else they are in state 0. The state of E-genes
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S

S S

S

S S

Figure 4.4: Transitive closure. The right topology is the transitive closure of the left
topology. When adding an entry point for signal, both are valid pathway hypotheses.
Both are represented by a silencing scheme, which has the same topology as the right
graph.

can be experimentally observed as differential expression on microarrays. Due to the
observational noise or stochastic effects in signal transduction, we expect a number
of false positive and false negative observations.

4.2.2 Likelihood of a silencing scheme

Data In each experiment, one S-gene is silenced by RNAi and effects on E-genes
are measured by microarrays. Each S-gene needs to be silenced at least once, but
ideally the silencing assays are repeated and several microarrays per silenced gene
are included in the dataset. Microarrays are indexed by k = 1, . . . , l. The expression
data are assumed to be discretized to 1 and 0 — indicating whether interruption of
signal flow was observed at a particular gene or not. The result is a binary matrix
M = (eik), where eik = 1 if E-gene Ei shows an effect in experiment k. Thus, our data
only consists in coarse qualitative information. We do not consider whether an E-
gene was up- or down-regulated or how strong an effect was. Each single observation
eik relates the intervention done in experiment k to the state of Ei. In the following,
the index “i” always refers to an E-gene, the index “j” to an S-gene, and the index
“k” to an experiment.

Likelihood The positions of E-genes are included as model parameters Θ = {θi}mi=1

with θi ∈ {1, . . . , n} and θi = j if Ei is attached to Sj. Let us first consider a
fixed extension T ′ of T , that is, the parameters Θ are assumed to be known. For
each E-gene, T ′ encodes to which S-gene it is connected. In a silencing experiment
T ′ predicts effects at all E-genes, which are attached to an S-gene in the influence
region. Expected effects can be compared to observed effects in the data to choose
the topology, which fits the data best. Due to measurement noise no topology T ′

is expected to be in complete agreement with all observations. Deviations from
predicted effects are allowed by introducing global error probabilities α and β for
false positive and negative calls, respectively.

The expression levels of E-genes on the various microarrays are modelled as binary
random variables Eik. The distribution of Eik is determined by the silencing scheme
Φ and the error probabilities α and β. For all E-genes and targets of intervention,
the conditional probability of E-gene state eik given silencing scheme Φ can then be
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written in tabular form as

eik = 1 eik = 0

α 1− α if Sj = 0
p(eik|Φ, θi = j) =

{
1− β β if Sj = 1

(4.1)

This means: if the parent of Ei is not in the influence region of the S-gene silenced
in experiment k, the probability of observing Eik = 1 is α (probability of false alarm,
type-I error). The probability to miss an effect and observe Eik = 0 even though Ei

lies in the influence region is β (type-II error). The likelihood p(M |Φ, Θ) of the data
is then a product of terms from the table for every observation, that is,

p(M |Φ, Θ) =
m∏

i=1

l∏
k=1

p(eik|Φ, θi) = αn10βn01(1− α)n00(1− β)n11 , (4.2)

where nse is the number of times we observed E-genes in state e when their parent
S-gene in Φ was in state s.

However, in reality the “correct” extension T ′ of a candidate topology T is unknown.
The positions of E-genes are unknown and they may be regulated by more than one
S-gene. We also do not aim to infer extended topologies from the data: the model
space of extended topologies is huge, and model inference is unstable. We are only
interested in the silencing scheme Φ of S-genes. To deal with these issues, we interpret
the position of edges between S- and E-genes as nuisance parameters, and average
over them to obtain a marginal likelihood. This is described next.

4.2.3 Marginal likelihood of a silencing scheme

This section defines a scoring function to link models with observations. It evaluates
how well a given silencing scheme Φ fits the experimental data. For now, we assume
the silencing scheme Φ and the error probabilities α and β to be fixed. But in contrast
to the last section, the position parameters Θ are unknown. By Bayes’ formula the
posterior of silencing scheme Φ given data M can be written as

p(Φ|M) =
p(M |Φ)p(Φ)

p(M)
. (4.3)

The normalizing constant p(M) is the same for all silencing schemes, it can be ne-
glected for relative model comparison. The model prior p(Φ) can be chosen to incor-
porate biological prior knowledge. In the following, we assume it to be uniform over
all possible models. What remains is the marginal likelihood p(M |Φ). It equals the
likelihood p(M |Φ, Θ) averaged over the nuisance parameters Θ. To compute it, we
make three assumptions:
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1. Given silencing scheme Φ and fixed positions of E-genes Θ, the observations in M
are sampled independently and distributed identically:

p(M |Φ, Θ) =
m∏

i=1

p(Mi|Φ, θi) =
m∏

i=1

l∏
k=1

p(eik|Φ, θi),

where Mi is the ith row in data matrix M .

2. Parameter independence. The position of one E-gene is independent of the posi-
tions of all the other E-genes:

p(Θ|Φ) =
m∏

i=1

p(θi|Φ).

