
Example workflow for regsplice package

Lukas M. Weber, Mark D. Robinson

3 May 2019

Package

regsplice 1.10.0

Contents

1 Introduction . 2

1.1 Example workflow . 2

1.2 Data set . 2

1.3 Exon microarray data . 2

2 Workflow . 4

2.1 Load data and create condition vector 4

2.2 Run workflow with wrapper function 5

2.3 Run workflow using functions for individual steps 6

3 Analyze results . 11

3.1 Summary of all significant genes 11

3.2 Contingency table . 11

4 Additional information . 13

4.1 Additional user options . 13

4.2 Design matrices . 13

Example workflow for regsplice package

1 Introduction

The regsplice package implements statistical methods for the detection of differential exon
usage (differential splicing) in RNA sequencing (RNA-seq) and exon microarray data sets.
The regsplice methods are based on the use of the lasso (L1-regularization) to improve the
power of standard generalized linear models. A key advantage of regsplice is that runtimes
are fast compared to other leading approaches. We anticipate that similar regularization-based
methods may also have applications in other settings.
The detailed statistical methodology and performance comparisons with other methods will
be described in an upcoming paper.

1.1 Example workflow

This vignette demonstrates an example workflow for the regsplice package, using a small
simulated RNA-seq data set.
There are two options for running regsplice: you can run a complete workflow in one step
using the wrapper function regsplice(); or you can run the individual functions for each
step in sequence, which provides additional flexibility and insight into the methodology. Both
options are demonstrated below.

1.2 Data set

The data set used for the example workflow consists of exon-level read counts for a subset of
100 genes from a simulated human RNA-seq data set, consisting of 6 biological samples, with
3 samples in each of 2 conditions.
The original data set is from the paper:

Soneson, Matthes et al. (2016), Isoform prefiltering improves performance of
count-based methods for analysis of differential transcript usage, Genome Biology,
available here

Original data files from this paper, containing the simulated RNA-seq reads (FASTQ and
BAM files), are available from ArrayExpress at accession code E-MTAB-3766.
Exon bin counts were generated with the Python counting scripts provided with the DEXSeq
package, using the option to exclude exons from overlapping genes instead of aggregating
them into multi-gene complexes (see Soneson et al. 2016, Supplementary Material).
For this example workflow, we have selected a subset consisting of the first 100 genes from this
simulated data set. The exon-level read counts and the true differential splicing status labels
for these 100 genes are saved in the text files vignette_counts.txt and vignette_truth.txt

in the extdata/ directory in the regsplice package source code.

1.3 Exon microarray data

The regsplice methods are designed to work with both RNA-seq read counts and exon
microarray intensities.

2

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0862-3
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3766/
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html

Example workflow for regsplice package

If you are using exon microarray data, the main steps in the workflow are the same as shown
below for RNA-seq data. However, the following adjustments to the workflow are required:

• Instead of RNA-seq read counts, a matrix or data frame of exon microarray intensities
is provided to the counts input argument. The name of the argument is still counts,
regardless of the input data type.

• Exon microarray intensities should be log2-transformed externally, before they are
provided to regsplice. This is usually done during pre-processing of microarray data,
and may be done automatically depending on your software.

• Filtering of zero-count and low-count exon bins should be disabled, by setting the
arguments filter_zeros = FALSE and filter_low_counts = FALSE.

• Calculation of normalization factors should be disabled, by setting normalize = FALSE.
• Calculation of limma-voom transformation and weights should be disabled, by setting

voom = FALSE.

3

Example workflow for regsplice package

2 Workflow

2.1 Load data and create condition vector

Load the vignette example data file, which contains simulated RNA-seq read counts for 100
genes across 6 biological samples. From the raw data, extract the table of counts (counts),
gene IDs (gene_IDs), and number of exon bins per gene (n_exons).
Then create the condition vector, which specifies the experimental conditions or treatment
groups for each biological sample.

load data

file_counts <- system.file("extdata/vignette_counts.txt", package = "regsplice")

data <- read.table(file_counts, header = TRUE, sep = "\t", stringsAsFactors = FALSE)

head(data)

exon sample1 sample2 sample3 sample4 sample5 sample6

1 ENSG00000000003:001 576 506 526 643 482 826

2 ENSG00000000003:002 141 122 126 157 121 191

3 ENSG00000000003:003 123 102 106 133 99 156

4 ENSG00000000003:004 86 76 77 98 72 112

5 ENSG00000000003:005 97 83 87 113 76 126

6 ENSG00000000003:006 133 107 116 155 97 170

extract counts, gene_IDs, and n_exons

counts <- data[, 2:7]

tbl_exons <- table(sapply(strsplit(data$exon, ":"), function(s) s[[1]]))

gene_IDs <- names(tbl_exons)

n_exons <- unname(tbl_exons)

dim(counts)

