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1 Introduction

Technological advances continue to spur the exponential growth of biological data as illustrated
by the rise of the omics—genomics, transcriptomics, epigenomics, proteomics, etc.—each with
there own high throughput technologies. In order to leverage the full power of these resources,
methods to integrate multiple data sets and data types must be developed. The reciprocal
nature of the genomic, transcriptomic, epigenomic, and proteomic biology requires that the
data provides a complementary view of cellular function and regulatory organization; however,
the technical heterogeneity and massive size of high-throughput data even within a particular
omic makes integrated analysis challenging. To address these challenges, we developed
projectR, an R package for integrated analysis of high dimensional omic data. projectR uses
the relationships defined within a given high dimensional data set, to interrogate related
biological phenomena in an entirely new data set. By relying on relative comparisons within
data type, projectR is able to circumvent many issues arising from technological variation.
For a more extensive example of how the tools in the projectR package can be used for in
silico experiments, or additional information on the algorithm, see Stein-O’Brien, et al.

2 Getting started with projectR

2.1 Installation Instructions

For automatic Bioconductor package installation, start R, and run:

BiocManager::install("projectR")

2.2 Methods

Projection can roughly be defined as a mapping or transformation of points from one space
to another often lower dimensional space. Mathematically, this can described as a function
ϕ(x) = y : <D 7→ <d s.t. d ≤ D for x ∈ <D, y ∈ <d Barbakh, Wu, and Fyfe (2009) . The
projectR package uses projection functions defined in a training dataset to interrogate related
biological phenomena in an entirely new data set. These functions can be the product of
any one of several methods common to “omic” analyses including regression, PCA, NMF,
clustering. Individual sections focussing on one specific method are included in the vignette.
However, the general design of the projectR function is the same regardless.

2.3 The base projectR function

The generic projectR function is executed as follows:

library(projectR)

projectR(data, loadings, dataNames=NULL, loadingsNames=NULL, NP = NULL, full = false)
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2.3.1 Input Arguments

The inputs that must be set each time are only the data and loadings, with all other inputs
having default values. However, incongruities in the feature mapping between the data and
loadings, i.e. a different format for the rownames of each object, will throw errors or result
in an empty mapping and should be checked before running. To overcoming mismatched
feature names in the objects themselve, the /code{dataNames} and /code{loadingNames}
arguements can be manually supplied by the user.

The arguments are as follows:

data a dataset to be projected into the pattern space

loadings a matrix of continous values with unique rownames to be projected

dataNames a vector containing unique name, i.e. gene names, for the rows of the tar-
get dataset to be used to match features with the loadings, if not provided by row

names(data). Order of names in vector must match order of rows in data.

loadingsNames a vector containing unique names, i.e. gene names, for the rows of loadings
to be used to match features with the data, if not provided by rownames(loadings).
Order of names in vector must match order of rows in loadings.

NP vector of integers indicating which columns of loadings object to use. The default of NP
= NA will use entire matrix.

full logical indicating whether to return the full model solution. By default only the new
pattern object is returned.

The loadings arguement in the generic projectR function is suitable for use with any genernal
feature space, or set of feature spaces, whose rows annotation links them to the data to
be projected. Ex: the coeffients associated with individual genes as the result of regression
analysis or the amplituded values of individual genes as the result of non-negative matrix
factorization (NMF).

2.3.2 Output

The basic output of the base projectR function, i.e. full=FALSE, returns projectionPatterns
representing relative weights for the samples from the new data in this previously defined
feature space, or set of feature spaces. The full output of the base projectR function, i.e.
full=TRUE, returns projectionFit, a list containing projectionPatterns and Projection.
The Projection object contains additional information from the proceedure used to obtain
the projectionPatterns. For the the the base projectR function, Projection is the full lmFit
model from the package limma

