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1 Introduction

The R package Cardinal has been created to fill the need for an efficent, open-source tool for
the analysis of imaging data–specifically mass spectrometry imaging data. Cardinal is built
upon data structures which follow Bioconductor (http://www.bioconductor.org/) standards
for data classes in order to provide an additional level of convenience and familiarity to those
who may be used to performing bioinformatic analyses in R.
Analysis in imaging data includes many things, such as visualization, pre-processing, and
multivariate statistical techniques. Both supervised and unsupervised statistical methods
are supported in Cardinal, including image segmentation (clustering), principle components
analysis, and classification techniques such as partial least Squares discriminant analysis.
Figure 1 charts out the workflow for mass spectrometry imaging data analysis.
This is a brief walkthrough of some of the basic functionality of Cardinal. For a more detailed
view of the functionality of a given method, see the R help file.
Additional R packages useful for the analysis of mass spectrometry experiments are MSnbase
[1] andMALDIquant [2], which are both designed for traditional proteomics analyses. MALDIquant
also has limited support for mass spectrometry imaging data.

2



Cardinal: Analytic tools for mass spectrometry imaging

Normalize	  
(required)	  

smoothSignal	  
(op7onal)	  

reduceBaseline	  
(op7onal)	  

peakPick	  

On	  full	  dataset	  

peakAlign	  

peakFilter	  

On	  subset	  

peakAlign	  

peakFilter	  

reduceDimension	  

Analyze	  

reduceDimension	  

Binning	   Resampling	  

Figure 1: Cardinal workflow for pre-processing and analysis
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2 Input/Output

2.1 Input

In order to be analyzed in Cardinal, input data must be in either Analyze 7.5 and imzML
format. These are two of the most common data exchange formats in imaging mass spec-
trometry.

2.1.1 Analyze 7.5

Originally designed for MRI data by the Mayo Clinic, Analyze 7.5 is a common format used
for exchange of mass spectrometry imaging data.
The Analyze format uses a collection of three files with extensions ‘.hdr’, ‘.img’, and ‘.t2m’
to store data. To read datasets stored in the Analyze format, use the readAnalyze function.
All three files must be present in the same folder and have the same name (except for the
file extension) for the data to be read properly.
> name <- "This is the common name of your .hdr, .img, and .t2m files"

> folder <- "/This/is/the/path/to/the/folder/containing/the/files"

> data <- readAnalyze(name, folder)

Large Analyze files can also be attached on-disk without fully loading them into memory
by using the attach.only=TRUE option. Not all Cardinal features are supported for on-disk
datasets.
For more information on reading Analyze files, type ?readAnalyze.

2.1.2 imzML

The open XML-based format imzML is a more recently developed format specifically designed
for interchange of mass spectrometry imaging datasets [3]. Many other formats can be
converted to imzML with the help of free applications available online. See http://www.
imzml.org for more information and links to free converters.
The imzML format uses two files with extensions ‘.imzML’ and ‘.ibd’ to store data. To read
datasets stored in the imzML format, use the readImzML function. Both files must be present
in the same folder and have the same name (again, except for the file extension) for the data
to be read properly.
> name <- "This is the common name of your .imzML and .ibd files"

> folder <- "/This/is/the/path/to/the/folder/containing/the/files"

> data <- readImzML(name, folder)

Large imzML files can also be attached on-disk without fully loading them into memory
by using the attach.only=TRUE option. Not all Cardinal features are supported for on-disk
datasets.
Both ‘continuous’ and ‘processed’ imzML format are supported, but currently only ‘continous’
format can be attached using attach.only=TRUE.
For more information on reading imzML files, type ?readImzML.
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2.1.3 readMSIData

Cardinal also provides the convenience function readMSIData, which can automatically rec-
ognize the whether the data format is Analyze or imzML based on file extensions. The same
rules for naming conventions apply as described above, but one need only provide the path
to any of the data files. For example, to read an Analyze file, providing the path to any of
the ‘.hdr’, ‘.img’, or ‘.t2m’ will work. Likewise, providing the path to either the ‘.imzML’ or
‘.ibd’ file will work for reading data stored in the imzML format.
> file <- "/This/is/the/path/to/an/imaging/data/file.extension"

> data <- readMSIData(file)

2.2 Output

2.2.1 RData files

Any R object, including those created by Cardinal, can be saved as an RData file using the
save and loaded using the load function.
> save(data, file="/Where/to/save/the/data.RData")

> load("/Where/to/save/the/data.RData")

When an RData file is loaded, the saved object appears in the global environment for the R
session and is available for access by name, just as it was in the session during which it was
saved. This functionality is part of R; see ?save and ?load for more details.
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3 Data exploration and visualization

Mass spectrometry imaging datasets in Cardinal are stored in MSImageSet objects. This
allows Cardinal to keep track of the spectra, pixel coordinates, m/z values and more in one
place for the dataset. The MSImageSet object is described in more detail below. There are
many methods for both creating and manipulating MSImageSet objects in Cardinal. We now
describe some of these methods.