[1] 3191 6

length(gene_IDs)

[1] 100

head(gene_IDs)

[1] "ENSG00000000003" "ENSG00000000005" "ENSG00000000419" "ENSG00000000457"

[5] "ENSG00000000460" "ENSG00000000938"

length(n_exons)

[1] 100

sum(n_exons)

[1] 3191

create condition vector

condition <- rep(c("untreated", "treated"), each = 3)

condition

4

Example workflow for regsplice package

[1] "untreated" "untreated" "untreated" "treated" "treated" "treated"

2.2 Run workflow with wrapper function

The regsplice() wrapper function runs the analysis pipeline with a single command. The
required input format for the wrapper function is a RegspliceData object, which is created
with the RegspliceData() constructor function.
The results of a regsplice analysis consist of a set of multiple testing adjusted p-values
(Benjamini-Hochberg false discovery rates, FDR) quantifying the statistical evidence for
differential exon usage (DEU) for each gene. The adjusted p-values are used to rank the
genes in the data set according to their evidence for DEU, and a significance threshold can be
specified to generate a list of genes with statistically significant evidence for DEU.
The wrapper function returns gene names, fitted model results, raw p-values, multiple testing
adjusted p-values, likelihood ratio (LR) test statistics, and degrees of freedom of the LR tests.
The required inputs for the RegspliceData() constructor function are counts (matrix or data
frame of RNA-seq read counts or exon microarray intensities), gene_IDs (vector of gene IDs),
n_exons (vector of exon lengths, i.e. number of exon bins per gene), and condition (vector
of experimental conditions for each biological sample).
Alternatively, the inputs can be provided as a SummarizedExperiment object, which will be
parsed to extract these components. This may be useful when running regsplice as part of
a pipeline with other packages.
Note that we have used suppressWarnings() to hide warning messages related to the small
number of observations per gene in this example data set. For most data sets, these warning
messages should not be present.
See ?RegspliceData and ?regsplice for additional details, including other available inputs
and options. The seed argument is used to generate reproducible results.

library(regsplice)

rs_data <- RegspliceData(counts, gene_IDs, n_exons, condition)

rs_results <- suppressWarnings(regsplice(rs_data, seed = 123))

removed 936 exon(s) with zero counts

removed 1 remaining single-exon gene(s)

removed 240 low-count exon(s)

removed 4 remaining single-exon gene(s)

Fitting regularized (lasso) models...

Fitting null models...

2.2.1 Summary table of results

The function summaryTable() is used to generate a summary table of the results.

5

Example workflow for regsplice package

The results are displayed as a data frame of the top n most highly significant genes, ranked
according to either the false discovery rate (FDR) or raw p-values, up to a specified significance
threshold (e.g. FDR < 0.05).
The argument rank_by chooses whether to rank by FDR or raw p-values.
To display results for all genes up to the significance threshold, set the argument n = Inf. To
display results for all genes in the data set, set both n = Inf and threshold = 1.
For more details, see ?summaryTable.

summaryTable(rs_results)

gene_IDs p_vals p_adj LR_stats df_tests

1 ENSG00000004766 5.198868e-16 1.611649e-14 141.22113 31

2 ENSG00000001461 8.635485e-06 1.338500e-04 26.20603 3

3 ENSG00000003436 1.692429e-04 1.748844e-03 17.36835 2

4 ENSG00000003249 5.366371e-03 4.158937e-02 10.45521 2

2.3 Run workflow using functions for individual steps

Alternatively, the regsplice analysis pipeline can be run using the individual functions for
each step, which provides additional flexibility and insight into the statistical methodology.
The steps are described below.

2.3.1 Create RegspliceData object

The first step is to create a RegspliceData object, which contains data in the format required
by the functions in the regsplice analysis pipeline.
The RegspliceData format is based on the SummarizedExperiment container from Bioconduc-
tor. The main advantage of this format is that subsetting operations automatically keep data
and meta-data for rows and columns in sync, which helps avoid errors caused by selecting
incorrect row or column indices.
Initially, the RegspliceData objects contain raw data along with meta-data for rows (genes
and exon bins) and columns (biological samples). During subsequent steps in the regsplice

analysis pipeline, the data values are modified, and additional data and meta-data are added.
Final results are stored in a RegspliceResults object.
The required inputs are counts (matrix or data frame of RNA-seq read counts or exon
microarray intensities), gene_IDs (vector of gene IDs), n_exons (vector of exon lengths,
i.e. number of exon bins per gene), and condition (vector of experimental conditions for each
biological sample).
Alternatively, the inputs can be provided as a SummarizedExperiment object, which will be
parsed to extract these components. This may be useful when running regsplice as part of
a pipeline with other packages.
Note that the warning messages are due to the small number of observations per gene in
the data set used in this vignette. In most data sets, these warning messages should not be
present.
For more details, see ?RegspliceData.