3. Uniform prior distribution. The prior probability to attach an E-gene is uniform
over all S-genes:

P (θi = j|Φ) =
1

p
for all i and j.

The last assumption can easily be dropped to include existing biological prior knowl-
edge about regulatory modules. With the assumptions above, the marginal likelihood
can be calculated as follows. The numbers above the equality sign indicate which as-
sumption was used in each step.

pα,β(M |Φ) =

∫
pα,β(M |Φ, Θ) p(Θ|Φ) dΘ

[1,2]
=

m∏
i=1

∫
pα,β(Mi|Φ, θi) p(θi|Φ) dθi

[3]
=

1

pm

m∏
i=1

p∑
j=1

pα,β(Mi|Φ, θi = j)

[1]
=

1

pm

m∏
i=1

p∑
j=1

l∏
k=1

pα,β(eik|Φ, θi = j). (4.4)

The marginal likelihood in Eq. (4.4) contains the error probabilities α and β as free
parameters to be chosen by the user. This is indicated by subscripts. In section 4.4
we will show how to estimate these parameters when discretizing the data.

Estimated position of E-genes Given a silencing scheme Φ, the posterior proba-
bility for an edge between Sj and Ei is given by

Pα,β(θi = j|Φ, M) =
p(θi = j | Φ)

pα,β(Mi | Φ)

l∏
k=1

pα,β(eik | Φ, θi = j) (4.5)

where the prior p(θi = j|Φ) is again chosen to be uniform. In general, the prior could
take any other form as long as it is the same as in the computation of marginal likeli-
hood above. The E-genes attached with high probabilty to an S-gene are interpreted
as a regulatory module, which is under the common control of the S-gene.

53



Chapter 4 Inferring signal transduction pathways

4.2.4 Averaging over error probabilities α and β

The likelihood in Eq. (4.4) is a polynomial in α and β. In a full Bayesian approach
we would again average over possible values of α and β given a prior distribution.
This problem can be cast in a way accessible to standard Bayesian theory, as it is
also used when averaging over LPD parameters to gain the marginal likelihood in
Bayesian network structure learning (see section 2.12). So far, we assumed that all
E-genes share the distribution specified in Eq. (4.1) and α and β are indeed global
parameters applicable to every E-gene. This simplifying assumption was introduced
to keep inference feasible. Else, we would have to estimate parameters (αi, βi) for
every E-gene Ei. When averaging over LPD parameters, we will drop the assumption
of parameter sharing. Instead we augment the three assumptions above by three
additional ones.

First we define ηi = (ηi0, ηi1) = (αi, 1 − βi), then for one E-gene E with parent S
holds ηis = P (Ei = 1|Sθi

= s). We make the following assumptions on the prior
distribution p(η|Φ, Θ) of η = (ηi)i=1,...,m:

4. Global and local parameter independence. Parameters are independent for every
E-gene Ei and for different states of the parent S-gene, that is,

p(η|Φ, Θ) =
m∏

i=1

p(ηi|Φ, θi) =
m∏

i=1

∏
s∈{0,1}

p(ηis|Φ, θi).

5. The prior p(ηis|Φ, θi) is chosen as a beta distribution, which is conjugate to the
multinomial distribution of the Ei [49], that is,

p(ηis|Φ, θi) = ηais−1
is (1− ηis)

bis−1.

6. All local priors p(ηis|Φ, θi) share the same parameters, that is,

ais = as and bis = bs for all i = 1, . . . ,m.

The last assumption limits the number of parameters. It is parameter sharing not on
the level of distribution parameters but on the level of parameters of prior distribu-
tions, which are themselves independent. With these assumptions we can compute
the marginal likelihood with respect to position parameters Θ and effect probabilities
η by

p(M |Φ) =

∫∫
p(M |Φ, Θ, η) p(η|Φ, Θ) p(Θ|Φ) dη dθ

[4]
=

m∏
i=1

∫ (∫
p(Mi|Φ, θi, ηi) p(ηi|Φ, θi) dηi

)
p(θi|Φ) dθi. (4.6)

We first concentrate on one fixed Ei. Then Φ and θi specify the parent S-gene Sθi

and its state Sθi
= s. The data Mi split into two subsets M s

i and M1−s
i , where
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M s
i = {eik|Sθi

= s}. Each batch of data follows the same binomial distribution in
Eq. (4.1). The inner integral in Eq. (4.6) splits into two integrals, one for each parent
state s, which can be computed as follows:∫

p(M s
i |Φ, θi, ηis)p(ηis|Φ, θi) dηis =

[5,6]
=

Γ(as + bs)

Γ(as)Γ(bs)

∫
ηnis1+as−1

is (1− ηis)
nis0+bs−1 dηis

=
Γ(as + bs)

Γ(as)Γ(bs)
· Γ(nis1 + as)Γ(nis0 + bs)

Γ(nis1 + nis0 + as + bs)
, (4.7)

where the counts nise denote the number of experiments, in which we observed Ei = e
while the parent S-gene Sθi

was in state s. Note that this computation is identical
to marginalizing LPD parameters in discrete Bayesian networks (section 3.4.2). The
reason is that our model can be viewed as a highly restricted Bayesian network, in
which the LPDs at S-genes are deterministic and the E-genes follow a conditional
binomial distribution.

