
matter : Supplementary 2 - 3D mass spec-
trometry imaging case study

Kylie A. Bemis

May 3, 2019

Contents

1 Introduction . 1

2 Analyzing large 3D MSI experiments with Cardinal and matter 1

3 Comparisons with alternative approaches 3

3.1 Using bigmemory . 3

3.2 Using ff . 5

3.3 Evaluating performance between approaches 6

4 An R script for comparing performance 7

5 Session info . 10

1 Introduction

The first half of this vignette demonstrates the usefulness of matter for working with large
mass spectrometry imaging (MSI) experiments in Cardinal. Cardinal is an R package for
importing, pre-processing, visualization, and statistical analysis of mass spectrometry imaging
experiments. Cardinal version ≥ 1.8 supports using matter as a backend for larger-than-
memory datasets. More information is available at www.cardinalmsi.org.
The second half of this vignette presents an in-depth comparison in the performance between
matter, bigmemory, and ff on real experimental datasets that are larger than memory.

2 Analyzing large 3D MSI experiments with Cardinal
and matter

This example will use one of the benchmark 3D MSI experiments from Oetjen et al. [1]. We
will use the 3D microbial timecourse experiment, which is comprised of interacting microbes
at 3 time points, with a total of 17,672 pixels and 40,299 features. The data is stored in

www.cardinalmsi.org

matter : Supplementary 2 - 3D mass spectrometry imaging case study

imzML format [2]. The ".imzML" XML file with experimental metadata is 30.5 MB, and the
".ibd" binary file with the m/z values and spectral intensities is 2.85 GB. This is one of the
smaller datasets, making it a good place to begin.
Due to the various offsets in imzML ibd files, they cannot be attached as simply as bigmemory
or ff files. These packages have strict requirements on the format of their data, for maximum
computational effiency. matter takes a different approach with more flexibility, which allows
use of imzML’s domain-specific binary file format directly, and with minimal memory footprint,
at the cost potentially slower computational performance in some situations.
> library(matter)

> library(Cardinal)

> path <- "~/Documents/Datasets/3D-MSI/3D_Timecourse/"

> file <- "Microbe_Interaction_3D_Timecourse_LP.imzML"

We load the dataset in Cardinal with the readMSIData function and the argument attach.only=TRUE.
In Cardinal version ≥ 1.8, this automatically uses matter.
> msi <- readMSIData(paste0(path, file), attach.only=TRUE)

The data is attached as a matter_mat matrix. The matrix metadata takes up approximately
14.9 KB in memory, and points to 2.8 GB on disk.
The dataset was stored so that the first time point t = 4 corresponds to z = 1, 2, 3, 4, 5, 6,
the second time point t = 8 corresponds to z = 7, 8, 9, 10, 11, 12, and the third time point
t = 11 corresponds to z = 13, 14, 15, 16, 17, 18. We will reparamaterize the coordinates
below to make it easier to work with the dataset. We also remove duplicated coordinates
caused by converting the z-dimension to sequential integers.
> msi <- msi[,!duplicated(coord(msi))]

> msi$sample <- factor(sapply(msi$z, function(z) {

+ if (z %in% 1:6) {

+ 1

+ } else if (z %in% 7:12) {

+ 2

+ } else if (z %in% 13:18) {

+ 3

+ }

+ }), labels=c("t = 4", "t = 8", "t = 11"))

> msi$z <- sapply(msi$z, function(z) {

+ if (z %in% 1:6) {

+ z

+ } else if (z %in% 7:12) {

+ z-6

+ } else if (z %in% 13:18) {

+ z-12

+ }

+ })

> msi$x <- mapply(function(x, t) {

+ switch(as.integer(t),

+ x-30,

+ x-15,

+ x)

+ }, msix, msisample)

2

matter : Supplementary 2 - 3D mass spectrometry imaging case study

> varMetadata(msi)[c("x","y","z","sample"),"labelType"] <- "dim"

> protocolData(msi) <- AnnotatedDataFrame(

+ data=data.frame(row.names=sampleNames(msi)))

> msi <- regeneratePositions(msi)

> validObject(msi)

We can plot 3D molecular ion images using the image3D method.
> image3D(msi, ~ x * z * y, mz=262, theta=-55, contrast="suppress", layout=c(3,1))

Now we perform principal components analysis using the PCA method of Cardinal.
> pca <- PCA(msi, ncomp=2, method="irlba", center=TRUE)

> pData(msi)[,c("PC1","PC2")] <- pca$scores[["ncomp = 2"]]

