
Process scRNA-Seq reads in scruff

Zhe Wang

2019-10-05

Package

scruff 1.2.5

Contents

1 Introduction . 2

2 Quick Start . 2

3 Stepwise Tutorial For CEL-Seq Samples 4

3.1 Load Example Dataset . 4

3.2 Demultiplex and Assign Cell Specific Reads 4

3.3 Alignment . 5

3.4 UMI correction and Generation of Count Matrix 6

3.5 Visualization of QC metrics . 6

3.6 Visualization of Read mapping locations. 13

4 10X BAM File Quality Assessment 14

5 Session Information . 16

Process scRNA-Seq reads in scruff

1 Introduction

scruff is a toolkit for processing single cell RNA-seq FASTQ reads generated by CEL-Seq and
CEL-Seq2 protocols. It does demultiplexing, alignment, Unique Molecular Identifier (UMI)
filtering, and transcript counting in an automated fashion and generates the gene count
matrix, QC metrics and provides visualizations of data quality. This vignette provides a brief
introduction to the scruff package by walking through the demultiplexing, alignment, and
UMI-counting of a built-in publicly available example dataset (van den Brink, et al. 2017).

2 Quick Start

Run scruff on example dataset

NOTE: Requires Rsubread index and TxDb objects for the reference genome.

For generation of these files, please refer to the Stepwise Tutorial.

library(scruff)

Registered S3 method overwritten by 'GGally':

method from

+.gg ggplot2

Get the paths to example FASTQ, FASTA, and GTF files.

Please note that because the following files are included in

scruff R package, we use system.file() function to extract the paths

to these files. If the user is running scruff on real data, the

paths to the input FASTQ, FASTA, and GTF files should be provided,

and there is no need to call system.file() function. For example,

v1h1R1 <- "/PATH/TO/vandenBrink_1h1_L001_R1_001.fastq.gz"

fasta <- "/Path/TO/GRCm38_MT.fa"

v1h1R1 <- system.file("extdata",

"vandenBrink_1h1_L001_R1_001.fastq.gz",

package = "scruff")

v1h1R2 <- system.file("extdata",

"vandenBrink_1h1_L001_R2_001.fastq.gz",

package = "scruff")

vb1R1 <- system.file("extdata",

"vandenBrink_b1_L001_R1_001.fastq.gz",

package = "scruff")

vb1R2 <- system.file("extdata",

"vandenBrink_b1_L001_R2_001.fastq.gz",

package = "scruff")

fasta <- system.file("extdata", "GRCm38_MT.fa", package = "scruff")

gtf <- system.file("extdata", "GRCm38_MT.gtf", package = "scruff")

Build Rsubread alignment index. This is for the alignment step. For test purpose, here we are
aligning the example FASTQ files to the genes on mitochondrial chromosome only.

NOTE: Rsubread package does not support Windows environment.

if (!requireNamespace("Rsubread", quietly = TRUE)) {

2

https://www.nature.com/articles/nmeth.4437

Process scRNA-Seq reads in scruff

message("Package \"Rsubread\" needed for \"alignRsubread\"",

" function to work. ",

"Please install it if you are using Linux or macOS systems. ",

"The function is not available in Windows environment.")

} else {

Create index files for GRCm38_MT.

For details, please refer to Rsubread user manual.

Specify the basename for Rsubread index

indexBase <- "GRCm38_MT"

Rsubread::buildindex(basename = indexBase,

reference = fasta,

indexSplit = FALSE)

}

Now that everything is ready, we can run scruff. In experiment 1h1, cell barcodes 95 and
96 are empty well controls. In experiment b1, cell barcode 95 is bulk sample containing 300
cells. These information can be set by the cellPerWell argument. We apply cell barcode
and UMI correction by setting bcEdit to 1 and umiEdit to 1. scruff makes use of the
SingleCellExperiment package. The following command returns a SingleCellExperiment

object containing UMI filtered count matrix as well as gene and sample annotations and QC
metrics.

data(barcodeExample, package = "scruff")

if (!requireNamespace("Rsubread", quietly = TRUE)) {

message("Package \"Rsubread\" needed. ",

"Please install it if you are using Linux or macOS systems. ",

"The function is not available in Windows environment.")