3.1 An example dataset

To illustrate methods for the MSImageSet objects, we begin by creating a simple, simu-
lated dataset using the Cardinal function generateImage. This dataset will be the running
example for this section. For more details on simulating mass spectrometry images, see
?generateImage or Section 7.2 Simulation.
> pattern <- factor(c(0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0,

+ 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 1, 1, 2,

+ 2, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 2, 2,

+ 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2,

+ 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0),

+ levels=c(0,1,2), labels=c("blue", "black", "red"))

> set.seed(1)

> msset <- generateImage(pattern, coord=expand.grid(x=1:9, y=1:9),

+ range=c(1000, 5000), centers=c(2000, 3000, 4000),

+ resolution=100, step=3.3, as="MSImageSet")

> summary(msset)

Class: MSImageSet

Features: m/z = 1000 ... m/z = 4999.6 (1213 total)

Pixels: x = 1, y = 1 ... x = 9, y = 9 (81 total)

x: 1 ... 9

y: 1 ... 9

Size in memory: 1 Mb

The above code creates a simulated MS imaging dataset called msset, which is 9 × 9 pix-
els, with a mass range from m/z 1000 to m/z 5000. There are three peaks, occuring at
m/z 2000, m/z 3000, and m/z 4000. Each of these peaks corresponds to a distinct region
of interest. These are saved in the factor pattern. A factor is the standard way of storing
categorical variables in R. All pixels with pattern = 0 correspond to the region with peak at
m/z 2000, pattern = 1 corresponds to the peak at m/z 3000, and pattern = 2 corresponds
to m/z 4000.
We’ll label these regions of interest “blue” pixels, “black” pixels, and “red” pixels, respectively.

3.2 The MSImageSet object

Most important aspects of a mass spectrometry imaging dataset stored in an MSImageSet

object can be accessed by simple methods.
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For example, m/z-values are accessed by the method mz, pixel coordinates are accessed by the
method coord, and the mass spectra themselves are accessed by the method spectra. The
mass spectra are stored as a matrix with each column corresponding to the mass spectrum
at a single pixel.
> head(mz(msset), n=10) # first 10 m/z values

[1] 1000.0 1003.3 1006.6 1009.9 1013.2 1016.5 1019.8 1023.1 1026.4 1029.7

> head(coord(msset), n=10) # first 10 pixel coordinates

x y

x = 1, y = 1 1 1

x = 2, y = 1 2 1

x = 3, y = 1 3 1

x = 4, y = 1 4 1

x = 5, y = 1 5 1

x = 6, y = 1 6 1

x = 7, y = 1 7 1

x = 8, y = 1 8 1

x = 9, y = 1 9 1

x = 1, y = 2 1 2

> head(spectra(msset)[,1], n=10) # first 10 intensities in the first mass spectrum

[1] 13.72308 11.93339 12.79512 12.50510 11.71788 13.92943 12.18719 12.24365 12.62183 12.30359

The methods nrow and ncol can be used to retrieve the number of features and number of
pixels in an object, respectively. The method dim gives both number of features and number
of pixels, while dims gives number of features as well as spatial dimensions of the image.
> nrow(msset)

Features

1213

> ncol(msset)

Pixels

81

> dim(msset)

Features Pixels

1213 81

> dims(msset)

iData

Features 1213

x 9

y 9

Two other helpful methods are features and pixels. These are useful for retrieving the
feature number and pixel number (i.e., the row and column in the spectra(msset) matrix)
corresponding to items of interest such as specific m/z-values or pixel coordinates.
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> features(msset, mz=3000) # returns the feature number most closely matching m/z 3000

m/z = 2999.8

607

> mz(msset)[607]

[1] 2999.8

> pixels(msset, coord=list(x=5, y=5)) # returns the pixel number for x = 5, y = 5

x = 5, y = 5

41

> pixels(msset, x=5, y=5) # also returns the pixel number for x = 5, y = 5

x = 5, y = 5

41

> coord(msset)[41,]

x y

x = 5, y = 5 5 5

See ?MSImageSet for more details and additional methods.
Technical note: MSImageSet is an S4 class. It inherits from the more general SImageSet class, which
itself inherits from the iSet virtual class. The iSet virtual class is designed around the same design
principles as the eSet class provided by Biobase. See the “Cardinal development” vignette for more
information.)

3.3 Subsetting a MSImageSet

A MSImageSet can be subset by row and column like an ordinary R matrix or data.frame, where
rows correspond to the features (m/z-values) and columns correspond to pixels (locations
associated with mass spectra). Subsetting will return a new MSImageSet.
For example, we can subset by m/z-values so that we only keep the mass range from
m/z 2500 to m/z 4500.
> tmp <- msset[2500 < mz(msset) & mz(msset) < 4500,]

> range(mz(msset))

[1] 1000.0 4999.6

> range(mz(tmp))

[1] 2501.5 4498.0

Alternatively, we can subset by pixel coordinates. To keep only pixels with x-coordinates
greater than 5, we can do the following.
> tmp <- msset[,coord(msset)$x > 5]

> range(coord(msset)$x)

[1] 1 9

> range(coord(tmp)$x)

8
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[1] 6 9

We can also subset in both ways at once.
> tmp <- msset[2500 < mz(msset) & mz(msset) < 4500, coord(msset)$x > 5]

> range(mz(tmp))

[1] 2501.5 4498.0

> range(coord(tmp)$x)

[1] 6 9

It is also possible to manually select a region of interest and use it to subset the dataset.
This is done using the select method, which will be introduced in Section 3.5 Plotting ion
images.

