
Using dualKS

Eric J. Kort and Yarong Yang

May 2, 2019

1 Overview

The Kolmogorov Smirnov rank-sum statistic measures how biased the ranks
of a subset of items are among the ranks of the entire set. In otherwords, do
the items tend to occur early or late in the ordered list, or are they randomly
dispersed in the list?

This is an intuitive way to think about gene set enrichment. Indeed,
it is the basis for Gene Set Enrichment Analysis described by Subramanian
et al. (2005). This package takes this approach to the problem of multi-class
classification, wherein samples of interest are assigned to one of 2 or more
classes based on their gene expression. For example, to which of the several
sub-types of renal cell carcinoma does a new kidney tumor sample belong?
This methodology is described in detail in our (forthcoming) paper, Kort
et al. (2008).

This package is called “dualKS” because it applies the KS algorithm
in two ways. First, we use the KS approach to perform discriminant analysis
by applying it gene-wise to a training set of known classification to identify
those genes whose expression is most biased (upward, downward, or both) in
each class of interest. For example, say we take gene 1 and sort the samples
by their expression of this gene. Then we ask to what extent each class is
biased in that sorted list. If all samples of, say, class 1 occur first, then this
gene receives a high score for that class and will be included in the final
signature of “upregulated genes” for that class. And so on, for every gene
in the dataset. This process is frequently termed “discriminant analysis”
because it identifies the most discriminating genes.

The second manner in which the KS algorithm is applied is for clas-
sification. Based on the signatures identified in the first step (or via some
other mechanism of the user’s choosing), we apply the algorithm sample-wise
to ask which of these signatures has the strongest bias in new samples of

1

interest in order to assign these samples to one of the classes. In otherwords,
when we sort all the genes expression values for a given sample, how early
(or late) in that list are the genes for a given signature found? This second
step is essentially the same as the algorithm described by Subramanian et
al. with equal weights given to each gene. While we have developed this
package with the task of classification in mind, it can just as readily be
used to identify which biologically relevant gene signatures are enriched in
samples of interest (indeed, classification is simply enrichment analysis with
a class-specific gene signature).

The KS approach has several attractive factors. First, the idea of
identifying which genes exhibit a class-dependant bias in expression and,
conversely, which signatures are most biased in a given sample, is an in-
tuitive way of thinking about discriminant analysis and classification that
most biologists can readily grasp. Second, the resulting gene signatures may
be quite parsimonious–an attractive feature when one is planning on down-
stream validation or implementation of a non-array based assay. Third, the
algorithm can deal with many classes simultaneously. Finally, the algorithm
does not require iteration like random selection algorithms do.

2 An Example

The package includes an illustrative dataset that is a subset of GEO data set
GDS2621. We have taken a small subset of the genes in the original dataset
to make the analysis run quickly, but you will obtain the same results if
you use the entire dataset from the GEO website and the analysis will take
only a few minutes longer. This data set contains one color affymetrix gene
expression data:

> library("dualKS")

> data("dks")

> pData(eset)

class

GSM34379 normal

GSM34383 normal

GSM34385 normal

GSM34388 normal

GSM34391 normal

GSM34393 osteo

GSM34394 osteo

2

GSM34395 osteo

GSM34396 osteo

GSM34397 osteo

GSM34398 rheumatoid

GSM34399 rheumatoid

GSM34400 rheumatoid

GSM34401 rheumatoid

GSM34402 rheumatoid

As you can see, there are five samples each of normal synovial fluid,
synovial fluid from patients with Osteoarthritis, and synovial fluid from
patients with Rheumatoid Arthritis. We will now build a classifier that can
distinguish these diagnoses.

The first step is to rank each gene based on how biased its expression
is in each of the classes. You have the option of scoring genes based on how
upregulated or downregulated they are, or both. For one color data such
as we have in this dataset, genes with low expression exhibit a great deal
of noise in the data. Therefore, we will focus only on those genes that are
upregulated in each class, as specified by the type="up" parameter.