6

Example workflow for regsplice package

library(regsplice)

rs_data <- RegspliceData(counts, gene_IDs, n_exons, condition)

2.3.2 Filter zero-count exon bins

Next, use the function filterZeros() to filter exon bins (rows) with zero counts in all
biological samples (columns).
Any remaining single-exon genes are also removed (since differential splicing requires multiple
exons).
If you are using exon microarray data, this step should be skipped.
For more details, see ?filterZeros.

rs_data <- filterZeros(rs_data)

removed 936 exon(s) with zero counts

removed 1 remaining single-exon gene(s)

2.3.3 Filter low-count exons

Filter low-count exon bins with filterLowCounts().
The arguments filter_min_per_exon and filter_min_per_sample control the amount of
filtering. Default values are provided; however, these should be adjusted depending on the
total number of samples and the number of samples per condition.
Any remaining single-exon genes are also removed.
If you are using exon microarray data, this step should be skipped.
For more details, see ?filterLowCounts.

rs_data <- filterLowCounts(rs_data)

removed 240 low-count exon(s)

removed 4 remaining single-exon gene(s)

2.3.4 Calculate normalization factors

The function runNormalization() calculates normalization factors, which are used to scale
library sizes.
By default, runNormalization() uses the TMM (trimmed mean of M-values) normalization
method (Robinson and Oshlack, 2010), implemented in the edgeR package. For more details,
see the documentation for calcNormFactors() in the edgeR package.
This step should be done after filtering. The normalization factors are then used by limma-voom
in the next step.
If you are using exon microarray data, this step should be skipped.

7

Example workflow for regsplice package

For more details, see ?runNormalization.
rs_data <- runNormalization(rs_data)

2.3.5 ‘voom’ transformation and weights

The next step is to use limma-voom to transform the counts and calculate exon-level weights.
This is done with the runVoom() function.
The limma-voom methodology transforms counts to log2-counts per million (logCPM), and
calculates exon-level weights based on the observed mean-variance relationship. This is
required because raw or log-transformed counts do not fulfill the statistical assumptions
required for linear modeling (i.e. equal variance). After the limma-voom transformation and
weights have been calculated, linear modeling methods can be used.
For more details, see the following paper, which introduced voom; or the limma User’s Guide
(section “Differential splicing”) available on Bioconductor.

• Law et al. (2014), voom: precision weights unlock linear model analysis tools for
RNA-seq read counts, Genome Biology, available here

Note that voom assumes that exon bins (rows) with zero or low counts have already been
removed, so this step should be done after filtering with filterZeros() and filterLow

Counts().
If normalization factors are available (from previous step with runNormalization()), they will
be used by voom to calculate normalized library sizes. If they are not available, voom will use
non-normalized library sizes (columnwise total counts) instead.
If you are using exon microarray data, this step should be skipped.
For more details, see ?runVoom.

rs_data <- runVoom(rs_data)

view column meta-data including normalization factors and normalized library sizes

colData(rs_data)

DataFrame with 6 rows and 4 columns

sample_names condition norm_factors lib_sizes

<character> <character> <numeric> <numeric>

1 sample1 untreated 0.872018754175041 348678.442894398

2 sample2 untreated 1.00310227058625 327179.861392577

3 sample3 untreated 1.08282195171819 315878.654111328

4 sample4 treated 1.03387589349488 305822.557047574

5 sample5 treated 0.983314077848825 359353.113063931

6 sample6 treated 1.03851134138038 300454.831708783

2.3.6 Initialize RegspliceResults object

The initializeResults() function creates a RegspliceResults object, which will contain
the results of the analysis. This object will be populated in the subsequent steps.
For more details, see ?initializeResults.

8

http://bioconductor.org/packages/release/bioc/html/limma.html
http://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29

Example workflow for regsplice package

rs_results <- initializeResults(rs_data)

2.3.7 Fit models

There are three model fitting functions:
• fitRegMultiple() fits regularized (lasso) models containing an optimal subset of

exon:condition interaction terms for each gene. The model fitting procedure penalizes
the interaction terms only, so that the main effect terms for exons and samples are
always included. This ensures that the null model is nested, allowing likelihood ratio
tests to be calculated.