3 PCA projection

Projection of principle components is achieved by matrix multiplication of a new data set by
previously generated eigenvectors, or gene loadings. If the original data were standardized
such that each gene is centered to zero average expression level, the principal components are
normalized eigenvectors of the covariance matrix of the genes. Each PC is ordered according
to how much of the variation present in the data they contain. Projection of the original
samples into each PC will maximized the variance of the samples in the direction of that
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component and uncorrelated to previous components. Projection of new data places the
new samples into the PCs defined by the original data. Because the components define
an orthonormal basis set, they provide an isomorphism between a vector space, V , and <n

which preserves inner products. If V is an inner product space over < with orthonormal basis
B = v1, ..., vn and vεV s.t[v]B = (r1, ..., rn), then finding the coordinate of vi in v is precisely
the inner product of v with vi, i.e. ri = 〈v, vi〉. This formulation is implemented for only
those genes belonging to both the new data and the PC space. The projectR function has
S4 method for class prcomp.

3.1 Obtaining PCs to project.

# data to define PCs

library(projectR)

## Registered S3 methods overwritten by 'ggplot2':

## method from

## [.quosures rlang

## c.quosures rlang

## print.quosures rlang

data(p.RNAseq6l3c3t)

# do PCA on RNAseq6l3c3t expression data

pc.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))

pcVAR <- round(((pc.RNAseq6l3c3t$sdev)^2/sum(pc.RNAseq6l3c3t$sdev^2))*100,2)

dPCA <- data.frame(cbind(pc.RNAseq6l3c3t$x,pd.RNAseq6l3c3t))

#plot pca

library(ggplot2)

setCOL <- scale_colour_manual(values = c("blue","black","red"), name="Condition:")

setFILL <- scale_fill_manual(values = c("blue","black","red"),guide = FALSE)

setPCH <- scale_shape_manual(values=c(23,22,25,25,21,24),name="Cell Line:")

pPCA <- ggplot(dPCA, aes(x=PC1, y=PC2, colour=ID.cond, shape=ID.line,

fill=ID.cond)) +

geom_point(aes(size=days),alpha=.6)+

setCOL + setPCH + setFILL +

scale_size_area(breaks = c(2,4,6), name="Day") +

theme(legend.position=c(0,0), legend.justification=c(0,0),

legend.direction = "horizontal",

panel.background = element_rect(fill = "white",colour=NA),

legend.background = element_rect(fill = "transparent",colour=NA),

plot.title = element_text(vjust = 0,hjust=0,face="bold")) +

labs(title = "PCA of hPSC PolyA RNAseq",

x=paste("PC1 (",pcVAR[1],"% of varience)",sep=""),

y=paste("PC2 (",pcVAR[2],"% of varience)",sep=""))
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3.2 Projecting prcomp objects

# data to project into PCs from RNAseq6 l3c3t expression data

data(p.ESepiGen4c1l)

library(projectR)

PCA2ESepi <- projectR(data = p.ESepiGen4c1l$mRNA.Seq,loadings=pc.RNAseq6l3c3t,

full=TRUE, dataNames=map.ESepiGen4c1l[["GeneSymbols"]])

## [1] "93 row names matched between data and loadings"

## [1] "Updated dimension of data: 93 9"

pd.ESepiGen4c1l<-data.frame(Condition=sapply(colnames(p.ESepiGen4c1l$mRNA.Seq),

function(x) unlist(strsplit(x,'_'))[1]),stringsAsFactors=FALSE)

pd.ESepiGen4c1l$color<-c(rep("red",2),rep("green",3),rep("blue",2),rep("black",2))

names(pd.ESepiGen4c1l$color)<-pd.ESepiGen4c1l$Cond

dPCA2ESepi<- data.frame(cbind(t(PCA2ESepi[[1]]),pd.ESepiGen4c1l))