> tr <- dksTrain(eset, class=1, type="up")

The class = 1 instructs the software to look in column 1 of the
phenoData object contained within eset to determine which class each sam-
ple belongs to. Alternatively, you can provide a factor specifying the classes
directly.

Now, we will extract a classifier of 100 genes per class from the
training data. We can subsequently choose classifiers of different sizes (and,
perhaps, select among these classifiers using ROC analysis) by specifiying a
different value for n, without re-running the (more time intensive) dksTrain
function.

> cl <- dksSelectGenes(tr, n=100)

We can then apply this classifier to a test data set. However, in
this case we will just run it against the training set to check for internal
consistency (if we can’t classify the training set from which the classifier is
derived, we are in real trouble!)

> pr <- dksClassify(eset, cl)

> summary(pr, actual=pData(eset)[,1])

3

Dual KS Classification Summary:

Predicted class frequencies:

normal osteo rheumatoid

11 0 4

Concordance rate (predicted==actual): 60 %

> show(pr)

sample predicted class prediction score

1 GSM34379 normal 1024.367

2 GSM34383 normal 1073.083

3 GSM34385 normal 1116.797

4 GSM34388 normal 971.7

5 GSM34391 normal 1159.983

6 GSM34393 normal 592.5

7 GSM34394 normal 671.763

8 GSM34395 normal 610.143

9 GSM34396 normal 624.89

10 GSM34397 normal 604.087

11 GSM34398 normal 604.613

12 GSM34399 rheumatoid 599.083

13 GSM34400 rheumatoid 727.853

14 GSM34401 rheumatoid 606.457

15 GSM34402 rheumatoid 657.28

Note the custom summary and show functions. By specifying the
“actual” classes for the samples when calling summary, the percent corre-
spondence rate is calculated and displayed along with the summary.

As you can see, we didn’t do too well with classification (our con-
cordance rate is only 60%), even though we are only trying to classify our
training set, which should be self-fulfillingly easy. What is the problem? To
gain some insight, let’s look at plots of the data. The prediction object from
dksClassify has its own plot method. The resulting plot allows for easy
visualization of how the samples of a given class compare to the other sam-
ples in terms of KS scores for each signature. To visualize this, a separate
panel is created for each signature. The samples are sorted in decreasing

4

order according to their score on that signature. Then for each sample, its
score for each signature is plotted to allow easy comparison between the sig-
nature scores for each sample. The signatures are color coded to distinguish
one signature score from another. Finally, a color coded bar is plotted below
each sample indicating its predicted and (if provided) actual class for ready
identification of outliers and misclassified samples.

There is a lot of information compactly summarized in these plots,
so let’s consider the example:

> plot(pr, actual=pData(eset)[,1])

samples ordered by:

normal signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

0
20

0
40

0
60

0
80

0
12

00

K
S

 S
C

O
R

E

samples ordered by:

osteo signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

0
20

0
40

0
60

0
80

0
12

00

K
S

 S
C

O
R

E

samples ordered by:

rheumatoid signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

0
20

0
40

0
60

0
80

0
12

00

K
S

 S
C

O
R

E

SIGNATURE KEY:

normal
osteo
rheumatoid

Figure 1: Plot of samples sorted by their score for the indicated class

To begin, examine the first panel of figure 1 corresponding to the
signature for “normal” samples. This panel show the samples sorted accord-
ing to their score for the ’normal’ signature. Not surprisingly, the normal
samples (red bars) are clustered to the left, with the highest scores. As you
move to the right, not only does the red line decrease (because the sam-
ples are sorted by this score), but the lines for the other signatures (blue
line=rheumatoid signature score, green line=osteoarthritis signature score)
begin to increase. For each sample (indicated by the bars along the bottom),
the predicted class is the signature for which that sample’s score is the max-
imum. So where the green line is on top, the prediction is “osteoarthritis”,
and where the red line is on top, the prediction is “normal”.