The data likelihood p(Mi|Φ, θi) for gene Ei is a product of terms on the right hand
side of Eq. (4.7) for both S-gene states. The marginalization over E-gene positions Θ
works exactely as in section 4.2.3 and results in the following full marginal likelihood:

p(D|Φ) =
1

pm

m∏
i=1

p∑
j=1

∏
s∈{0,1}

Γ(as + bs)Γ(nis1 + as)Γ(nis0 + bs)

Γ(as)Γ(bs)Γ(nis1 + nis0 + as + bs)
. (4.8)

Estimated position of E-genes Similar to Eq. (4.5), the posterior probability for
an edge between Sj and Ei with marginalization over α and β is given by

P (θi = j|Φ, M) =
1

Z

l∏
k=1

p(eik | Φ, θi = j)

=
1

Z

∏
s∈{0,1}

Γ(as + bs)Γ(nis1 + as)Γ(nis0 + bs)

Γ(as)Γ(bs)Γ(nis1 + nis0 + as + bs)
. (4.9)

where Z is a normalizing constant ensuring that the sum over all S-genes is 1. This
equation allows to estimate E-gene positions given the beta prior on the local distri-
bution parameters of Ei.

Summary of parameters Table 4.1 gives an overview of the ingredients to the
formulas developed in this section. It shows counts, distribution parameters and prior
parameters for the four possible combinations of E-gene state and parent S-gene state.
The counts are E-gene specific, while the parameters (α, β) and prior parameters
(a0, b0, a1, b1) apply to all E-genes. Having four prior parameters to specify, while
before there were only two distribution parameters, may seem as a disadvantage of
marginalization. But there are two considerations to keep in mind. First, a model is
much more stable against choices of prior parameters than of distribution parameters.
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Ei

1 0
0 ni01 ni00S
1 ni11 ni10

Eq. (4.4)
1 0

0 α 1− α
1 1− β β

Eq. (4.8)
1 0

0 ao b0

1 a1 b1

Table 4.1: The table describes the main terms of the marginal likelihoods computed
in this section. It focusses on one E-gene (columns) and its parent S-gene (rows). The
left table contains the counts from the data for the four possible combinations of E-
gene and parent state. They are E-gene specific and used in all formulas. To compute
the marginal likelihood of Eq. (4.4) error probabilities α and β need to be specified,
which are the same for all E-genes. For the full marginal likelihood of Eq. (4.8) the user
needs to choose prior parameters (a0, b0) and (a1, b1), which are shared by all E-genes.

In situations with little knowledge on error rates in experiments it is safer to use the
full marginal likelihood of Eq. (4.8) than the marginal likelihood of Eq. (4.4). Second,
the four prior parameters fall in two categories: (a0, b1) give weights for observing
errors, while (a1, b0) give weights for observing the predicted state. This motivates
to use only two values for the prior parameters: one for a0 and b1, and another one
for a1 and b0. Because we expect there to be more signal than noise in the data, the
value of a0 = b1 should be considerably smaller than that of a1 = b0. We will see an
example in the application to Drosophila data in section 4.4.

4.2.5 Limits of learning from secondary effects

The method we described can only reconstruct features of the pathway, not the full
topology. This stems from inherent limits of reconstruction from indirect observa-
tions. We discuss here prediction equivalence and data equivalence.

Prediction equivalence More than one pathway hypothesis result in the same
silencing scheme if they only differ in transitive edges. An example is given in Fig. 4.4.
Both topologies there can be considered as pathway hypotheses, but only the right
one is transitively closed and thus a silencing scheme. Since our score is defined
on silencing schemes and not on topologies directly, the hypotheses with the same
silencing scheme are not distinguishable. Assuming parsimony, each silencing scheme
can uniquely be represented by a graph with minimal number of edges. This technique
is called transitive reduction [1, 75, 142, 140].

Data equivalence There exist cases, where two hypotheses with different silencing
schemes produce identical data. Fig. 4.5 shows an example with a cycle of S-genes
and a linear cascade, where all E-genes are attached at the downstream end. In both
pathways, all E-genes react to interventions at every S-gene. In this case, the data
does not prefer one silencing scheme over the other.
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E E E
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EE E
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Figure 4.5: Data equivalence: The two plots show different topologies of S-genes
with two distinct silencing schemes. However, both pathways will produce the same
data: All E-genes react to interventions at every S-gene.