#plot pca

library(ggplot2)

setEpiCOL <- scale_colour_manual(values = c("red","green","blue","black"),

guide = guide_legend(title="Lineage"))

pPC2ESepiGen4c1l <- ggplot(dPCA2ESepi, aes(x=PC1, y=PC2, colour=Condition)) +

geom_point(size=5) + setEpiCOL +

theme(legend.position=c(0,0), legend.justification=c(0,0),

panel.background = element_rect(fill = "white"),

legend.direction = "horizontal",

plot.title = element_text(vjust = 0,hjust=0,face="bold")) +

labs(title = "Encode RNAseq in target PC1 & PC2",

x=paste("Projected PC1 (",round(PCA2ESepi[[2]][1],2),"% of varience)",sep=""),

y=paste("Projected PC2 (",round(PCA2ESepi[[2]][2],2),"% of varience)",sep=""))
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4 NMF projection

NMF decomposes a data matrix of D with N genes as rows and M samples as columns, into
two matrices, as D AP . The pattern matrix P has rows associated with BPs in samples and
the amplitude matrix A has columns indicating the relative association of a given gene, where
the total number of BPs (k) is an input parameter. CoGAPS and GWCoGAPS seek a pattern
matrix (P) and the corresponding distribution matrix of weights (A) whose product forms a
mock data matrix (M) that represents the gene-wise data D within noise limits (ε). That is,

D = M + ε = AP + ε. 1

The number of rows in P (columns in A) defines the number of biological patterns (k) that
CoGAPS/GWCoGAPS will infer from the number of nonorthogonal basis vectors required
to span the data space. As in the Bayesian Decomposition algorithm Wang, Kossenkov,
and Ochs (2006), the matrices A and P in CoGAPS are assumed to have the atomic prior
described in Sibisi and Skilling (1997). In the CoGAPS/GWCoGAPS implementation, αA

and αP are corresponding parameters for the expected number of atoms which map to each
matrix element in A and P, respectively. The corresponding matrices A and P are found by
MCMC sampling.

Projection of CoGAPS/GWCoGAPS patterns is implemented by solving the factorization
in 1 for the new data matrix where A is the fixed nonorthogonal basis vectors comprising
the average of the posterior mean for the CoGAPS/GWCoGAPS simulations performed on
the original data. The patterns P in the new data associated with this amplitude matrix is
estimated using the least-squares fit to the new data implemented with the lmFit function in
the limma package (cite Limma). The projectR function has S4 method for class Linear

Embedding Matrix, LME.

library(projectR)

projectR(data, loadings,dataNames = NULL, loadingsNames = NULL,

NP = NA, full = FALSE)

4.0.1 Input Arguments

The inputs that must be set each time are only the data and patterns, with all other inputs
having default values. However, inconguities between gene names–rownames of the loadings
object and either rownames of the data object will throw errors and, subsequently, should be
checked before running.

The arguments are as follows:

data a target dataset to be projected into the pattern space

loadings a CogapsResult object

dataNames rownames (eg. gene names) of the target dataset, if different from existing
rownames of data

loadingsNames loadingsNames rownames (eg. gene names) of the loadings to be matched
with dataNames

NP vector of integers indicating which columns of loadings object to use. The default of NP
= NA will use entire matrix.
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full logical indicating whether to return the full model solution. By default only the new
pattern object is returned.

4.0.2 Output

The basic output of the base projectR function, i.e. full=FALSE, returns projectionPatterns
representing relative weights for the samples from the new data in this previously defined
feature space, or set of feature spaces. The full output of the base projectR function, i.e.
full=TRUE, returns projectionFit, a list containing projectionPatterns and Projection.
The Projection object contains additional information from the proceedure used to obtain
the projectionPatterns. For the the the base projectR function, Projection is the full lmFit
model from the package limma.

4.1 Obtaining CoGAPS patterns to project.

# get data

library(projectR)

AP <- get(data("AP.RNAseq6l3c3t")) #CoGAPS run data

AP <- AP$Amean

# heatmap of gene weights for CoGAPs patterns

library(gplots)

##

## Attaching package: 'gplots'

## The following object is masked from 'package:stats':

##

## lowess

pNMF<-heatmap.2(as.matrix(AP),col=bluered, trace='none',

distfun=function(c) as.dist(1-cor(t(c))) ,

cexCol=1,cexRow=.5,scale = "row",

hclustfun=function(x) hclust(x, method="average")