5

The other two panels work in the same way, but now the samples
have been sorted by decreasing rheumatoid signature score or osteoarthritis
signature score, respectively. This way of plotting the data allows easy
visualization of the degree to which each class is upwardly biased in the list
of samples sorted by the corresponding signature. It also allows the natural
”knee point” or threshold for any given signature to be identified.

This plot demonstrates why our concordance rate is so poor. While
the normal gene expression signature is most upwardly biased in the normal
samples, these genes also have high expression in the other samples (this is
not really too surprising–abnormal cells have a lot of the same work to do as
normal cells, biologically speaking). So in many cases, the most upwardly
biased genes in, say, osteoarthritis are still not as upwardly biased as highly
expressed “normal” genes.

There are three methods to correct this problem. The most simplistic
method is to solve the problem by brute force. Rather than classifying
samples based on maximum raw KS score (as in figure 1), we will classify
based on relative KS score. We will accomplish this by rescaling the scores
for each signature so that they fall between 0 and 1 (by simply subtracting
the minimum score for a given score across all samples and then dividing by
the maximum). This is achieved by supplying the rescale=TRUE option to
dksClassify:

> pr <- dksClassify(eset, cl, rescale=TRUE)

> summary(pr, actual=pData(eset)[,1])

Dual KS Classification Summary:

Predicted class frequencies:

normal osteo rheumatoid

5 5 5

Concordance rate (predicted==actual): 100 %

And we can plot the results as before:

> plot(pr, actual=pData(eset)[,1])

The resulting plot is shown in figure 2. The classification is now inline
with our expectation. A draw back of this approach is that the rescaling

6

samples ordered by:

normal signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K
S

 S
C

O
R

E

samples ordered by:

osteo signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K
S

 S
C

O
R

E

samples ordered by:

rheumatoid signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K
S

 S
C

O
R

E

SIGNATURE KEY:

normal
osteo
rheumatoid

Figure 2: Classification with rescaling.

requires that the dataset being classified contains multiple samples from each
class. Therefore, a single new sample cannot be classified using rescaling.
Conversion to ratio space avoids this problem as discussed in section 4.

Finally, you may want to examine a plot of the running sum of the
KS scores for an individual sample. You can call the function KS directly
to access the running sum for each signature and the plot it. Here is an
example of how that might be accomplished for the first sample in our data
set using our previously defined classifier object (cl):

> sc <- KS(exprs(eset)[,1], cl@genes.up)

> plot(sc$runningSums[,1], type='l', ylab="KS sum", ylim=c(-1200,1200), col="red")

> par(new=TRUE)

> plot(sc$runningSums[,2], type='l', ylab="KS sum", ylim=c(-1200,1200), col="green")

> par(new=TRUE)

> plot(sc$runningSums[,3], type='l', ylab="KS sum", ylim=c(-1200,1200), col="blue")

> legend("topright", col=c("red", "green", "blue"), lwd=2, legend=colnames(sc$runningSums))

As shown in figure 3, it looks like that first sample belongs to the class
“normal”. Note that the maxium value achieved by each line corresponds to
the KS score (not rescaled) on the corresponding signature for sample 1.

The other two methods for addressing the problem in our original
classification require a bit more effort (mostly on the part of the CPU), but

7

0 500 1000 1500 2000

−
10

00
−

50
0

0
50

0
10

00

Index

K
S

 s
um

0 500 1000 1500 2000

−
10

00
−

50
0

0
50

0
10

00

Index

K
S

 s
um

0 500 1000 1500 2000

−
10

00
−

50
0

0
50

0
10

00

Index

K
S

 s
um

normal
osteo
rheumatoid

Figure 3: Plot of sample 1’s running sum of KS statistic for each signature.

are conceptually more satisfying because they use biologically relevant in-
formation encoded in the data. These two methods–weighting by expression
level and converting the data to ratios vs. a relevant reference–are covered
in the next two sections.