3.4 Plotting mass spectra

Mass spectra from an MSImageSet can be displayed using the plot method. To plot the mass
spectrum at the first pixel of our MSImageSet, we do the following:
> plot(msset, pixel=1)

The result of which is shown in Figure 2a.
Instead of pixel number, we can specify a set of coordinates corresponding to the mass
spectrum we want to plot. The following produces Figure 2b, which is the mean spectrum
for the pixel at spatial location (5, 5), and all other spectra within a 2 pixel neighborhood of
that location.
> plot(msset, coord=list(x=5, y=5), plusminus=2)

Finally, we can plot multiple spectra at once, as shown in Figure 2c. This is done below by
specifying a vector for the pixel argument. The plots are displayed simultaneously by setting
superpose = TRUE and key = TRUE generates a legend. The pixel.groups here indicates
that the pixels should be grouped by their classifications as encoded by the pattern factor.
By default, Cardinal averages over spectra in the same group.
> mycol <- c("blue", "black", "red")

> plot(msset, pixel=1:ncol(msset), pixel.groups=pattern, superpose=TRUE, key=TRUE, col=mycol)

3.5 Plotting ion images

Ion images from an MSImageSet can be plotted using the image method. To plot the ion
image for the first feature, Figure 3a, we use:
> image(msset, feature=1)

The mean ion image for the neighborhood of m/z 4000 with radius 10, i.e. m/z [3990, 4010]
is shown in Figure 3b.
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Figure 2: Plotting mass spectra

> image(msset, mz=4000, plusminus=10)

In Figure 3c the ion images for m/z 2000, m/z 3000, and m/z 4000 are displayed simulta-
neously.
> mycol <- c("blue", "black", "red")

> image(msset, mz=c(2000, 3000, 4000), col=mycol, superpose=TRUE)

The ion image for m/z 2000 is shown in Figure 3d, with a custom color scale from white to
blue. The most intense “hotspots" are suppressed.
> mycol <- gradient.colors(100, start="white", end="blue")

> image(msset, mz=2000, col.regions=mycol, contrast.enhance="suppress")

In Figure 3e, a smoothed ion image for mz3000 with a custom color scale from white to black
is presented.
> mycol <- gradient.colors(100, start="white", end="black")

> image(msset, mz=3000, col.regions=mycol, smooth.image="gaussian")

Finally, in Figure 3f, for only those pixels defined as being from the “black" and “red" regions,
we plot the ion image of mz4000 with a custom color scale from black to red.
> msset2 <- msset[,pattern == "black" | pattern == "red"]

> mycol <- gradient.colors(100, start="black", end="red")

> image(msset2, mz=4000, col.regions=mycol)
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Figure 3: Plotting ion images
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4 Pre-processing

4.1 Normalization

Normalization is perhaps the most important pre-processing step before any kind of analysis
should be performed on biological datasets, and mass spectrometry imaging experiments
are no different in this regard. Cardinal provides normalization to total ion current (TIC),
commonly used in MSI analysis (see [4] for a discussion of this method). In the first command
below, we only perform the normalization on the first pixel in order to show a plot of the
processing results in Figure 4. In the second, we perform normalization on the whole dataset.
> normalize(msset, pixel=1, method="tic", plot=TRUE)

> msset2 <- normalize(msset, method="tic")
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Figure 4: Total ion current (TIC) normalization

4.2 Smoothing

Smoothing the mass spectra is useful for reducing noise, which can improve detection of
peaks. Cardinal provides several common methods for smoothing mass spectra, including
Gaussian kernel smoothing (Figure 5a), Savitsky-Golay smoothing (Figure 5b), and a simple
moving average filter [5].
> smoothSignal(msset2, pixel=1, method="gaussian", window=9, plot=TRUE)

> smoothSignal(msset2, pixel=1, method="sgolay", window=15, plot=TRUE)

> msset3 <- smoothSignal(msset2, method="gaussian", window=9)

4.3 Baseline reduction

Baseline reduction is often necessary for many datasets, especially those obtained through
matrix-assisted methods such as MALDI ([5]). Cardinal implements a simple version that
interpolates a baseline from local medians or local minima, while attempting to preserve
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Figure 5: Smoothing techniques

the signal from mass spectral peaks. Figure 6 shows baseline reduction for a single pixel,
where the green curve represents the estimated baseline and the baseline-reduced spectrum
is plotted in black.
> reduceBaseline(msset3, pixel=1, method="median", blocks=50, plot=TRUE)

We can also reduce baseline across all pixels in the image.
> msset4 <- reduceBaseline(msset3, method="median", blocks=50)
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Figure 6: Baseline reduction using interpolation from medians

4.4 Peak picking

Peak picking is a common form of data reduction that reduces the signal to relevant data
peaks. Cardinal implements three varieties based on a user-specified signal-to-noise ratio
(SNR). The “simple” version interpolates a constant noise pattern, the “adaptive” version
interpolates an adaptive noise pattern Figure 7a, and “limpic” implements the LIMPIC algo-
rithm for peak detection Figure 7b.
> peakPick(msset4, pixel=1, method="adaptive", SNR=3, plot=TRUE)

> peakPick(msset4, pixel=1, method="limpic", SNR=3, plot=TRUE)
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> msset5 <- peakPick(msset4, method="simple", SNR=3)
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Figure 7: Peak picking techniques

4.5 Peak alignment

Peak alignment is necessary to account for possible inaccuracy in m/z measurements. Peaks
can be aligned to a reference list of known m/z values, or to the local maxima in the mean
spectrum. Figure 8 denotes the selected peaks by red vertical lines, and aligns the local
maxima of the mean spectra to these peaks, as in [6].
> peakAlign(msset5, pixel=1, method="diff", plot=TRUE)