4.2.6 Extending the basic model

Epistatic effects The model described above is very simple. Additional constraints
are imposed by epistatic effects: one gene can mask the effect of another gene. These
effects can be included into the model by introducing a set of boolean functions
F = {fS, S ∈ S}. Each fS ∈ F determines the state of S-gene S given the states of
its parents in T . Two simple examples of local functions fS are AND- and OR-logics.
In an AND-logic, all parent nodes must be affected by an intervention (i.e. have
state 1) to propagate the silencing effect to the child. This describes redundancy in
the pathway: if two genes fulfill alternative functions, both have to be silenced to
stop signal flow through the pathway. In an OR-logic, one affected parent node is
enough to set the child’s state to 1. This describes a set of genes jointly regulating
the child node; silencing one of the parents destroys the collaboration. The topology
T together with the set of functions F defines a deterministic Boolean network on
S. Fig. 4.6 gives an example, how local logics constrain influence regions and change
silencing schemes.

S1

S2
S3

OR
S5S4

S1

S2
S3

AND
S5S4

Figure 4.6: Influence regions are constrained by local logics. The left plot shows in
grey the influence region of S3 if S4 is reigned by an OR-logic. If the logic changes to
an AND, S4 lies no longer in the influence region of S3, because the second parent S2

lies outside of it.

Multiple knockouts Since epistatic effects involve more than one gene, they can-
not be deduced from single knock-out experiments. The model has to be extended to
data attained by silencing more than one gene at the same time. This will not change
the scoring function, but more sophisticated silencing schemes have to be developed,
which encode predictions both from single-gene and multi-gene knockouts. Since the
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number of possible multiple knockouts increases exponentionally, tools to choose the
most informative experiments are needed. Experimental design or active learning
deals with deciding which interventions to perform to learn the structure of a model
as quickly as possible and to discriminate optimally between alternative models. This
is an active area of research in Machine Learning [138, 88]. For reconstruction of reg-
ulatory networks, a number of methods have been proposed in different frameworks:
for Bayesian networks [103, 152], physical network models [150], Boolean networks
[63], and dynamical modeling [135].

4.3 Accuracy and sample size requirements

Section 4.2 introduced a Bayesian score to find silencing schemes explaining the data
well. We will demonstrate its potential in two steps. First, we investigate accuracy
and sample size requirements in a controlled simulation setting. In a second step, we
show that our approach is also useful in a real biological scenario by applying it to
a dataset on Drosophila immune response. This section evaluates how our algorithm
responds to different levels of noise in the data, how accurate it is and how many
replicates of intervention screens are needed for reliable pathway reconstruction. To
answer these questions, we performed simulations consisting of five steps:

1. We randomly generated a directed acyclic graph T with 20 nodes and 40 edges.
This is the core topology of S-genes.

2. Then, we connected 40 E-genes to the core T of S-genes. Together they form an
extended topology T ′. To evaluate how the position of E-genes affects the results,
we implemented three different ways of attaching E-genes to S-genes: either two
E-genes are assigned to each S-gene, or E-gene positions are distributed uniformly,
or positions are chosen preferentially downstream (also random but with a higher
probability for S-genes at the end of pathways).

3. From the extended topology T ′ we generated random datasets using eight differ-
ent repetition numbers per knockout experiment (r ∈ {1, . . . , 5, 8, 12, 16}). The
experiment then consists of 20 · r “microarrays”, each corresponding to one of r
repeated knockouts of one of the 20 signaling genes. For each knockout experiment
the response of all E-genes is simulated from T ′ using error probabilities αdata and
βdata. The false negative rate is fixed to βdata = 0.05 and the false positive rate
αdata is varied from 0.1 to 0.5.

4. We randomly selected three existing edges in the graph T and three pairs of non-
connected nodes. Using these six edges, there are 26 = 64 possible modifications of
T , including the original pathway T itself. Some of the selected edges in T may be
missing and some new links may be added. The 64 pathways were used as input
hypotheses of our algorithm.

5. We scored the 64 pathway hypotheses by the marginal likelihood of Eq. (4.4) with
parameters αscore = 0.1 and βscore = 0.3. Note that these (arbitrarily chosen)
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Figure 4.7: Results of simulation experiments on random graphs. The number of
replicates r in the data are on the x-axis, while the y-axis corresponds to the rate
of perfect reconstructions in 1000 runs. Each plot corresponds to a different way
of attaching E-genes to S-genes. The curves in each plot correspond to αdata =
0.1, . . . , 0.5 in descending order: the lower the curve, the higher the noise in data
generation. The dashed vertical line indicates performance with r = 5 replicates—a
practical upper limit for most microarray studies. The plots show excellent results for
low noise levels. Even with αdata = 0.5 the method does not break down, but identifies
the complete true pathway in more than half of all simulation runs.

values are different from (αdata, βdata) used for data generation. If the best score
is achieved by the original pathway T this is counted as a perfect reconstruction.
Even with a single incorrect edge the reconstruction is counted as failed.