)
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4.2 Projecting CoGAPS objects

# data to project into PCs from RNAseq6l3c3t expression data

library(projectR)

data('p.ESepiGen4c1l4')

## Warning in data("p.ESepiGen4c1l4"): data set 'p.ESepiGen4c1l4' not found

data('p.RNAseq6l3c3t')

NMF2ESepi <- projectR(p.ESepiGen4c1l$mRNA.Seq,loadings=AP,full=TRUE,

dataNames=map.ESepiGen4c1l[["GeneSymbols"]])

## [1] "93 row names matched between data and loadings"

## [1] "Updated dimension of data: 93 9"

dNMF2ESepi<- data.frame(cbind(t(NMF2ESepi),pd.ESepiGen4c1l))

#plot pca

library(ggplot2)

setEpiCOL <- scale_colour_manual(values = c("red","green","blue","black"),

guide = guide_legend(title="Lineage"))

pNMF2ESepiGen4c1l <- ggplot(dNMF2ESepi, aes(x=X1, y=X2, colour=Condition)) +

geom_point(size=5) + setEpiCOL +

theme(legend.position=c(0,0), legend.justification=c(0,0),

panel.background = element_rect(fill = "white"),

legend.direction = "horizontal",

plot.title = element_text(vjust = 0,hjust=0,face="bold"))

labs(title = "Encode RNAseq in target PC1 & PC2",

x=paste("Projected PC1 (",round(PCA2ESepi[[2]][1],2),"% of varience)",sep=""),

y=paste("Projected PC2 (",round(PCA2ESepi[[2]][2],2),"% of varience)",sep=""))

## $x

## [1] "Projected PC1 (18.36% of varience)"

##

## $y

## [1] "Projected PC2 (17.15% of varience)"

##

## $title

## [1] "Encode RNAseq in target PC1 & PC2"

##

## attr(,"class")

## [1] "labels"

5 Clustering projection

As cannonical projection is not defined for clustering objects, the projectR package offers two
transfer learning inspired methods to achieve the “projection” of clustering objects. These
methods are defined by the function used to quantify and transfer the relationships which
define each cluster in the original data set to the new dataset. Briefly, cluster2pattern uses
the corelation of each genes expression to the mean of each cluster to define continuous
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weights. These weights are output as a pclust object which can serve as input to projectR.
Alternatively, the intersectoR function can be used to test for significant overlap between
two clustering objects. Both cluster2pattern and intersectoR methods are coded for a
generic list structure with additional S4 class methods for kmeans and hclust objects. Further
details and examples are provided in the followin respecitive sections.

5.1 cluster2pattern

cluster2pattern uses the corelation of each genes expression to the mean of each cluster to
define continuous weights.

library(projectR)

cluster2pattern(clusters = NA, NP = NA, Data = NA)

5.1.1 Input Arguments

The inputs that must be set each time are the clusters and data.

The arguments are as follows:

clusters a clustering object

NP either the number of clusters desired or the subset of clusters to use

data data used to make clusters object

5.1.2 Output

The output of the cluster2pattern function is a pclust class object; specifically, a matrix of
genes (rows) by clusters (columns). A gene’s value outside of its assigned cluster is zero. For
the cluster containing a given gene, the gene’s value is the corelation of the gene’s expression
to the mean of that cluster.

5.2 intersectoR

intersectoR function can be used to test for significant overlap between two clustering objects.
The base function finds and tests the intersecting values of two sets of lists, presumably the
genes associated with patterns in two different datasets. S4 class methods for hclust and
kmeans objects are also available.

library(projectR)

intersectoR(pSet1 = NA, pSet2 = NA, pval = 0.05, full = FALSE, k = NULL)

5.2.1 Input Arguments

The inputs that must be set each time are the clusters and data.