> fData(msi)[,c("PC1","PC2")] <- pca$loadings[["ncomp = 2"]]

We plot the first three principal components.
> image3D(msi, PC1 ~ x * z * y, theta=-55, col.regions=risk.colors(100), layout=c(3,1))

> image3D(msi, PC2 ~ x * z * y, theta=-55, col.regions=risk.colors(100), layout=c(3,1))

x

z
y

m/z = 262.01
t = 4

x

z

y

m/z = 262.01
t = 8

x

z

y

m/z = 262.01
t = 11

(a) m/z 262

x

z

y

PC1
t = 4

x

z

y

PC1
t = 8

x

z

y

PC1
t = 11

(b) PC1 scores

x

z

y

PC2
t = 4

x

z

y

PC2
t = 8

x

z

y

PC2
t = 11

(c) PC2 scores

Figure 1: Plotting an ion image and the first 2 principal components for the 3D microbial
time course experiment

3 Comparisons with alternative approaches

We will now illustrate the steps necessary for performing a principal components analysis
using similar packages bigmemory or ff, and compare their performance with matter ’s.

3.1 Using bigmemory

First we load bigmemory and create a blank filebacked.big.matrix. We will copy the data
to this new matrix.
We must use matter to read the data and convert it to a filebacked.big.matrix, because
the mass spectra are stored in a binary file incompatible with bigmemory.
Note that the original data elements are 32-bit floats:

3

matter : Supplementary 2 - 3D mass spectrometry imaging case study

> head(atomdata(iData(msi)))

However, if we want to use bigalgebra for matrix multiplication, we must change the data
type from a 32-bit float to a 64-bit double. While bigmemory provides efficient matrix algebra
routines in the bigalgebra package, they do not work with 32-bit floats; only 64-bit doubles are
supported. (Note that bigmemory itself does support 32-bit float matrices; only bigalgebra’s
native routines don’t.)
> library(bigmemory)

> library(bigalgebra)

> backingfile <- paste0(expname, ".bin")

> backingpath <- "~/Documents/Temporary/"

> descriptorfile <- paste0(expname, ".desc")

> msi.bm <- filebacked.big.matrix(nrow=ncol(msi), ncol=nrow(msi),

+ backingfile=backingfile,

+ backingpath=backingpath,

+ descriptorfile=descriptorfile,

+ type="double")

Furthermore, we must transpose the matrix while converting it. This is because bioinformatics
data is traditionally stored and manipulated using an P x N matrix, while most statistical
functions in R expect a N x P matrix (where N is the number of samples and P is the number
of features). bigmemory does not currently support virtually transposing a matrix, so it must
be transposed now in order to perform PCA later.
> for (i in seq_len(ncol(iData(msi))))

+ msi.bm[i,] <- iData(msi)[,i]

Lastly, bigmemory does not support virtually scaling and centering rows or columns of a
matrix. PCA should typically be performed on a centered data matrix. Although bigmemory
supports arithmetic and algebra for big.matrix objects through the bigalgebra package, a
new big.matrix with the transformed data is created as output.
When the file must already double in size (conversion from float to double) to accomodate
matrix algebra, duplicating the matrix again simply to scale it seems an unacceptable waste
of storage space.
Therefore, we implement implicit centering of the data matrix in a custom matrix multipli-
cation function which can be passed to the irlba function.
> ct.mult.bm <- function(A, B, center = ct) {

+ if (is.vector(A)) {

+ A <- t(A)

+ cbind((A %*% B)[]) - (sum(A) * ct)

+ } else if (is.vector(B)) {

+ B <- as.matrix(B)

+ cbind((A %*% B)[]) - sum(B * ct)

+ }

+ }

Lastly, we calculate the mean of each column, and perform PCA using singular value decom-
position via irlba with the custom multiplication function.

4

matter : Supplementary 2 - 3D mass spectrometry imaging case study

> library(biganalytics)

> library(irlba)

> ct <- apply(msi.bm, 2, mean)

> pca.out <- irlba(msi.bm, nu=0, nv=2, mult=ct.mult.bm)

> fData(msi)[,c("PC1","PC2")] <- pca.out$v

3.2 Using ff

We must again convert the dataset to a format compatible with ff. However, ff supports
virtually transposing matrices, so we can keep the same virtual data layout as with matter.
While ff presents its own problems with matrix multiplication, they do not extend to the data
type of the data elements, so we can keep the data as 32-bit floats, saving storage space as
compared to bigmemory.
> library(ff)