• fitNullMultiple() fits the null models, which do not contain any interaction terms.
• fitFullMultiple() fits “full” models, which contain all exon:condition interaction terms

for each gene.
The fitting functions fit models for all genes in the data set.
Note that we have used suppressWarnings() to hide warning messages related to the small
number of observations per gene in this example data set. For most data sets, these warning
messages should not be present.
For more details, see ?fitRegMultiple, ?fitNullMultiple, or ?fitFullMultiple.

set random seed for reproducibility

seed <- 123

fit regularized models

rs_results <- suppressWarnings(fitRegMultiple(rs_results, rs_data, seed = seed))

Fitting regularized (lasso) models...

fit null models

rs_results <- fitNullMultiple(rs_results, rs_data, seed = seed)

Fitting null models...

fit "full" models (not required if 'when_null_selected = "ones"' in next step)

rs_results <- fitFullMultiple(rs_results, rs_data, seed = seed)

Fitting full models...

2.3.8 Calculate likelihood ratio tests

The function LRTests() calculates likelihood ratio (LR) tests between the fitted models and
null models.
If the fitted regularized (lasso) model contains at least one exon:condition interaction term,
the LR test compares the lasso model against the nested null model. However, if the lasso
model contains zero interaction terms, then the lasso and null models are identical, so the
LR test cannot be calculated. The when_null_selected argument lets the user choose what
to do in these cases: either set p-values equal to 1 (when_null_selected = "ones"); or
calculate a LR test using the “full” model containing all exon:condition interaction terms

9

Example workflow for regsplice package

(when_null_selected = "full"), which reduces power due to the larger number of terms,
but allows the evidence for differential exon usage among these genes to be distinguished.
You can also return NAs for these genes (when_null_selected = "NA").
The default option is when_null_selected = "ones". This simply calls all these genes non-
significant, which in most cases is sufficient since we are more interested in genes with strong
evidence for differential exon usage. However, if it is important to rank the low-evidence genes
in your data set, use the when_null_selected = "full" option. If when_null_selected =

"ones" or when_null_selected = "NA", the “full” fitted models are not required.
The results object contains gene names, fitted model results, raw p-values, multiple testing
adjusted p-values (Benjamini-Hochberg false discovery rates, FDR), likelihood ratio (LR) test
statistics, and degrees of freedom of the LR tests.
For more details, see ?LRTests.

rs_results <- LRTests(rs_results)

2.3.9 Summary table of results

The function summaryTable() is used to generate a summary table of the results.
The results are displayed as a data frame of the top n most highly significant genes, ranked
according to either the false discovery rate (FDR) or raw p-values, up to a specified significance
threshold (e.g. FDR < 0.05).
The argument rank_by chooses whether to rank by FDR or raw p-values.
To display results for all genes up to the significance threshold, set the argument n = Inf. To
display results for all genes in the data set, set both n = Inf and threshold = 1.
For more details, see ?summaryTable.

summaryTable(rs_results)

gene_IDs p_vals p_adj LR_stats df_tests

1 ENSG00000004766 5.198868e-16 1.611649e-14 141.22113 31

2 ENSG00000001461 8.635485e-06 1.338500e-04 26.20603 3

3 ENSG00000003436 1.692429e-04 1.748844e-03 17.36835 2

4 ENSG00000003249 5.366371e-03 4.158937e-02 10.45521 2

10

Example workflow for regsplice package

3 Analyze results

For the simulated data set in this vignette, the true differential splicing status of each gene is
known. In this section, we show how to analyze the results and calculate a contingency table
showing the number of true positives, true negatives, false positives, and false negatives.

3.1 Summary of all significant genes

As shown in the workflow above, we can use the summaryTable() function with argument n =

Inf to display a list of all genes with significant evidence for differential exon usage (DEU).

summaryTable(rs_results, n = Inf)

gene_IDs p_vals p_adj LR_stats df_tests

1 ENSG00000004766 5.198868e-16 1.611649e-14 141.22113 31

2 ENSG00000001461 8.635485e-06 1.338500e-04 26.20603 3

3 ENSG00000003436 1.692429e-04 1.748844e-03 17.36835 2

4 ENSG00000003249 5.366371e-03 4.158937e-02 10.45521 2

The total number of genes with significant evidence for DEU at a given threshold can also be
calculated.
Note that we are using the multiple testing adjusted p-values (Benjamini-Hochberg false
discovery rates, FDRs) for this calculation. A standard threshold of FDR < 0.05 implies that
5% of genes in the list are expected to be false discoveries.