} else {

sce <- scruff(project = "example",

experiment = c("1h1", "b1"),

lane = c("L001", "L001"),

read1Path = c(v1h1R1, vb1R1),

read2Path = c(v1h1R2, vb1R2),

bc = barcodeExample,

index = indexBase,

unique = FALSE,

nBestLocations = 1,

reference = gtf,

bcStart = 1,

bcStop = 8,

bcEdit = 1,

umiStart = 9,

umiStop = 12,

umiEdit = 1,

keep = 75,

cellPerWell = c(rep(1, 94), 0, 0, rep(1, 94), 300, 1),

cores = 2,

verbose = TRUE)

}

3

https://bioconductor.org/packages/3.9/SingleCellExperiment

Process scRNA-Seq reads in scruff

Visualize data quality.

data(sceExample, package = "scruff")

qc <- qcplots(sceExample)

3 Stepwise Tutorial For CEL-Seq Samples

3.1 Load Example Dataset

The scruff package contains 4 single cell RNA-seq FASTQ example files. Each file has 10,000
sequenced reads.

library(scruff)

Get the paths to example FASTQ files.

Please note that because the following files are included in

scruff R package, we use system.file() function to extract the paths

to these files. If the user is running scruff on real data, the

paths to the input FASTQ, FASTA, and GTF files should be provided,

and there is no need to call system.file() function. For example,

v1h1R1 <- "/PATH/TO/vandenBrink_1h1_L001_R1_001.fastq.gz"

fasta <- "/Path/TO/GRCm38_MT.fa"

v1h1R1 <- system.file("extdata",

"vandenBrink_1h1_L001_R1_001.fastq.gz",

package = "scruff")

v1h1R2 <- system.file("extdata",

"vandenBrink_1h1_L001_R2_001.fastq.gz",

package = "scruff")

vb1R1 <- system.file("extdata",

"vandenBrink_b1_L001_R1_001.fastq.gz",

package = "scruff")

vb1R2 <- system.file("extdata",

"vandenBrink_b1_L001_R2_001.fastq.gz",

package = "scruff")

3.2 Demultiplex and Assign Cell Specific Reads

Now the FASTQ files are ready to be demultiplexed. scruff package provides built-in predefined
cell barcodes barcodeExample for demultiplexing the example dataset. In the example FASTQ
files, read 1 contains cell barcode and UMI sequence information. Read 2 contains transcript
sequences. The barcode sequence of each read starts at base 1 and ends at base 8. The UMI
sequence starts at base 9 and ends at base 12. They can be set via bcStart, bcStop, and
umiStart, umiStop arguments. Cell barcode correction can be set by bcEdit parameter. By
default, reads with any nucleotide in the barcode and UMI sequences with sequencing quality
lower than 10 (Phred score) will be excluded. The following command demultiplexes the
example FASTQ reads and trims reads longer than 75 nucleotides. The command returns a Sin

4

Process scRNA-Seq reads in scruff

gleCellExperiment object whose colData contains the cell index, barcode, reads, percentage
of reads assigned, sample, and FASTQ file path information for each cell. By default, the cell
specific demultiplexed fastq.gz files are stored in ./Demultiplex folder.

data(barcodeExample, package = "scruff")

de <- demultiplex(project = "example",

experiment = c("1h1", "b1"),

lane = c("L001", "L001"),

read1Path = c(v1h1R1, vb1R1),

read2Path = c(v1h1R2, vb1R2),

barcodeExample,

bcStart = 1,

bcStop = 8,

bcEdit = 1,

umiStart = 9,

umiStop = 12,

keep = 75,

minQual = 10,

yieldReads = 1e+06,

verbose = TRUE,

overwrite = TRUE,

cores = 2)

3.3 Alignment

scruff provides an alignment function alignRsubread which is a wrapper function to align

in Rsubread package. It aligns the reads to reference sequence index and outputs sequence
alignment map files in “BAM” or “SAM” format. For demonstration purpose, the built-in
mitochondrial DNA sequence from GRCm38 reference assembly GRCm38MitochondrialFasta

will be used to map the reads. First, a Rsubread index for the reference sequence needs to be
generated.

Create index files for GRCm38_MT. For details, please refer to Rsubread

user manual.

fasta <- system.file("extdata", "GRCm38_MT.fa", package = "scruff")

NOTE: Rsubread package does not support Windows environment.

if (!requireNamespace("Rsubread", quietly = TRUE)) {

message("Package \"Rsubread\" needed.",

" Please install it if you are using Linux or macOS systems.",

" The function is not available in Windows environment.\n")

} else {

Create index files for GRCm38_MT.

For details, please refer to Rsubread user manual.