Simulation results Fig. 4.7 depicts the average number of perfect reconstructions
for every (αdata, r)-pair over 1000 simulation runs. The plots show: rates of perfect
reconstruction are best when each S-gene has two E-genes as reporters and worst for
purely random E-gene connections. The frequency to identify the correct pathway
quickly increases with the number of replicates. With five replicates and low noise
levels, the rate of perfect reconstruction is above 90% in all simulations. Even with
a noise level of 50% the algorithm correctly identified the right hypothesis in more
than half of the runs.

The impact of these simulation results becomes apparent when comparing it to results
by graphical models of the correlation structure of expression values. Basso et al. [7]
show that their own method, ARACNe, compares favorably against static Bayesian
networks on a simulated network with 19 nodes. The smallest sample size used in
the comparison is 100 observations, the biggest 2000. They show a steady increase
in performance, which levels off at around 1000 observations. Hartemink [55] finds
dynamical Bayesian networks to be even more accurate than ARACNe on the same
simulation network with the same dataset sizes. In summary, at least 1000 obser-
vations are needed to reliably reconstruct a 19 node network by Bayesian networks
or ARACNe. Our simulations show that less than 100 samples are needed to re-
construct a network of the same size when using gene silencing screens. This is one
order of magnitude less. For 20 nodes, 100 observations correspond to five replicates
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per intervention, which give an almost consummate rate of perfect reconstruction in
Fig. 4.7.

4.4 Application to Drosophila immune response

We applied our method to data from a study on innate immune response in Drosophila
[12], which was already described as an example in the introduction. Selectively
removing signaling components (S-genes in our terminology) blocked induction of all,
or only parts, of the transcriptional response to LPS (E-genes in our terminology).

Data preprocessing The dataset consists of 16 Affymetrix-microarrays: 4 repli-
cates of control experiments without LPS and without RNAi (negative controls),
4 replicates of expression profiling after stimulation with LPS but without RNAi
(positive controls), and 2 replicates each of expression profiling after applying LPS
and silencing one of the four candidate genes tak, key, rel, and mkk4/hep. For pre-
processing, we performed normalization on probe level using a variance stabilizing
transformation [60], and probe set summarization using a median polish fit of an
additive model [67]. In this data, 68 genes show a more than 2-fold up-regulation
between control and LPS stimulation. We used them as E-genes in the model.

Adaptive discretization Next, we transformed the continuous expression data to
binary values. An E-gene’s state in an RNAi experiment is set to 1 if its expression
value is sufficiently far from the mean of the positive controls, i.e. if the intervention
interrupted the information flow. If the E-genes expression is close to the mean of
positive controls, we set its state to 0. Formally, this strategy is implemented as
follows. Let Cik be the continuous expression level of Ei in experiment k. Let µ+

i be
the mean of positive controls for Ei, and µ−

i the mean of negative controls. To derive
binary data Eik, we defined individual cutoffs for every gene Ei by:

Eik =

{
1 if Cik < κ · µ+

i + (1− κ) · µ−
i ,

0 else.
(4.10)

We tried values of κ from 0 to 1 in steps of 0.1. Fig. 4.8 shows the results. To control
the false negative rate, we chose κ = 0.7: It is the smallest value where all negative
controls are correctly recognized.

Figure 4.9 shows the continuous and discretized data as used in the analysis. Silencing
tak affects almost all E-genes. A subset of E-genes is additionally affected by silencing
mkk4/hep, another disjoint subset by silencing rel and key. Note that expression pro-
files of rel and key silencing are almost indistinguishable both in the continuous and
discrete data matrix. The subset structure observed by Boutros et al. [12] is visible,
but obscured by noise. Some of it can be attributed to noise inherent in biolgical sys-
tems and to measurement noise. Some of it may be due to our selection of E-genes.
Including more biological knowledge on regulatory modules in Drosophila immune
response would help to clarify the picture. The following results show that even
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Figure 4.8: Discretizing according to Eq. (4.10) with κ varying from 0 to 1 (x-axis).
The black dots show, which percentage of negative controls was not recognized, i.e.
set to 0 instead of 1. The circles show, which percentage of positive controls wrongly
assigned to state 1. The dashed line indicates the smallest value of κ, at which all
negative controls were correctly identified (the black dots hit zero).

from noisy data the dominant biological features of the dataset can be reconstructed
without having to rely on prior knowledge.

Score parameters We used the two scoring functions developed in this chapter.
To compute the marginal likelihood of Eq. (4.4) we need to specify the global error
rates α and β. The discretization is consistent with a small value of false negative
rate β. We set it to β = 0.05. The false positive rate α was estimated from the
positive controls: The relative frequency of negative calls there was just below 15%.
Thus we set α = 0.15. Trying different values of α and β did not change the results
qualitatively, except when very large und unrealistic error probabilities were chosen.
We compare these results with the results obtained from using the full marginal
likelihood of Eq. (4.8). There we have to specify four prior parameters. We set
a0 = b1 = 1. Both values correspond to false observations (see Table 4.1) and should
be small compared to the other two weights, if there is a clear signal in the data. We
chose a1 and b0 to be equal and varied their value from 1 to 10.