3 Discriminant analysis with weights

By default, signatures are defined by this package based on the ranks of
members of each class when sorted on each gene. Those genes for which a
given class has the highest rank when sorting samples by those genes will
be included in the classifier, with no regard to the absolute expression level
of those genes. This is the classic KS statistic.

Very discriminant genes identified in this way may or may not be the
highest expressed genes. For example, a gene with very low expression but
also very low variance may be slightly over-expressed in one subgroup. The
result is that signatures identified in this way have arbitrary ”baseline”values
as we saw in figure 1. Our first solution was to force the range of values
for each signature across samples to be between 0 and 1. An alternative to
this brute force approach is to weight the genes based on some biologically
interesting statistic.

By adding the weights = TRUE option to dksTrain, the genes will

8

be weighted according to the log10 of their mean relative rank in each class.
More specifically the weight for gene i and class j is:

wij = −log10
R̄ij

n

Where R̄ij is the average rank of gene i across all samples of class j
and n is the total number of genes. Therefore, genes with highest absolute
expression in a given class are more likely to be included in the signature
for that class. For example:

> tr <- dksTrain(exprs(eset), class=pData(eset)[,1], type="up", weights=TRUE)

> cl <- dksSelectGenes(tr, n=100)

> pr <- dksClassify(exprs(eset), cl)

> plot(pr, actual=pData(eset)[,1])

The results are plotted in figure 4. As you can see, the range of KS
scores across all samples and classes are now much more consistent, and the
resulting classification is much better.

samples ordered by:

normal signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

12
00

14
00

16
00

18
00

K
S

 S
C

O
R

E

samples ordered by:

osteo signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

12
00

14
00

16
00

18
00

K
S

 S
C

O
R

E

samples ordered by:

rheumatoid signature

| | | | | | | | | | | | | | |ACTUAL:
| | | | | | | | | | | | | | |PREDICTED:

12
00

14
00

16
00

18
00

K
S

 S
C

O
R

E

SIGNATURE KEY:

normal
osteo
rheumatoid

Figure 4: Weighted KS analysis.

Alternatively, you may provide your own weight matrix based on the
metric of your choosing as the argument to weights. This matrix must have
one column for each possible value of class, and one row for each gene in

9

eset. NAs are handled gracefully by discarding any genes for which any
column of the corresponding row of weights is NA. It is important to note
that for type=’down’ or the down component of type=’both’, the weight
matrix will be inverted as 1 - weights. Therefore, if using one of these
methods, the weight matrix should have range 0 - 1.

Calculating the weight matrix is somewhat time consuming. If many
calls to dksTrain are required in the course of some sort of optimization
procedure, the user might want to calculate the weight matrix once. This
can be done as follows:

> wt <- dksWeights(eset, class=1)

Then the resulting weight matrix can be supplied directly to dksTrain
to avoid recalculating it on each call:

> tr <- dksTrain(exprs(eset), class=1, weights=wt)

This is a short cut to speed up validation. However, if some type
of ”leave some out” validation is being performed, the user should carefully
consider the implications of calculating the weight matrix on all samples and
then training/testing on subsets. Nevertheless, this may be useful for initial
validation runs.

The final analytic alternative we will consider is converting the data
to ratios based on some rational reference data.

4 Discriminant analysis with ratios

As mentioned above, one color microarray data does not lend itself well to in-
cluding highly down regulated genes in the classifier, because genes with very
low measured expression levels have very poor signal:noise ratios. (This may
be mitigated somewhat by enforcing some reasonable threshold below which
the data is discarded). Furthermore, as we saw above, basing classifiers on
the raw expression level can lead to problems when genes highly expressed
in one class are also highly expressed in other classes (albeit slightly less so).