Specify the basename for Rsubread index

indexBase <- "GRCm38_MT"

Rsubread::buildindex(basename = indexBase,

reference = fasta,

indexSplit = FALSE)

}

5

https://bioconductor.org/packages/3.9/Rsubread

Process scRNA-Seq reads in scruff

The following command maps the FASTQ files to GRCm38 mitochondrial reference sequence
GRCm38_MT.fa and returns a SingleCellExperiment object. By default, the files are stored in
BAM format in ./Alignment folder.

Align the reads using Rsubread

if (requireNamespace("Rsubread", quietly = TRUE)) {

al <- alignRsubread(de,

indexBase,

unique = FALSE,

nBestLocations = 1,

format = "BAM",

overwrite = TRUE,

verbose = TRUE,

cores = 2)

}

3.4 UMI correction and Generation of Count Matrix

Example GTF file GRCm38_MT.gtf will be used for feature counting. Currently, scruff applies
the union counting mode of the HTSeq Python package. The following command generates
the UMI corrected count matrix for the example dataset by allowing correction of UMIs with
Hamming distances smaller than 1 for each gene in each cell.

gtf <- system.file("extdata", "GRCm38_MT.gtf", package = "scruff")

get the molecular counts of trancsripts for each cell

In experiment 1h1, cell barcodes 95 and 96 are empty well controls.

In experiment b1, cell barcode 95 is bulk sample containing 300 cells.

if (requireNamespace("Rsubread", quietly = TRUE)) {

sce = countUMI(al,

gtf,

umiEdit = 1,

format = "BAM",

cellPerWell = c(rep(1, 94), 0, 0, rep(1, 94), 300, 1),

verbose = TRUE,

cores = 2)

}

3.5 Visualization of QC metrics

The data quality diagnostic information are contained in the colData of the returned Single

CellExperiment object sce. They can be visualized using the qcplots function.

data(sceExample, package = "scruff")

qc <- qcplots(sceExample)

qc

6

Process scRNA-Seq reads in scruff

100

101

102

103

1h
1 b1

Experiment

R
ea

ds

Cells
0
1
300

Total reads

100

101

102

1h
1 b1

Experiment

R
ea

ds

Cells
0
1
300

Reads aligned to reference genome

100

101

102

1h
1 b1

Experiment

R
ea

ds

Cells
0
1
300

Reads mapped to genes

7

Process scRNA-Seq reads in scruff

0.00

0.25

0.50

0.75

1.00

1h
1 b1

Experiment

Cells
0
1
300

Fraction of aligned reads to total reads

0.00

0.25

0.50

0.75

1.00

1h
1 b1

Experiment

Cells
0
1
300

Fraction of gene reads out of aligned reads

0.00

0.25

0.50

0.75

1.00

1h
1 b1

Experiment

Cells
0
1
300

Fraction of gene reads out of total reads

8

Process scRNA-Seq reads in scruff

100

100.5

101

101.5

102

1h
1 b1

Experiment

C
ou

nt
s Cells

0
1
300

Total transcripts

100

100.5

101

101.5

102

1h
1 b1

Experiment

C
ou

nt
s Cells

0
1
300

Mitochondrial transcripts

0.00

0.25

0.50

0.75

1.00

1h
1 b1

Experiment

Cells
0
1
300

Fraction of mitochondrial transcripts

9

Process scRNA-Seq reads in scruff

100

100.25

100.5

100.75

101

101.25

1h
1 b1

Experiment

G
en

es

Cells
0
1
300

Transcribed genes

0.00

0.25

0.50

0.75

1.00

1h
1 b1

Experiment

Cells
0
1
300

Fraction of protein coding genes

0.00

0.25

0.50

0.75

1.00

1h
1 b1

Experiment

Cells
0
1
300

Fraction of protein coding transcripts

10

Process scRNA-Seq reads in scruff

100

100.1

100.2

100.3

1h
1 b1

Experiment

R
ea

ds

Cells
0
1
300

Median number of reads per UMI

100

100.1

100.2

100.3

1h
1 b1

Experiment

R
ea

ds

Cells
0
1
300

Average number of reads per UMI

100

100.1

100.2

100.3

1h
1 b1

Experiment

R
ea

ds

Cells
0
1
300

Median number of reads per corrected UMI

11

Process scRNA-Seq reads in scruff

100

100.2

100.4

100.6

1h
1 b1

Experiment

R
ea

ds

Cells
0
1
300

Average number of reads per corrected UMI

100

102

104

1h
1 b1

Experiment

(G
en

es
 x

 1
00

00
00

 /
to

ta
l r

ea
ds

)

Cells
0
1
300

Genes detected divided by total number of reads sequenced per million

Each of these boxplots shows the distribution of a quality metric within and across experiments.
Y axis shows the number or fraction of these metrics. Each point represents a unique cell
barcode associated with the cells or bulk samples in the wells of the plate. These points are
colored by the cellPerWell parameter which is the number of sorted cells in each well. For
example, in experiment 1h1, cell barcodes 95 and 96 are empty well controls. In experiment
b1, cell barcode 95 is a bulk sample containing 300 cells.