Results Input hypotheses to the algorithm were all silencing schemes on four genes.
The four S-genes can form 212 = 4096 pathways, which result in 355 different silencing
schemes. Fig. 4.10 compares the result from applying both scoring functions. The
distribution of marginal likelihood from Eq. (4.4) over the 30 top ranked silencing
schemes in Fig. 4.10 shows a clear peak: A single silencing scheme achieves the best
score. It is well separated from a group of four silencing schemes having almost the
same second-best score. Only after a wide gap all other silencing schemes follow. The
ranking of silencing schemes is stable, when using different values of α and β, but the
gap is sometimes less pronounced.

For the full marginal likelihood of Eq. (4.8) and low values of a1 and b0, we get a
fully connected graph as the best model: no structure was found in the data. When
the value increases, the scoring landscape looks more and more similar to the results
obtained from Eq. (4.4). For a1 = b0 = 5, both scores result in the same winning
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Figure 4.9: Data on Drosophila immune response. Left: the normalized, gene-wise
scaled data from [12]. Black stands for low expression and white for high expression.
Rows are E-genes selected for differential expression after LPS stimulation (as seen in
the first eight colums). Right: The data from silencing experiments after discretization
(κ = 0.7) as used in our analysis. We only show the eight columns in the data matrix
corresponding to RNAi experiments. The subset structure is visible, but obscured by
noise.

model. In the right plot of Fig. 4.10 we show the result for a1 = b0 = 9. It is the
smallest value for which both scores agree on the five highest ranked models.

The topology of the best silencing scheme obtained from both scoring functions is
shown in Fig. 4.11. It can be constructed from three different pathway hypotheses:
One is the topology shown in Fig. 4.11, which is transitively closed, the other two
miss either the edge from tak to rel or from tak to key. This is an example of
prediction equivalence. The key features of the data are preserved in all three pathway
topologies. The signal runs through tak before splitting into two pathway branches,
one containing mkk4/hep, the other both key and rel. There is no hint of cross-talk
between the two branches of the pathway. All in all, our result fits exactly to the
conclusions Boutros et al. [12] drew from the data.

Fig. 4.12 shows the expected position of E-genes given the optimal silencing scheme
of Fig. 4.11. Both predictions agree very well and show only subtle differences. The
double-headed arrow in Fig. 4.11 indicates that the order of key and rel cannot be
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Figure 4.10: The score distribution over the 30 top scoring silencing schemes. The
same silencing scheme (circeled) achieves the best score in both plots. In the left plot
(Eq. 4.4, α = 0.15, β = 0.05), it is well separated from a small group of four lagging
behind with a pronounced gap to the rest. In the right plot (Eq. 4.8, a0 = b1 = 1,
a1 = b0 = 9), the distribution is more continuous. The five top ranking silencing
schemes are the same for both scoring functions. If the value of a1 and b0 is further
increased, the right plot converges towards the left one and shows a clear gap between
the best ranking silencing schemes and the rest.

rel

key

tak

receptor
LPS

mkk4/hep

Figure 4.11: Topology of the top-scoring silencing scheme
on the Drosophila data. It clearly shows the fork below tak
with key and rel on one side and mkk4/hep on the other. The
double-headed arrow between key and rel indicates that they
are undistinguishable from this data.

resolved from this dataset, which was to be expected from the nearly identical profiles
in Fig. 4.9. This is also the reason, why the posterior position of E-genes in the upper
half of Fig. 4.12 is distributed equally on both S-genes. The data is undecided about
the relative position of key and rel, and so is the posterior. However, it is known
that rel is the transcription factor regulating the downstream genes (see chapter 1).
This knowledge could have been easily introduced into a model prior p(Φ) penalizing
topologies not showing rel below key. We refused to do this on purpose. The results
here show how well pathway features can be reconstructed just based on experimental
data, without any biological prior knowledge.

A measure of uncertainty In Bayesian terminology, maximizing the marginal
likelihood is equivalent to calculating the mode of the posterior distribution on model
space, assuming a uniform prior. When scoring all possible pathways, we have derived
a complete posterior distribution on model space, which does not only estimate a
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Figure 4.12: Expected position of E-genes on the Drosophila data. Left: The ex-
pected position of E-genes given the silencing scheme with highest marginal likelihood
of the data computed from Eq. (4.5). The lower half of E-genes is attributed to
mkk4/hep, the upper half mostly to key and rel, which show almost the same inter-
vention profiles (see Fig. 4.9). Right: Expected position of E-genes computed from
Eq. 4.9.