> msset6 <- peakAlign(msset5, method="diff")

1000 2000 3000 4000 5000

0
1

2
3

4
5

6

m z

In
te

ns
ity

Figure 8: Peak alignment to the local maxima of the mean spectrum

4.6 Peak filtering

Peak filtering removes peaks that occur infrequently, such as those which only occur in a
small proportion of pixels. This is useful for removing extraneous peaks that are likely to be
false positives.
> msset7 <- peakFilter(msset6, method="freq")

> dim(msset6) # 89 peaks retained
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Features Pixels

118 81

> dim(msset7) # 10 peaks retained

Features Pixels

3 81

4.7 Data reduction

Other common forms of data reduction include resampling and binning.
Cardinal can do binning for a fixed width, taken to be 25 in this example. The mean intensity
of ions located in the same m/z bin is taken to be the response in the reduced version of
the data. The results of binning on pixel 1 is plotted in Figure 9a. The orignal spectrum is
plotted in black, with the binned version displayed simultaneously in red.
> reduceDimension(msset4, pixel=1, method="bin", width=25, units="mz", fun=mean, plot=TRUE)

There is also the option of doing resampling for a fixed step size. The results of resampling
with step size 25 m/z on pixel 1 is plotted in Figure 9b. The original spectrum is plotted in
black, with the resampled version displayed simultaneously in red.
> reduceDimension(msset4, pixel=1, method="resample", step=25, plot=TRUE)

Data reduction can be done on the whole dataset at once.
> msset8 <- reduceDimension(msset4, method="resample", step=25)
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(b) Resampling

Figure 9: Data reduction via binning and resampling

4.8 Batch processing

To simplify the above pre-processing steps, as well as save memory when processing on-disk
data, Cardinal provides a batch processing method.
> msset9 <- batchProcess(msset, normalize=TRUE, smoothSignal=TRUE, reduceBaseline=TRUE)

> summary(msset9)
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Class: MSImageSet

Features: m/z = 1000 ... m/z = 4999.6 (1213 total)

Pixels: x = 1, y = 1 ... x = 9, y = 9 (81 total)

x: 1 ... 9

y: 1 ... 9

Size in memory: 1 Mb

> processingData(msset9)

Processing data

Cardinal version: 2.2.6

Files:

Normalization: tic

Smoothing: gaussian

Baseline reduction: median

Spectrum representation:

Peak picking:

Each step can be set to its default parameters by setting it to TRUE, or a list of options can
be provided.
> msset10 <- batchProcess(msset, normalize=TRUE, smoothSignal=TRUE, reduceBaseline=list(blocks=200),

+ peakPick=list(SNR=12), peakAlign=TRUE)

> summary(msset10)

Class: MSImageSet

Features: m/z = 1046.2 ... m/z = 4953.4 (177 total)

Pixels: x = 1, y = 1 ... x = 9, y = 9 (81 total)

x: 1 ... 9

y: 1 ... 9

Size in memory: 0.4 Mb

> processingData(msset10)

Processing data

Cardinal version: 2.2.6

Files:

Normalization: tic

Smoothing: gaussian

Baseline reduction: median

Spectrum representation: centroid

Peak picking: simple

This method is particularly useful when processing larger-than-memory on-disk datasets to a
smaller processed form, without loading the full data into memory.
See ?batchProcess for more details and differences in behavior from the individual processing
methods.
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5 Analysis

For example workflows with analyses of real datasets, please see the vignettes in the com-
panion data package CardinalWorkflows.

5.1 Principal components analysis (PCA)

Principal components analysis (PCA) is a multivariate statistical tool used for dimension
reduction and exploratory data analysis. PCA can be useful when first exploring a dataset
beyond plotting molecular ion images, but additional statistical analysis is usually necessary
to extract meaningful results.
Below, we fit the first two principal components using Cardinal ’s PCA method and plot their
loadings and scores.
> pca <- PCA(msset4, ncomp=2)

> plot(pca)

> image(pca)
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Figure 10: Principal components analysis

See ?PCA for more details.

5.2 Partial least squares (PLS)

Partial least squares (PLS), also called projection to latent structures, is a multivariate method
from chemometrics that has been shown to be useful for classification of mass spectrometry
images [7].
When used for classification, it is known as partial least squares discriminant analysis, or
PLS-DA. PLS-DA works similarly to PCA, but it is a supervised method, so it requires data
annotated with known labels.
Here, we train a PLS classifier using the pattern variable from earlier as our labels, and plot
the results.
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> pls <- PLS(msset4, y=pattern, ncomp=2)

> plot(pls, col=c("blue", "black", "red"))

> image(pls, col=c("blue", "black", "red"))
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Figure 11: Partial least squares

When working with classification on real data, cross-validation should always be used, using
the cvApply method, to avoid biased results. See ?cvApply and ?PLS for more details.

5.3 Orthogonal partial least squares (O-PLS)

Orthogonal partial least squares (O-PLS) is a variation on PLS. O-PLS can sometimes improve
the interpretability of the PLS model coefficients, while producing similar accuracy. O-PLS-
DA is also implemented in Cardinal

> opls <- OPLS(msset4, y=pattern, ncomp=2)

> plot(opls, col=c("blue", "black", "red"))

> image(opls, col=c("blue", "black", "red"))
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Figure 12: Orthogonal partial least squares
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O-PLS is primarily useful when many PLS components are required to fit an accurate model,
since this often leads to unstable model coefficients. Try O-PLS when the PLS model coef-
ficients are difficult to interpret, or the best PLS model uses a large number of components.
See ?OPLS for more details.