> msi.ff <- ff(dim=c(nrow(msi), ncol(msi)),

+ filename=paste0(backingpath, backingfile),

+ vmode="single")

> for (i in seq_len(ncol(iData(msi))))

+ msi.ff[,i] <- iData(msi)[,i]

> msi.ff <- vt(msi.ff)

However, the main ff package offers little in terms of arithmetic or algebraic operations that
can be performed on ff objects. The ffbase package supplements and implements much
of the arithmetic functionality missing from ff. However, it also creates brand new on-disk
data files as the output rather than supporting virtual scaling and centering of matrices.
Therefore, we again perform implicit centering during matrix multiplication using a custom
matrix multiplication function.
Unfortunately, ffbase does not implement matrix multiplication for ff matrices. Fortunately,
the package bootSVD provides a function that performs matrix multiplication of ff objects.
It is also worth noting that ff, ffbase, and bootSVD are each maintained by different devel-
opers.
> library(ffbase)

> library(bootSVD)

> ct.mult.ff <- function(A, B, center = ct) {

+ if (is.vector(A)) {

+ A <- t(A)

+ cbind(ffmatrixmult(A, B)[]) - (sum(A) * ct)

+ } else if (is.vector(B)) {

+ B <- as.matrix(B)

+ cbind(ffmatrixmult(A, B)[]) - sum(B * ct)

+ }

+ }

Now we can calculate the mean of each column, and perform PCA using singular value
decomposition via irlba with the custom multiplication function.

5

matter : Supplementary 2 - 3D mass spectrometry imaging case study

> ct <- as.vector(ffapply(X=msi.ff, MARGIN=2, AFUN=mean, RETURN=TRUE)[])

> pca.out <- irlba(msi.ff, nu=0, nv=2, mult=ct.mult.ff)

> fData(msi)[,c("PC1","PC2")] <- pca.out$v

3.3 Evaluating performance between approaches

Principal components analysis
Dataset Size Method Mem. used Mem. overhead Time
3D Microbial Time Course 2.9 GB matter 228 MB 50 MB 13 min, 6 sec

bigmemory 330 MB 141 MB 53 sec
ff 278 MB 85 MB 19 min, 48 sec

3D Oral Squamous Cell Carcinoma 25.4 GB matter 977 MB 668 MB 2 hr, 7 min, 9 sec
bigmemory 408 MB 266 MB 2 hr, 28 min, 2 sec
ff – – –

3D Mouse Pancreas 26.4 GB matter 628 MB 370 MB 2 hr, 12 min, 46 sec
bigmemory 303 MB 164 MB 2 hr, 52 min, 10 sec
ff – – –

3D Mouse Kidney 41.8 GB matter 1.5 GB 1074 MB 3 hr, 22 min, 23 sec
bigmemory 617 MB 431 MB 4 hr, 29 min, 23 sec
ff – – –

Table 1: Performance comparison of matter, bigmemory, and ff in calculating the first two
principal components of real datasets
Memory overhead is the maximum memory used during the execution minus the memory in use upon com-
pletion. Some cells are missing because the analysis could not be performed with ff.

Table 1 shows the amount of time and memory matter, bigmemory, and ff used when
performing PCA on each of the 3D MSI datasets.
For three of the datasets, the number of the elements in the dataset exceeded that maximum
size of an ff object. The total length of an ff object is stored as a 32-bit integer, so it can
at most reference 231 − 1 data elements. Conversely, matter and bigmemory store the total
length of an object as a 64-bit double, allowing up to 252 data elements.
While bigmemory was dramatically faster than either matter or ff for the smallest 2.8 GB
dataset, for the larger datasets that actually exceeded available memory, matter was faster.
It should be noted that the memory consumption reported for bigmemory is likely erroneous.
The analyses were timed using the profmem function of matter, which wraps R’s basic garbage
collector call. The memory use will therefore be accurate for objects that use R’s garbage
collector, but inaccurate for objects that do not. The bigmemory package uses mmap on Unix
systems, which is not controlled by R. In fact, system memory consumption under bigmemory
was dramatically more than matter, but the authors were not able to measure this from R.
For datasets which exceed available computer memory, matter appears to outperform both
bigmemory and ff.
Additionally, working with these datasets in bigmemory and ff either required additional steps
that were either not required with matter, or, for some datasets, were simply impossible.