These quality metrics include total reads, aligned reads, reads mapped to genes, fraciont
of aligned reads, fraction of gene reads out of aligned reads, fraction of gene reads out of
total reads, total transcripts, mitochondrial transcripts, fraction of mitochondrial transcripts,
transcribed genes, fraction of protein coding genes and transcripts, median and average
number of reads per corrected or uncorrectd UMI, and gene detection rate.

12

Process scRNA-Seq reads in scruff

3.6 Visualization of Read mapping locations

scruff package provides function to visualize read alignment locations at specified genomic
coordinates on the reference genome. The following command visualize the reads mapped
to gene mt-Rnr2 for the bulk sample vandenBrink_b1_cell_0095. Reads are colored by their
uncorrected UMI tags. bamExample in the following example is a GAlignments object generated
by the readGAlignments function in the GenomicAlignments package. Please refer to the
documentation of readGAlignments and GenomicAlignments for details about how to read
BAM files into R.

Visualize the reads mapped to gene "mt-Rnr2" in

cell "vandenBrink_b1_cell_0095".

bamExample is generated by GenomicAlignments::GAlignments function

data(bamExample, package = "scruff")

gene mt-Rnr2 starts at 1094 and ends at 2675

start <- 1094

end <- 2675

g1 <- rview(bamExample, chr = "MT", start = start, end = end)

g2 <- gview(gtf, chr = "MT", start = start, end = end)

g <- ggbio::tracks(g1, g2, heights = c(4,1), xlab = "chr MT")

g

0

25

50

75

100

125

mt−Rnr2−201

1000 1500 2000 2500

chr MT

This plot shows the read alignment information for gene mt-RNA2. The top panel shows the
alignment and orientation of each read aligned to this gene. Y axis indicates the number of
aligned reads at specific locations. Each arrow represents a read. The length of the arrow
indicates the length of the read. The reads are colored by their UMI tags. In the bottom panel,
each arrow represents an isoform of the gene. The isoforms are named by their transcript
names. The grey boxes indicate the exonic regions of the transcript. X axis is the genomic
coordinates on the corresponding chromosome (e.g. chr MT). It is consistent between the top
and bottom panels if legend is set to FALSE for rview function.

13

https://bioconductor.org/packages/3.9/GenomicAlignments
https://bioconductor.org/packages/3.9/GenomicAlignments

Process scRNA-Seq reads in scruff

4 10X BAM File Quality Assessment

The function tenxBamqc collects QC metrics from BAM files generated by 10X Cell Ranger
pipeline. The collected QC metrics can be visualized by the function qcplots. The collected
measurements include number of aligned reads and number of reads aligned to an gene for
each valid cell barcode. Users can see the alignment quality for the filtered cells after plugging
in the filtered barcode file from the Cell Ranger results. Here we show the visualization of an
example BAM file from Cell Ranger output.

The following example BAM file is the first 5000 BAM file records extracted

from sample 01 of the 1.3 Million Brain Cells dataset from E18 Mice.

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/

1M_neurons)

The BAM file for sample 01 is downloaded from here:

http://sra-download.ncbi.nlm.nih.gov/srapub_files/

SRR5167880_E18_20160930_Neurons_Sample_01.bam

see details here:

https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP096558

and here:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93421

bamfile10x <- system.file("extdata",

"SRR5167880_E18_20160930_Neurons_Sample_01_5000.bam",

package = "scruff")

The filtered cell barcodes are generated using the following script:

library(TENxBrainData)

library(data.table)

tenx <- TENxBrainData()

get filtered barcodes for sample 01

filteredBcIndex <- tstrsplit(colData(tenx)[, "Barcode"], "-")[[2]] == 1

filteredBc <- colData(tenx)[filteredBcIndex,][["Barcode"]]

filteredBc <- system.file("extdata",

"SRR5167880_E18_20160930_Neurons_Sample_01_filtered_barcode.tsv",

package = "scruff")

QC results are saved to current working directory

qcDt <- tenxBamqc(bam = bamfile10x,

experiment = "Neurons_Sample_01",

filter = filteredBc)

tenxBamqc(bam = bamfile10x, experiment = "Neurons_Sample_01",

filter = filteredBc)

qcDt

class: SingleCellExperiment

dim: 1 1576

metadata(0):

assays(1): ''

rownames: NULL

rowData names(0):

colnames(1576): AAACCTGAGGCCCGTT-Neurons_Sample_01

AAACCTGAGTCCGGTC-Neurons_Sample_01 ...