The arguments are as follows:

9
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pSet1 a list for a set of patterns where each entry is a set of genes associated with a single
pattern

pSet2 a list for a second set of patterns where each entry is a set of genes associated with a
single pattern

pval the maximum p-value considered significant

full logical indicating whether to return full data frame of signigicantly overlapping sets.
Default is false will return summary matrix.

k numeric giving cut height for hclust objects, if vector arguments will be applied to pSet1
and pSet2 in that order

5.2.2 Output

The output of the intersectoR function is a summary matrix showing the sets with stastically
significant overlap under the specified p-val threshold based on a hypergeometric test. If
full==TRUE the full data frame of signigicantly overlapping sets will also be returned.

6 Correlation based projection

Correlation based projection requires a matrix of gene-wise correlation values to serve as the
Pattern input to the projectR function. This matrix can be user-generated or the result of
the correlateR function included in the projectR package. User-generated matrixes with
each row corresponding to an individual gene can be input to the generic projectR function.
The correlateR function allows users to create a weight matrix for projection with values
quantifying the within dataset correlation of each genes expression to the expression pattern
of a particular gene or set of genes as follows.

6.1 correlateR

library(projectR)

correlateR(genes = NA, dat = NA, threshtype = "R", threshold = 0.7, absR = FALSE, ...)

6.1.1 Input Arguments

The inputs that must be set each time are only the genes and data, with all other inputs
having default values.

The arguments are as follows:

genes gene or character vector of genes for reference expression pattern dat

data matrix or data frame with genes to be used for to calculate correlation

threshtype Default "R" indicates thresholding by R value or equivalent. Alternatively, "N"
indicates a numerical cut off.

threshold numeric indicating value at which to make threshold
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absR logical indicating where to include both positive and negatively correlated genes

... addtion imputes to the cor function

6.1.2 Output

The output of the correlateR function is a correlateR class object. Specifically, a matrix of
correlation values for those genes whose expression pattern pattern in the dataset is correlated
(and anti-correlated if absR=TRUE) above the value given in as the threshold arguement.
As this information may be useful in its own right, it is recommended that users inspect the
correlateR object before using it as input to the projectR function.

6.2 Obtaining and visualizing correlateR objects.

# data to

library(projectR)

data("p.RNAseq6l3c3t")

# get genes correlated to T

cor2T<-correlateR(genes="T", dat=p.RNAseq6l3c3t, threshtype="N", threshold=10, absR=TRUE)

cor2T <- cor2T@corM

### heatmap of genes more correlated to T

indx<-unlist(sapply(cor2T,rownames))

indx <- as.vector(indx)

colnames(p.RNAseq6l3c3t)<-pd.RNAseq6l3c3t$sampleX

library(reshape2)

pm.RNAseq6l3c3t<-melt(cbind(p.RNAseq6l3c3t[indx,],indx))

## Using indx as id variables

library(gplots)

library(ggplot2)

library(viridis)

## Loading required package: viridisLite

pCorT<-ggplot(pm.RNAseq6l3c3t, aes(variable, indx, fill = value)) +

geom_tile(colour="gray20", size=1.5, stat="identity") +

scale_fill_viridis(option="B") +

xlab("") + ylab("") +

scale_y_discrete(limits=indx) +

ggtitle("Ten genes most highly pos & neg correlated with T") +

theme(

panel.background = element_rect(fill="gray20"),

panel.border = element_rect(fill=NA,color="gray20", size=0.5, linetype="solid"),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

axis.line = element_blank(),

axis.ticks = element_blank(),

axis.text = element_text(size=rel(1),hjust=1),

axis.text.x = element_text(angle = 90,vjust=.5),

legend.text = element_text(color="white", size=rel(1)),
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legend.background = element_rect(fill="gray20"),

legend.position = "bottom",

legend.title=element_blank()

)
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6.3 Projecting correlateR objects.

# data to project into from RNAseq6l3c3t expression data

data(p.ESepiGen4c1l)

library(projectR)

cor2ESepi <- projectR(p.ESepiGen4c1l$mRNA.Seq,loadings=cor2T[[1]],full=FALSE,

dataNames=map.ESepiGen4c1l$GeneSymbols)

## [1] "9 row names matched between data and loadings"

## [1] "Updated dimension of data: 9 9"
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