Bidirectional discriminant analysis (i.e., including both up and down
regulated genes) can be performed on ratio data where the ”downregulated”
genes are not necessarily of miniscule absolute intensity, but are simply
much smaller relative to the reference. Such ratio data may either arise
in the course of two color microarray experiments, or may be generated
by dividing one color data from samples by the mean expression of some

10

reference samples. By converting to ratios, it is not only easier to include
both up and down regulated genes, but we are now examining not raw
expression level but change in expression level relative to the reference. This
is often what is of greatest biological interest. (Note that very small values
should still be excluded from the data prior to calculating ratios to avoid
artefactually astronomical ratios.)

To illustrate, we will transform our data into ratio data by dividing
the osteoarthritis and rheumatoid arthritis samples by the mean expression
of each gene in the normal samples. First we calculate the mean values for
the normal samples:

> ix.n <- which(pData(eset)[,1] == "normal")

> data <- exprs(eset)

> data.m <- apply(data[,ix.n], 1, mean, na.rm=TRUE)

>

Now we drop the normals from our data set, and calculate the ratios
(expression relative to average normal expression) using the sweep function.

> data <- data[,-ix.n]

> data.r <- sweep(data, 1, data.m, "/")

Finally, we convert to log2 space and perform the discriminant anal-
ysis and classification of our test cases.

> data.r <- log(data.r, 2)

> tr <- dksTrain(data.r, class=pData(eset)[-ix.n,1], type="both")

> cl <- dksSelectGenes(tr, n=100)

> pr <- dksClassify(data.r, cl)

> plot(pr, actual=pData(eset)[-ix.n,1])

And here is the summary information for this classifier:

> summary(pr, actual=pData(eset)[-ix.n,1])

Dual KS Classification Summary:

Predicted class frequencies:

osteo rheumatoid

5 5

11

samples ordered by:

osteo signature

| | | | | | | | | |ACTUAL:
| | | | | | | | | |PREDICTED:

0
50

0
10

00
15

00
20

00

K
S

 S
C

O
R

E

samples ordered by:

rheumatoid signature

| | | | | | | | | |ACTUAL:
| | | | | | | | | |PREDICTED:

0
50

0
10

00
15

00
20

00

K
S

 S
C

O
R

E

SIGNATURE KEY:

osteo
rheumatoid

Figure 5: Bidirectional analysis of ratio data.

Concordance rate (predicted==actual): 100 %

> show(pr)

sample predicted class prediction score

1 GSM34393 osteo 719.427

2 GSM34394 osteo 606.983

3 GSM34395 osteo 840.297

4 GSM34396 osteo 734.7

5 GSM34397 osteo 805.537

6 GSM34398 rheumatoid 1702.713

7 GSM34399 rheumatoid 1668.743

8 GSM34400 rheumatoid 2141.69

9 GSM34401 rheumatoid 1926.283

10 GSM34402 rheumatoid 1997.383

5 Significance testing

Once you have identified which signature has the maximum score in a given
sample, you will likely want to determine if that score is significantly ele-

12

vated. The distribution of KS scores generated by this package tend to follow
a gamma distribution, but the parameters of the distribution vary depend-
ing on the size of the signature and the total number of genes. Therefore,
we take a bootstrapping approach to generate an estimated distribution and
then identify the gamma distribution that best fits the estimate.

To perform the bootstrap, the sample classes are randomly permuted
and then signatures are generated for these bootstrap classes. We take this
approach because it preserves the relationships between genes (as opposed
to generating gene signatures by randomly selecting genes). Each time this
is done, we get k ∗ c bootstrap samples were k is the number of samples and
c is the number of classes. The entire process is repeated until the requested
number of samples is generated.

The function returns a function that is 1-pgamma(x, ...) where
... is the optimized gamma distribution parameters identified by the boot-
strap and fitting procedures. Then you can simply call this function with one
or more KS scores to calculate the p-values. You must provide an Expres-

sionSet (for use in bootstrapping), the class specification for the samples
in that set (which will then be permuted), and the number of of genes in
each signature (n).