5.4 Spatially-aware k-means clustering

Spatially-aware clustering using k-means is available [6] through the spatialKMeans method.
This method uses a spatial distance function to project the data to a kernel space before
performing ordinary k-means clustering.
The parameters r and k are the neighborhood smoothing radius and the initial number of
clusters.
Below, we create a spatial segmentation using spatially-aware clustering.
> set.seed(1)

> skm <- spatialKMeans(msset7, r=2, k=3, method="adaptive")

> plot(skm, col=c("darkred", "black", "red"), type=c('p','h'), key=FALSE)

> image(skm, col=c("darkred", "black", "red"), key=FALSE)
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Figure 13: Spatially-aware k-means clustering

See ?spatialKMeans for more details.

5.5 Spatial shrunken centroids

Cardinal offers a novel clustering and classification method based on the spatial smoothing [6]
and nearest shrunken centroids [8]. This is the spatialShrunkenCentroids method, which
can be used both for clustering and for classification.
The parameters r, k, and s are the neighborhood smoothing radius, the initial number of
clusters, and the sparsity parameter, respectively.
Below, we create a spatial segmentation using the spatial shrunken centroids method.
> set.seed(1)

> ssc <- spatialShrunkenCentroids(msset7, r=1, k=5, s=3, method="adaptive")
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> plot(ssc, col=c("red", "black"), type=c('p','h'), key=FALSE)

> image(ssc, col=c("red", "black"), key=FALSE)
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Figure 14: Spatially-aware nearest shrunken centroids clustering

A unique property of Cardinal ’s spatial shrunken centroids method is that it allows for the au-
tomated selection of the number of clusters, driven in part by the sparsity paramter. Although
we initialized the clustering above with 5 clusters, only 2 were used in the final segmentation.
See ?spatialShrunkenCentroids for more options and details.
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6 Examples

In-depth biological examples using real data can be found in the CardinalWorkflows package.
Figure 15 shows an example using a cross-section of a whole pig fetus, and Figure 16 shows
an example using a human renal cell carcinoma dataset. Both datasets and a thorough
walkthrough of analyses are available in CardinalWorkflows.
To install CardinalWorkflows, run:
> BiocManager::install("CardinalWorkflows")

Please note that due to the size of the included datasets, downloading and installing Cardi-
nalWorkflows may take a long time.
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Figure 15: Biological example of a pig fetus cross-section, showing the optical image, an
ion image, and a segmentation created by Spatial Shrunken Centroids clustering

Figure 15 uses a pig fetus cross-section as an example of unsupervised analysis of a mass
spectrometry imaging experiment using Cardinal. To view the vignette associated with this
dataset, install CardinalWorkflows and run:
> vignette("Workflows-clustering")

The dataset and its analyses can be loaded by running:
> data(pig206, pig206_analyses)
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Figure 16: Biological example of human renal cell carcinoma classification, showing an
optical image, an ion image, and a segmentation created by Spatial Shrunken Centroids
classification

Figure 16 uses a human renal cell carcinoma dataset as an example of supervised analysis
of a mass spectrometry imaging experiment using Cardinal. To view the vignette associated
with this dataset, install CardinalWorkflows and run:
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> vignette("Workflows-classification")

The dataset and its analyses can be loaded by running:
> data(rcc, rcc_analyses)

See ?CardinalWorkflows for more information.
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7 Advanced Topics

7.1 Apply

The apply family of functions are a powerful feature of R. The apply function applies a
function over margins of an array, while sapply applies a function over every element of a
vector-like object. The function tapply applies a function over a “ragged” array, so that the
function is applied over groups of values given by levels of another variable (usually a factor).
In Cardinal, the methods pixelApply and featureApply allow apply-like functionality that
combine traits of each of these, tailored for imaging datasets.
We need to mark which pixels are blue, black, and which are red, as in the factor pattern

in Section 3.1.
> pData(msset)$pg <- pattern

Then we need to mark which features (which regions of the mass spectrum) belong to the
peaks associated with “blue" (m/z 2000), “black”(m/z 3000), or “red”(m/z 4000) pixels;
the rest of the spectrum is marked as background noise (bg).
> fData(msset)$fg <- factor(rep("bg", nrow(fData(msset))), levels=c("bg","blue", "black", "red"))

> fData(msset)$fg[1950 < fData(msset)$mz & fData(msset)$mz < 2050] <- "blue"

> fData(msset)$fg[2950 < fData(msset)$mz & fData(msset)$mz < 3050] <- "black"

> fData(msset)$fg[3950 < fData(msset)$mz & fData(msset)$mz < 4050] <- "red"

Now we can experiment with different ways of plotting an imaging dataset.