6

matter : Supplementary 2 - 3D mass spectrometry imaging case study

File conversion
Dataset Size Method Mem. used Mem. overhead Time
3D Microbial Time Course 2.9 GB bigmemory 235 MB 46 MB 7 min, 12 sec

ff 224 MB 32 MB 1 min, 16 sec
3D Oral Squamous Cell Carcinoma 25.4 GB bigmemory 1.4 GB 954 MB 51 min, 3 sec

ff – – –
3D Mouse Pancreas 26.4 GB bigmemory 630 MB 256 MB 1 hr, 31 min, 30 sec

ff – – –
3D Mouse Kidney 41.8 GB bigmemory 1.5 GB 781 MB 1 hr, 47 min, 58 sec

ff – – –

Table 2: Time and memory used converting the dataset to a file compatible with bigmem-
ory and/or ff
Memory overhead is the maximum memory used during the execution minus the memory in use upon com-
pletion. Some cells are missing because the conversion could not be performed for ff.

Table 2 shows the amount of time and memory it took to convert the data to files compatible
with bigmemory and ff. For ff, this was only possible for one dataset. The time for file
conversion (not included in the timing from Table 1) represents a substantial proportion of
the total time it would take to analyze these datasets. In addition, conversion to bigmemory
required doubling the file size if matrix multiplication was to be performed using bigalgebra.
In summary, matter often allows working with datasets without file conversion, which is
often preferred for the sake of reproducibility, and typically requires less effort even after file
conversion.

4 An R script for comparing performance

> library(matter)

> datapath <- "~/Documents/Datasets/3D-MSI/"

> require(Cardinal)

> # file <- "3D_Timecourse/Microbe_Interaction_3D_Timecourse_LP.imzML"

> # expname <- "3D_Timecourse"

>

> # file <- "3D_OSCC/3D_OSCC.imzML"

> # expname <- "3D_OSCC"

>

> # file <- "3D_Mouse_Pancreas/3D_Mouse_Pancreas.imzML"

> # expname <- "3D_Mouse_Pancreas"

>

> file <- "3DMouseKidney/3DMouseKidney.imzML"

> expname <- "3DMouseKidney"

> msi <- readMSIData(paste0(datapath, file), attach.only=TRUE)

> msi.prof[[expname]][["matter"]] <- profmem({

+

+ pca.out <- PCA(msi, ncomp=2, method="irlba", center=TRUE)

+ pData(msi)[,c("PC1","PC2")] <- pca.out$scores[[1]]

7

matter : Supplementary 2 - 3D mass spectrometry imaging case study

+ fData(msi)[,c("PC1","PC2")] <- pca.out$loadings[[1]]

+

+ })

> require(bigmemory)

> require(bigalgebra)

> backingfile <- paste0(expname, ".bin")

> backingpath <- "~/Documents/Temporary/"

> descriptorfile <- paste0(expname, ".desc")

> msi.bm <- filebacked.big.matrix(nrow=ncol(msi), ncol=nrow(msi),

+ backingfile=backingfile,

+ backingpath=backingpath,

+ descriptorfile=descriptorfile,

+ type="double")

> msi.prof[[expname]][["convert.bigmemory"]] <- profmem({

+

+ for (i in seq_len(ncol(iData(msi))))

+ msi.bm[i,] <- iData(msi)[,i]

+

+ })

> ct.mult.bm <- function(A, B, center = ct) {

+ if (is.vector(A)) {

+ A <- t(A)

+ cbind((A %*% B)[]) - (sum(A) * ct)

+ } else if (is.vector(B)) {

+ B <- as.matrix(B)

+ cbind((A %*% B)[]) - sum(B * ct)

+ }

+ }

> require(biganalytics)

> require(irlba)

> msi.prof[[expname]][["bigmemory"]] <- profmem({

+

+ ct <- apply(msi.bm, 2, mean)

+

+ pca.out <- irlba(msi.bm, nu=0, nv=2, mult=ct.mult.bm)

+

+ })

> file.remove(paste0(backingpath, backingfile))

> require(ff)

> library(ffbase)

> require(bootSVD)

> msi.ff <- ff(dim=c(nrow(msi), ncol(msi)),

+ filename=paste0(backingpath, backingfile),

+ vmode="single")

> msi.prof[[expname]][["convert.ff"]] <- profmem({

+

8

matter : Supplementary 2 - 3D mass spectrometry imaging case study

+ for (i in seq_len(ncol(iData(msi))))

+ msi.ff[,i] <- iData(msi)[,i]

+

+ })

> msi.ff <- vt(msi.ff)

> ct.mult.ff <- function(A, B, center = ct) {

+ if (is.vector(A)) {

+ A <- t(A)

+ cbind(ffmatrixmult(A, B)[]) - (sum(A) * ct)