single pathway model, but also accurately describes the uncertainties involved in
the reconstruction process. A flat posterior distribution indicates ambiguities in
reconstructing the pathway. What Fig. 4.10 shows is a well pronounced maximium
for both scores. This indicates that we found the dominant structure in the data
with high certainty. This conclusion is strengthened by inspecting the four silencing
schemes achieving the second best score in both plots in Fig. 4.10. They all share
the fork beneath tak and only differ from the best solution in Fig. 4.11 by missing
one or two of the edges between tak, key and rel. All of them represent well the key
features of the data.
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Chapter 5

Summary and outlook

Genome-scale gene silencing screens pose novel challenges to computational biology.
At present, RNA interference appears to be the most efficient technology for produc-
ing large-scale gene intervention data. This dissertation developed methodology to
tackle two problems peculiar to gene silencing data:

1. Gene perturbation effects cannot be controlled deterministically and have to be
modeled stochastically. The uncertainty of intervention effects in a noisy environ-
ment is modeled by choosing informative prior distributions for the relationship
between regulators and their targets. We formalize this approach in the general
framework of conditional Gaussian networks in chapter 3.

2. Direct observations of intervention effects on other pathway components are often
not available. Large-scale datasets may only contain observations of secondary
downstream effects. Learning from secondary effects is implemented via a two-
leveled model of an unobserved pathway with observable downstream reporters.
In chapter 4 we develop a Bayesian scoring function to evaluate models with respect
to data.

Each of these two problems becomes aparent in different modeling situations. Ac-
counting for stochasticity of interventions is of special importance when reconstruct-
ing transcriptional regulatory networks from microarray data. In this setting we
assume that expression states of gene coding for transcription factors are good ap-
proximations of the activation state of the trascription factor protein. Under this
assumption, the correlation structure of genes in different conditions allows conclu-
sions about transcriptional regulators and their targets. Silencing a gene leads to
primary effects at other genes in the model and increases the accuracy of network
reconstruction.

The second challenge is learning from indirect information and secondary effects.
This becomes important when inferring signal transduction pathways from pheno-
typical changes after interventions. In the cell, a signal is propagated on protein level
and mRNA concentrations mostly stay constant for all pathway components. Thus,
interventions do not lead to primary effects observable at other pathway components.
Instead, reflections of signaling activity perceived in expression levels of downstream
genes after pathway perturbations can be used to reconstruct non-transcriptional

65



Chapter 5 Summary and outlook

features of signaling pathways. Single reporter genes below the pathway of interest
can be used as transcriptional phenotypes. Subset patterns on observed phenotype
changes allow inference of regulatory hierarchies. In simulation studies we confirmed
small sample size requirements and high reconstruction accuracy for the Bayesian
score devised to evaluate candidate models. The usefulness of our approach on real
data was shown by analyzing a study of Drosophila innate immune response.

Non-transcriptional phenotypes In chapter 4 we used reporter genes downstream
the pathway of interest to reconstructed a regulatory hierarchy. Expression changes
of reporter genes can be interpreted as transcriptional phenotypes. In fact, any other
kind of binary phenotype could also be used in our analysis. The only requirement
is that the number of phenotypes is large enough and contains a meaningful subset
structure. We plan to extend our approach to data from large-scale screens in C. el-
egans [102, 52]. Phenotypes measured there include “no developing embryos seen
48 hours after dsRNA injection”, “Reduced fecundity of injected worm”, “osmoti-
cally pressure sensitivity”, or “multiple cavities”. Until now, genes in the C. elegans
genome have only been clustered according to phenotype similarities [53]. Elucidating
regulatory hierarchies remains an open question.

Scaling up model size In its present form, the algorithm proposed in chapter 4
can be applied to filter (several thousands of) pathway hypotheses and to find those
well supported by experimental data. The hypotheses build on existing biological
expertise. This constrained search space can be interpreted as the result of a rigid
structure prior focussing on biological relevant hypotheses. To apply our method to
large-scale intervention data with thousands of silenced genes and little biological
prior knowledge, model search will have to be improved. There seem to be two
promising avenues for further research. One could combine optimal subnetworks
to big networks, as it is done in quartett-puzzling algorithms in phylogeny [132].
Another strategy is to define a neighborhood relation on the set of silencing schemes
and use techniques of combinatorial optimization to explore the score landscape. The
contribution of this thesis is a scoring function to link data with models. Efficient
search heuristics are the topic of future research.

The need for a holistic view The internal organization of the cell comprises
many layers. The genome refers to the collection of information stored in the DNA,
while the transcriptome includes all gene transcripts. On the next level the proteome
covers the set of all proteins. The metabolome contains small molecules—sugars,
salts, amino acids, and nucleotides—that participate in metabolic reactions required
for the maintenance and normal function of a cell. Results of internal reactions are
features of the cell like growth or viability, which can be taken as phenotypes to study
gene function. To understand the complexity of living cells future research will need
to build models including all these layers. Statistical inference on parts of the system
will not provide the mechanistic insights functional genomics is seeking for. Recent
research concentrates on combining information from genome, transcriptome and
proteome, e.g. by building models jointly on expression and protein-DNA binding
data. This is a necessary step into the right direction. However, these models will still
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be fragmentary if they not include (and predict) phenotypical changes of interventions
into the normal course of action in the cell. We will only understand what we can
break.