7.1.1 pixelApply

The method pixelApply allows functions to be applied over all pixels. The function is
applied pixel-by-pixel to the feature vectors (mass spectra). Here, we use pixelApply to
find the pixel-by-pixel mean intensity of different regions of the mass spectrum. We provide
fData(msset)$fg as a grouping variable, since it indicates different regions of the mass
spectrum we expect to be associated with either background noise, or blue, red, or black
pixels. Since pixelApply knows to look in msset for the variable, we only need to provide fg

to the argument .feature.groups.
> p1 <- pixelApply(msset, mean, .feature.groups=fg)

> p1[,1:30]

x = 1, y = 1 x = 2, y = 1 x = 3, y = 1 x = 4, y = 1 x = 5, y = 1 x = 6, y = 1 x = 7, y = 1

bg 5.591239 5.516053 3.395579 3.185078 5.615956 5.650231 4.957623

blue 17.306620 17.046174 9.112457 8.557135 17.313809 17.481563 14.981038

black 9.974539 9.025602 8.412205 8.844019 9.631894 9.739096 8.005345

red 7.628184 7.010724 12.982994 12.059920 7.883425 7.838796 7.077551

x = 8, y = 1 x = 9, y = 1 x = 1, y = 2 x = 2, y = 2 x = 3, y = 2 x = 4, y = 2 x = 5, y = 2

bg 5.285583 5.523104 5.173204 3.589339 3.361056 5.409369 5.962200

blue 16.141836 16.873337 15.842321 11.037839 8.760469 16.625576 18.391835

black 9.232942 9.679532 8.708974 8.632293 8.432287 9.626762 9.028662

red 7.870530 8.436895 7.819247 11.809760 12.806359 7.634099 7.807045

x = 6, y = 2 x = 7, y = 2 x = 8, y = 2 x = 9, y = 2 x = 1, y = 3 x = 2, y = 3 x = 3, y = 3
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bg 5.913981 5.710577 5.681514 5.860902 5.770548 4.274740 3.146736

blue 18.392521 17.591820 17.528622 18.254246 17.893589 11.131247 8.295846

black 10.234255 10.160928 10.370499 9.540406 10.013747 14.349932 7.718586

red 7.588946 7.244261 7.563269 7.941176 8.005526 8.245206 11.762278

x = 4, y = 3 x = 5, y = 3 x = 6, y = 3 x = 7, y = 3 x = 8, y = 3 x = 9, y = 3 x = 1, y = 4

bg 3.316402 5.317308 5.688381 6.096776 5.727348 5.816680 3.290318

blue 9.750688 16.232286 17.530305 18.911349 17.500409 17.829095 9.134986

black 8.035290 9.444263 10.440994 10.710668 9.470964 9.166336 8.047249

red 12.332335 6.764745 8.139496 7.897016 8.365797 8.130600 12.516607

x = 2, y = 4 x = 3, y = 4

bg 4.533675 4.376095

blue 11.546565 11.061959

black 15.589934 14.972439

red 7.659493 8.236587

By comparing side-by-side with the ground truth (which we have stored in the variable
pData(msset)$pg), we see the result is as we expected. For “blue” pixels, the mean intensity
of features belonging to the “blue”-associated peak (m/z 2000) is higher. For “black” pixels,
the mean intensity of features belonging to the “black”-associated peak (m/z 3000) is higher.
Finally, for “red” pixels, the mean intensity of features belonging to the “red”-associated peak
(m/z 4000) is higher.
> cbind(pData(msset), t(p1))[1:30,c("pg","blue", "black", "red")]

pg blue black red

x = 1, y = 1 blue 17.306620 9.974539 7.628184

x = 2, y = 1 blue 17.046174 9.025602 7.010724

x = 3, y = 1 red 9.112457 8.412205 12.982994

x = 4, y = 1 red 8.557135 8.844019 12.059920

x = 5, y = 1 blue 17.313809 9.631894 7.883425

x = 6, y = 1 blue 17.481563 9.739096 7.838796

x = 7, y = 1 blue 14.981038 8.005345 7.077551

x = 8, y = 1 blue 16.141836 9.232942 7.870530

x = 9, y = 1 blue 16.873337 9.679532 8.436895

x = 1, y = 2 blue 15.842321 8.708974 7.819247

x = 2, y = 2 red 11.037839 8.632293 11.809760

x = 3, y = 2 red 8.760469 8.432287 12.806359

x = 4, y = 2 blue 16.625576 9.626762 7.634099

x = 5, y = 2 blue 18.391835 9.028662 7.807045

x = 6, y = 2 blue 18.392521 10.234255 7.588946

x = 7, y = 2 blue 17.591820 10.160928 7.244261

x = 8, y = 2 blue 17.528622 10.370499 7.563269

x = 9, y = 2 blue 18.254246 9.540406 7.941176

x = 1, y = 3 blue 17.893589 10.013747 8.005526

x = 2, y = 3 black 11.131247 14.349932 8.245206

x = 3, y = 3 red 8.295846 7.718586 11.762278

x = 4, y = 3 red 9.750688 8.035290 12.332335

x = 5, y = 3 blue 16.232286 9.444263 6.764745

x = 6, y = 3 blue 17.530305 10.440994 8.139496

x = 7, y = 3 blue 18.911349 10.710668 7.897016

x = 8, y = 3 blue 17.500409 9.470964 8.365797

x = 9, y = 3 blue 17.829095 9.166336 8.130600
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x = 1, y = 4 red 9.134986 8.047249 12.516607

x = 2, y = 4 black 11.546565 15.589934 7.659493

x = 3, y = 4 black 11.061959 14.972439 8.236587

We can manually construct the images corresponding to the mean intensity of the three peaks
centered at m/z 2000, m/z 3000, and m/z 4000 and plot their images. This is shown in
Figure 17
> tmp1 <- MSImageSet(spectra=t(as.vector(p1["blue",])), coord=coord(msset), mz=2000)

> image(tmp1, feature=1, col.regions=alpha.colors("blue", 100), sub="m/z = 2000")

> tmp1 <- MSImageSet(spectra=t(as.vector(p1["black",])), coord=coord(msset), mz=3000)

> image(tmp1, feature=1, col.regions=alpha.colors("black", 100), sub="m/z = 3000")

> tmp2 <- MSImageSet(spectra=t(as.vector(p1["red",])), coord=coord(msset), mz=4000)

> image(tmp2, feature=1, col.regions=alpha.colors("red", 100), sub="m/z = 4000")
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Figure 17: Mean intensites of the three peaks centered at m/z 2000, m/z 3000 and m/z
4000

If only the plots are desired rather than the actual data, then image can be used to perform
these steps automatically while producing the plot. See Cardinal plotting for how to do this.