sum(p_adj(rs_results) < 0.05)

[1] 4

table(p_adj(rs_results) < 0.05)

##

FALSE TRUE

77 4

3.2 Contingency table

As mentioned above, the true differential splicing (DS) status is known for each gene, since
this is a simulated data set. Therefore, we can calculate contingency tables comparing the
true and predicted DS status for each gene at a given significance threshold. Increasing the
significance threshold returns more genes, at the expense of a larger number of false positives.

load true DS status labels

file_truth <- system.file("extdata/vignette_truth.txt", package = "regsplice")

data_truth <- read.table(file_truth, header = TRUE, sep = "\t", stringsAsFactors = FALSE)

str(data_truth)

'data.frame': 100 obs. of 2 variables:

$ gene : chr "ENSG00000000003" "ENSG00000000005" "ENSG00000000419" "ENSG00000000457" ...

$ ds_status: int 0 0 0 0 0 0 0 0 1 0 ...

11

Example workflow for regsplice package

remove genes that were filtered during regsplice analysis

data_truth <- data_truth[data_truth$gene %in% gene_IDs(rs_results),]

dim(data_truth)

[1] 81 2

length(gene_IDs(rs_results))

[1] 81

number of true DS genes in simulated data set

sum(data_truth$ds_status == 1)

[1] 6

table(data_truth$ds_status)

##

0 1

75 6

contingency table comparing true and predicted DS status for each gene

(significance threshold: FDR < 0.05)

table(true = data_truth$ds_status, predicted = p_adj(rs_results) < 0.05)

predicted

true FALSE TRUE

0 72 3

1 5 1

increasing the threshold detects more genes, at the expense of more false positives

table(true = data_truth$ds_status, predicted = p_adj(rs_results) < 0.99)

predicted

true FALSE TRUE

0 60 15

1 3 3

12

Example workflow for regsplice package

4 Additional information

4.1 Additional user options

Additional user options not discussed in the workflow above include:
• alpha: Elastic net parameter for glmnet model fitting functions. The value of alpha

must be between 0 (ridge regression) and 1 (lasso). The default value is 1, which fits a
lasso model. See glmnet package documentation for more details.

• lambda_choice: Parameter to select which optimal lambda value to choose from the
cv.glmnet cross validation fit. Available choices are "lambda.min" (model with minimum
cross-validated error) and "lambda.1se" (most regularized model with cross-validated
error within one standard error of minimum). The default value is "lambda.min". See
glmnet package documentation for more details.

For further details, including a complete list and description of all available user options, refer
to the documentation for the regsplice() wrapper function, which can be accessed with
?regsplice or help(regsplice).

4.2 Design matrices

The function createDesignMatrix() creates the model design matrix for each gene. This
function is called automatically by the model fitting functions, so does not need to be used
directly. In this section, we demonstrate how it works for a single gene, and show an example
design matrix, in order to provide further insight into the statistical methodology.
The design matrix includes main effect terms for each exon and each sample, and interaction
terms between the exons and conditions.
Note that the design matrix does not include main effect terms for the conditions, since these
are absorbed into the main effect terms for the samples. In addition, the design matrix does
not include an intercept column, since it is simpler to let the model fitting functions add an
intercept term later.
For more details, see ?createDesignMatrix.

gene with 3 exons

4 biological samples; 2 samples in each of 2 conditions

design_example <- createDesignMatrix(condition = rep(c(0, 1), each = 2), n_exons = 3)

design_example

Exon2 Exon3 Samp2 Samp3 Samp4 Exon2:Cond1 Exon3:Cond1

1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

3 0 1 0 0 0 0 0

4 0 0 1 0 0 0 0

5 1 0 1 0 0 0 0

6 0 1 1 0 0 0 0

7 0 0 0 1 0 0 0

8 1 0 0 1 0 1 0

13

Example workflow for regsplice package

9 0 1 0 1 0 0 1

10 0 0 0 0 1 0 0

11 1 0 0 0 1 1 0

12 0 1 0 0 1 0 1

14

	1 Introduction
	1.1 Example workflow
	1.2 Data set
	1.3 Exon microarray data

	2 Workflow
	2.1 Load data and create condition vector
	2.2 Run workflow with wrapper function
	2.3 Run workflow using functions for individual steps

	3 Analyze results
	3.1 Summary of all significant genes
	3.2 Contingency table

	4 Additional information
	4.1 Additional user options
	4.2 Design matrices