It’s the biology, stupid! This thesis explored how to recover features of cellular
pathways from gene expression data. All in all, this thesis shows: pathway recon-
struction is not an issue of more advanced models and more sophisticated inference
techniques. Pathway reconstruction is a matter of careful experimental planning and
design. Well designed experiments focus on a pathway of interest and probe infor-
mation flow by interventions. Only a small sample size and simple statistics are then
needed to extract the relevant information from data.
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Notation and Definitions

Here I list often used abbreviations and notations for quick reference. The notation in
chapter 3 complies to Steffen Lauritzens book [72], the statistical standard reference on
graphical models.

Chapter 1

DNA. . . . . . . . . . . . . . Deoxyribonucleic acid
RNA. . . . . . . . . . . . . . Ribonucleic acid
mRNA. . . . . . . . . . . . messenger RNA
RNAi . . . . . . . . . . . . . RNA interference

Chapter 2

V . . . . . . . . . . . . . . . . . set of graph vertices representing network components
p . . . . . . . . . . . . . . . . . . number of pathway components, p = |V |.
T = (V, E) . . . . . . . . network topology on vertices V and edge set E
D . . . . . . . . . . . . . . . . . special case: T is a directed acyclic graph
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Zusammenfassung

Die vorliegende Arbeit beschreibt, wie sich regulatorische Netze und Signalwege
rekonstruieren lassen, indem die Expression einzelner Gene gezielt unterdrückt wird.
Die Arbeit widmet sich im Besonderen zwei statistischen Problemen:

1. Die Stärke einer Intervention ist meist unbekannt und unterliegt stochastischen
Einflüssen in der Zelle. Ich demonstriere eine stochastische Modellierung der
Auswirkung eines Experiments auf das Ziel-Gen in Kapitel 3.

2. Gene, die zu einem Signalweg beitragen, zeigen keine veränderte Expression, wenn
andere Teile des Signalwegs gestört werden. Ich zeige in Kapitel 4, wie ein Signal-
weg aus sekundären Effekten rekonstruiert werden kann.

Kapitel 1: Biologische Einführung Nach Grundlagen der Genexpression in eu-
karyotischen Zellen klärt das erste Kapitel die beiden zentralen Begriffe dieser Arbeit:
transkriptionelle regulatorische Netzwerke und molekulare Signalwege. Regulatorische
Netze bestehen aus Transkriptionsfaktoren und den Genen, an die sie binden. Signal-
wege geben durch Proteininteraktionen und -modifikationen Reize von der Zellmem-
bran an den Zellkern weiter.

Kapitel 2: Statistische Verfahren der Netzwerk-Rekonstruktion Das zweite
Kapitel legt die mathematischen und statistischen Grundlagen für die folgenden Teile
der Arbeit. Es baut auf dem Begriff der bedingten Unabhängigkeit auf und gibt
einen Überblick über statistische Modelle, die zur Netzwerk-Rekonstruktion einge-
setzt werden. Unter anderem behandelt das Kapitel Korrelationsgraphen, Gaußsche
graphische Modelle und Bayessche Netzwerke.

Kapitel 3: Rekonstruktion transkriptioneller regulatorischer Netzwerke Ich
entwickele ein statistisches Modell für Daten aus gene silencing Experimenten. In
Experimenten lässt sich nur schwer bestimmen, wie weit die Expression des Ziel-Gens
tatsächlich unterdrückt wurde. Ich modelliere dieses stochastische Verhalten, indem
ich lokale a priori -Verteilungen anpassen. Das Ergebnis des Kapitels ist eine Theorie
sogennanter probabilistic soft interventions.

Kapitel 4: Rekonstruktion von Protein-Signalwegen Die Unterdrückung von
Proteinen, die zu Beginn von Signalketten stehen, resultiert in mehr Phänotypen als
das Ausschalten von Proteinen am unteren Ende der Hierarchie. Ich formalisiere diese
Idee in einem mehrstufigen Modell. Es enthält eine unbeobachtbare regulatorische Hi-
erarchie von Signalmolekülen, deren knockdown zu beobachtbaren Phänotypen führt.
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Zusammenfassung

Teilmengen-Beziehungen auf der Menge der beobachteten Phänotypen ermöglichen
es, die regulatorische Hierarchie zu rekonstruieren. Ich demonstriere den Nutzen
unserer Methode in Simulationsexperimenten und an einem biologischen Beispiel in
Drosophila melanogaster.
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10/1995–09/2001 Universitätsstudium der Mathematik an der Ruprecht-Karls

Universität Heidelberg.
06/1986–06/1995 Altes Kurfürstliches Gymnasium Bensheim

87
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