+ } else if (is.vector(B)) {

+ B <- as.matrix(B)

+ cbind(ffmatrixmult(A, B)[]) - sum(B * ct)

+ }

+ }

> msi.prof[[expname]][["ff"]] <- profmem({

+

+ ct <- as.vector(ffapply(X=msi.ff, MARGIN=2, AFUN=mean, RETURN=TRUE)[])

+

+ pca.out <- irlba(msi.ff, nu=0, nv=2, mult=ct.mult.ff)

+

+ })

> file.remove(paste0(backingpath, backingfile))

> print(msi.prof)

$`3D_Timecourse`

$`3D_Timecourse`$matter

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

175.000 178.100 228.200 50.100 786.791

$`3D_Timecourse`$convert.bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

185.000 189.100 235.800 46.700 432.691

$`3D_Timecourse`$bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

189.900 189.700 330.700 141.000 53.211

$`3D_Timecourse`$convert.ff

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

190.900 191.300 224.100 32.800 76.648

$`3D_Timecourse`$ff

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

192.700 193.500 278.500 85.000 1188.808

$`3D_OSCC`

$`3D_OSCC`$matter

9

matter : Supplementary 2 - 3D mass spectrometry imaging case study

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

275.500 309.500 977.500 668.000 7629.141

$`3D_OSCC`$convert.bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

280.000 465.700 1420.000 954.300 3063.029

$`3D_OSCC`$bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

130.100 142.100 408.500 266.400 9902.989

$`3DMouseKidney`

$`3DMouseKidney`$matter

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

346.50 401.80 1476.30 1074.50 12143.69

$`3DMouseKidney`$convert.bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

407.900 713.300 1494.300 781.000 6478.967

$`3DMouseKidney`$bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

174.60 186.30 617.50 431.20 16163.81

$`3D_Mouse_Pancreas`

$`3D_Mouse_Pancreas`$matter

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

237.100 258.100 628.700 370.600 7966.396

$`3D_Mouse_Pancreas`$convert.bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

262.600 374.100 630.800 256.700 5490.522

$`3D_Mouse_Pancreas`$bigmemory

start (MB) finish (MB) max used (MB) overhead (MB) time (sec)

130.10 139.60 303.90 164.30 10330.53

5 Session info

• R version 3.6.0 (2019-04-26), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Running under: Windows Server 2012 R2 x64 (build 9600)

• Matrix products: default

10

matter : Supplementary 2 - 3D mass spectrometry imaging case study

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: BiocParallel 1.18.0, DBI 1.0.0, biglm 0.9-1, matter 1.10.0
• Loaded via a namespace (and not attached): BiocGenerics 0.30.0,

BiocManager 1.30.4, BiocStyle 2.12.0, Matrix 1.2-17, Rcpp 1.0.1, compiler 3.6.0,
digest 0.6.18, evaluate 0.13, grid 3.6.0, htmltools 0.3.6, irlba 2.3.3, knitr 1.22,
lattice 0.20-38, parallel 3.6.0, rmarkdown 1.12, tools 3.6.0, xfun 0.6, yaml 2.2.0

References

[1] Janina Oetjen, Kirill Veselkov, Jeramie Watrous, James S McKenzie, Michael Becker,
Lena Hauberg-Lotte, Jan Hendrik Kobarg, Nicole Strittmatter, Anna K Mróz, Franziska
Hoffmann, Dennis Trede, Andrew Palmer, Stefan Schiffler, Klaus Steinhorst, Michaela
Aichler, Robert Goldin, Orlando Guntinas-Lichius, Ferdinand von Eggeling, Herbert
Thiele, Kathrin Maedler, Axel Walch, Peter Maass, Pieter C Dorrestein, Zoltan Takats,
and Theodore Alexandrov. Benchmark datasets for 3D MALDI- and DESI-imaging mass
spectrometry. GigaScience, 4(1):2105–8, May 2015.

[2] T. Schramm, A. Hester, I. Klinkert, J. P. Both, R. M. Heeren, A. Brunelle,
O. Laprévote, N. Desbenoit, F. Robbe M, M. Stoeckli, B. Spengler, and A. Römpp.
imzML – A common data format for the flexible exchange and processing of mass
spectrometry imaging data. Journal of Proteomics, 75:5106, 2012.

11

	1 Introduction
	2 Analyzing large 3D MSI experiments with Cardinal and matter
	3 Comparisons with alternative approaches
	3.1 Using bigmemory
	3.2 Using ff
	3.3 Evaluating performance between approaches

	4 An R script for comparing performance
	5 Session info