7.1.2 featureApply

The method featureApply allows functions to be applied over all features. The function is
applied to the flattened false-image vectors. These vectors are the pixel-by-pixel intensities
of a single-feature image, not including missing pixels. Here, we use featureApply to find
the mean spectrum for different groups of pixels. We provide pData(msset)$pg as a grouping
variable, since it indicates the kind of pixel. We desire mean spectra for the black pixels, the
red pixels, and the blue pixels. As before, since featureApply knows to look in msset, we
only need to provide pg to the argument .pixel.groups.
> f1 <- featureApply(msset, mean, .pixel.groups=pg)

> f1[,1:30]

m/z = 1000 m/z = 1003.3 m/z = 1006.6 m/z = 1009.9 m/z = 1013.2 m/z = 1016.5 m/z = 1019.8

blue 12.113878 12.077172 12.271484 12.011245 12.106858 12.291783 12.011774

black 10.005194 9.491585 8.920648 8.395593 9.349371 8.972390 8.498503

red 7.019996 7.095126 7.206785 7.046938 6.770562 7.135863 6.915438
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m/z = 1023.1 m/z = 1026.4 m/z = 1029.7 m/z = 1033 m/z = 1036.3 m/z = 1039.6 m/z = 1042.9

blue 11.936433 12.210184 11.989588 11.848585 11.790103 12.031041 11.732924

black 9.054659 9.949408 8.628287 8.868370 8.991401 9.277913 8.660284

red 7.033159 7.091420 6.707759 7.258157 6.922927 7.025668 7.069312

m/z = 1046.2 m/z = 1049.5 m/z = 1052.8 m/z = 1056.1 m/z = 1059.4 m/z = 1062.7 m/z = 1066

blue 11.867339 11.796285 11.848332 11.996489 11.853608 11.766950 12.006615

black 8.677262 9.554605 9.319258 8.995928 8.754828 9.730654 9.159634

red 7.120718 6.970966 6.852143 6.636296 6.992209 6.835762 6.493719

m/z = 1069.3 m/z = 1072.6 m/z = 1075.9 m/z = 1079.2 m/z = 1082.5 m/z = 1085.8 m/z = 1089.1

blue 11.757288 11.696140 11.544314 11.550182 11.684293 11.747299 11.787957

black 8.890601 8.980763 10.102702 8.745331 9.359917 8.196362 9.204949

red 6.675064 6.787080 6.970741 6.662426 6.664785 6.829065 6.849054

m/z = 1092.4 m/z = 1095.7

blue 11.472797 11.710456

black 9.279710 9.049170

red 7.000153 6.704578

Again, we can check the results by plotting them in Figure 18.
> plot(mz(msset), f1["blue",], type="l", xlab="m/z", ylab="Intensity", col="blue")

> plot(mz(msset), f1["black",], type="l", xlab="m/z", ylab="Intensity", col="black")

> plot(mz(msset), f1["red",], type="l", xlab="m/z", ylab="Intensity", col="red")
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Figure 18: Mean spectra of blue, black, and red regions

As expected,we see the mean spectrum of the blue pixels has a higher peak at m/z 2000,
we see the mean spectrum of the black pixels has a higher peak at m/z 3000, while the
mean spectrum of the red pixels has a higher peak at m/z 4000. As before, if only the
plots are desired rather than the actual data, then plot can be used to perform these steps
automatically. See Cardinal plotting for how to do this.
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7.2 Simulation

Cardinal provides functions for the simulation of mass spectra and mass spectrometry imaging
datasets. This is of interest to developers for testing newly developed methodology for
analyzing mass spectrometry imaging experiments.

7.2.1 Simulation of spectra

The generateSpectrum function can be used to simulate mass spectra. Its parameters can
be tuned to simulate different kinds of mass spectra from different kinds of machines, and
different protein and peptide patterns.
One spectrum with m/z range from 1001 to 20000, 50 randomly selected peaks, baseline
3000, and m/z resolution 100 is generated below and plotted in Figure 19a.
> set.seed(1)

> s1 <- generateSpectrum(1, range=c(1001, 20000), centers=runif(50, 1001, 20000), baseline=2000, resolution=100, step=3.3)

> plot(x ~ t, data=s1, type="l", xlab="m/z", ylab="Intensity")

An example with fewer peaks, larger baseline, and lower resolution (Figure 19b):
> set.seed(2)

> s2 <- generateSpectrum(1, range=c(1001, 20000), centers=runif(20, 1001, 20000), baseline=3000, resolution=50, step=3.3)

> plot(x ~ t, data=s2, type="l", xlab="m/z", ylab="Intensity")
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Figure 19: MALDI-like simulated spectra