> pvalue.f <- dksPerm(eset, 1, type="both", samples=500)

That’s not nearly enough samples to obtain a reasonable estimate
of the gamma distribution (1,000-10,000 is more like it), but it will suffice
for this demonstration. (Generating several thousand samples takes a few
minutes.) Now let’s calculate the estimated p-values for our predicted classes
from before:

> pvalue.f(pr@predictedScore)

GSM34393 GSM34394 GSM34395 GSM34396 GSM34397

0.0903435902 0.1433744655 0.0543483550 0.0847758947 0.0629688382

GSM34398 GSM34399 GSM34400 GSM34401 GSM34402

0.0011930647 0.0013922594 0.0001594478 0.0004296490 0.0003099764

It appears that most of the scores leading to the predicted classes
are unlikely to be the result of random variation. (In reality, small bootstrap
samples lead to consistent underestimation of the p-values in this context.
A run with much larger sample will produce smaller p-values.) When many
classes are examined, appropriate controls for multiple comparisons should
be considered.

13

Note that for the resulting probabilty density function to meaing-
fully describe the probabilty of obtaining observed scores, the parameters
provided to dksPerm must match those used when classifying with dksClas-

sify. Different setting will produce different distributions of scores, so you
must generate a probability density function for each set of parameters and
each training dataset (unless those datasets can be assumed to come from
the same underling distribution).

6 Classification using your own gene signatures.

If you have predefined signatures (established empirically or by some other
methodology), you can still calculate their enrichment in test samples using
dksClassify. That function requires an object of type DKSClassifier.
The package provides a utility function to create this object from your list
of gene ids. Rather then create a separate list of genes for each class, you
simply provide a single list of gene ids and a factor indicating which class
each gene belongs to. Note, however, that you must provide a separate list
for upregulated and downregulated genes—although you may provide only
one or the other if you wish.

As an example, we will create some arbitrary signatures and per-
form classification with them. In the example below, sig.up would be the
meaingful sets of (upregulated) gene ids you have pre-identified, and cls

would be the class to which each gene in your signature belongs.

> cls <- factor(sample(pData(eset)[,1], 300, replace=TRUE))

> sig.up <- sample(rownames(exprs(eset), 300))

> classifier <- dksCustomClass(upgenes=sig.up, upclass=cls)

> pr.cust <- dksClassify(eset, classifier)

If you were to plot this prediction object with actual=pData(eset[,1]))

you would note that the classification is very poor—which is reassuring since
this is a random classifier.

7 Accessing slots for downstream analysis

Since the classes defined in this package are not complex, we have not both-
ered (yet) to write accessors. The reader is referred to the docs for further
details. Suffice it to say here that the most useful slots for the user are likely
to be those of DKSPredicted. For example, we can construct a useful table
for downstream analysis:

14

> results <- data.frame(pr@predictedClass, pr@scoreMatrix)

> results

pr.predictedClass osteo rheumatoid

GSM34393 osteo 719.4266666666667333629 313.6300

GSM34394 osteo 606.9833333333333484916 561.4267

GSM34395 osteo 840.2966666666668515973 555.6333

GSM34396 osteo 734.7000000000002728484 465.8367

GSM34397 osteo 805.5366666666666333185 430.8133

GSM34398 rheumatoid 3.1600000000003771738 1702.7133

GSM34399 rheumatoid 3.1600000000003771738 1668.7433

GSM34400 rheumatoid 2.1066666666670439412 2141.6900

GSM34401 rheumatoid 0.0000000000003774758 1926.2833

GSM34402 rheumatoid 7.3733333333337105486 1997.3833

References

E.J. Kort, Y. Yang, Z. Zhang, B.T. Teh, and N. Ebrahimi. Gene selec-
tion and classification of microarray data by twins kolmogorov-smirnov
analysis. Technical Report, 2008.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert,
M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander,
and J. P. Mesirov. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc Natl Acad
Sci U S A, 102(43):15545–50, 2005.

15

	Overview
	An Example
	Discriminant analysis with weights
	Discriminant analysis with ratios
	Significance testing
	Classification using your own gene signatures.
	Accessing slots for downstream analysis