Above we simulated MALDI-like spectra. We can also simulate DESI-like spectra, shown in
Figure 20.
> set.seed(3)

> s3 <- generateSpectrum(1, range=c(101, 1000), centers=runif(25, 101, 1000), baseline=0, resolution=250, noise=0.1, step=1.2)

> plot(x ~ t, data=s3, type="l", xlab="m/z", ylab="Intensity")

> set.seed(4)

> s4 <- generateSpectrum(1, range=c(101, 1000), centers=runif(100, 101, 1000), baseline=0, resolution=500, noise=0.2, step=1.2)

> plot(x ~ t, data=s4, type="l", xlab="m/z", ylab="Intensity")
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Figure 20: DESI-like simulated spectra

7.2.2 Simulation of images

The generateImage function can be used to simulate mass spectral images. This is a simple
wrapper for generateSpectra that will generate unique spectral patterns based on a spatial
pattern. The generated mass spectra will have a unique peak associated with each region.
The pattern must have discrete regions, most easily given in the form of an integer matrix.
We use a matrix in the pattern of a cardinal.
> data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,

+ NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,

+ 1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,

+ 1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,

+ 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA), nrow=9, ncol=9)

As seen in Figure ??, we can plot the ground truth image directly.
> image(data[,ncol(data):1], col=c("black", "red"))
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Figure 21: Ground truth image used to generate the simulated dataset

Now we generate the dataset. To make it easy to visualize, we set up the range and step

size so that the feature indices correspond directly to their values. We create two peaks at
m/z 100 and m/z 200, one of which is associated with each region in the image.
> set.seed(1)

> img1 <- generateImage(data, range=c(1,1000), centers=c(100,200), step=1, as="MSImageSet")
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Now to confirm the reasonability of our simulated dataset, we plot images corresponding to
the two peaks associated with each region in Figure 22b. (Note that rows in the original
matrix correspond to the x-axis in the image and the columns correspond to the y-axis.)
> image(img1, mz=100, col.regions=alpha.colors("black", 100))

> image(img1, mz=200, col.regions=alpha.colors("red", 100))
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Figure 22: Generated image from an integer matrix

We can generate the same kind of dataset using a factor and a data.frame of coordinates,
as is done in the running example for earlier sections of this vignette.
> pattern <- factor(c(0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0,

+ 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 1, 1, 2,

+ 2, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 2, 2,

+ 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2,

+ 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0),

+ levels=c(0,1,2), labels=c("blue", "black", "red"))

> coord <- expand.grid(x=1:9, y=1:9)

> set.seed(2)

> msset <- generateImage(pattern, coord=coord, range=c(1000, 5000), centers=c(2000, 3000, 4000), resolution=100, step=3.3, as="MSImageSet")

Again, we can plot the images to see that the simulated dataset is the same pattern as before
(though the exact intensities will differ, because we have used a different seed for the random
number generator), Figure 23.
> image(msset, mz=2000, col.regions=alpha.colors("blue", 100))

> image(msset, mz=3000, col.regions=alpha.colors("black", 100))

> image(msset, mz=4000, col.regions=alpha.colors("red", 100))

7.2.3 Advanced simulation

The generateImage function provides a straightforward method for rapid simulation of many
kinds of images to test classification and clustering models, but suppose we wish to simulate
a more complex dataset with spatial correlations. Below we simulate a dataset with two
overlapping regions. In each of these regions, the intensity degrades with distance from the
center of the region, implining spatial correlation, Figure 24.
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Figure 23: Generated images from factor and coordinates

> x1 <- apply(expand.grid(x=1:10, y=1:10), 1,

+ function(z) 1/(1 + ((4-z[[1]])/2)^2 + ((4-z[[2]])/2)^2))

> dim(x1) <- c(10,10)

> image(x1[,ncol(x1):1])

> x2 <- apply(expand.grid(x=1:10, y=1:10), 1,

+ function(z) 1/(1 + ((6-z[[1]])/2)^2 + ((6-z[[2]])/2)^2))

> dim(x2) <- c(10,10)

> image(x2[,ncol(x2):1])
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Figure 24: Ground truth images of a dataset with overlapping regions

We generate the image by using generateSpectrum with the calculated mean intensities. We
use two peaks for the two regions with nearly overlapping peaks at m/z 500 and m/z 510.
> set.seed(1)

> x3 <- mapply(function(z1, z2) generateSpectrum(1, centers=c(500,510), intensities=c(z1, z2), range=c(1,1000), resolution=100, baseline=0, step=1)$x, as.vector(x1), as.vector(x2))

> img3 <- MSImageSet(x3, coord=expand.grid(x=1:10, y=1:10), mz=1:1000)

Now we can plot the ion images for each of the two peaks in 25.
> image(img3, mz=500, col=intensity.colors(100))

> image(img3, mz=510, col=intensity.colors(100))

Finally, we plot the mass spectrum for a pixel from each region in Figure 26
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Figure 25: Simulated mass spectral images at the two peaks

> plot(img3, coord=list(x=4, y=4), type="l", xlim=c(200, 800))

> plot(img3, coord=list(x=6, y=6), type="l", xlim=c(200, 800))
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Figure 26: Simulated mass spectra from each of the two regions

By creating spatial correlation patterns and combining them with the intensities, sd, and
noise arguments in generateSpectrum, it is possible to simulate more complex mass spec-
trometry imaging datasets.
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