TTTGTCATCGGTGTTA-Neurons_Sample_01

TTTGTCATCTTGTATC-Neurons_Sample_01

14

Process scRNA-Seq reads in scruff

colData names(5): cell_barcode reads_mapped_to_genome

reads_mapped_to_genes experiment number_of_cells

reducedDimNames(0):

spikeNames(0):

g <- qcplots(qcDt)

g

100

100.5

101

Neu
ro

ns
_S

am
ple

_0
1

Experiment

R
ea

ds Cells
TRUE

Reads aligned to reference genome

100

100.25

100.5

100.75

101

Neu
ro

ns
_S

am
ple

_0
1

Experiment

R
ea

ds Cells
TRUE

Reads mapped to genes

15

Process scRNA-Seq reads in scruff

0.00

0.25

0.50

0.75

1.00

Neu
ro

ns
_S

am
ple

_0
1

Experiment

Cells
TRUE

Fraction of gene reads out of aligned reads

5 Session Information

R version 3.6.1 (2019-07-05)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: OS X El Capitan 10.11.6

##

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] GenomicFeatures_1.36.4 AnnotationDbi_1.46.1 Biobase_2.44.0

[4] GenomicRanges_1.36.1 GenomeInfoDb_1.20.0 IRanges_2.18.3

[7] S4Vectors_0.22.1 BiocGenerics_0.30.0 scruff_1.2.5

[10] BiocStyle_2.12.0

##

loaded via a namespace (and not attached):

[1] ProtGenerics_1.16.0 bitops_1.0-6

[3] matrixStats_0.55.0 bit64_0.9-7

[5] RColorBrewer_1.1-2 progress_1.2.2

[7] httr_1.4.1 tools_3.6.1

[9] backports_1.1.5 R6_2.4.0

[11] rpart_4.1-15 Hmisc_4.2-0

[13] DBI_1.0.0 lazyeval_0.2.2

16

Process scRNA-Seq reads in scruff

[15] colorspace_1.4-1 nnet_7.3-12

[17] withr_2.1.2 tidyselect_0.2.5

[19] gridExtra_2.3 prettyunits_1.0.2

[21] GGally_1.4.0 curl_4.2

[23] bit_1.1-14 compiler_3.6.1

[25] graph_1.62.0 htmlTable_1.13.2

[27] DelayedArray_0.10.0 labeling_0.3

[29] rtracklayer_1.44.4 bookdown_0.14

[31] ggbio_1.32.0 checkmate_1.9.4

[33] scales_1.0.0 RBGL_1.60.0

[35] stringr_1.4.0 digest_0.6.21

[37] Rsamtools_2.0.2 foreign_0.8-72

[39] rmarkdown_1.16 XVector_0.24.0

[41] Rsubread_1.34.7 dichromat_2.0-0

[43] base64enc_0.1-3 pkgconfig_2.0.3

[45] htmltools_0.4.0 ensembldb_2.8.0

[47] BSgenome_1.52.0 ggthemes_4.2.0

[49] htmlwidgets_1.5 rlang_0.4.0

[51] rstudioapi_0.10 RSQLite_2.1.2

[53] hwriter_1.3.2 BiocParallel_1.18.1

[55] acepack_1.4.1 dplyr_0.8.3

[57] VariantAnnotation_1.30.1 RCurl_1.95-4.12

[59] magrittr_1.5 GenomeInfoDbData_1.2.1

[61] Formula_1.2-3 Matrix_1.2-17

[63] Rcpp_1.0.2 munsell_0.5.0

[65] stringi_1.4.3 yaml_2.2.0

[67] SummarizedExperiment_1.14.1 zlibbioc_1.30.0

[69] plyr_1.8.4 grid_3.6.1

[71] blob_1.2.0 crayon_1.3.4

[73] lattice_0.20-38 Biostrings_2.52.0

[75] splines_3.6.1 hms_0.5.1

[77] zeallot_0.1.0 knitr_1.25

[79] pillar_1.4.2 reshape2_1.4.3

[81] biomaRt_2.40.5 XML_3.98-1.20

[83] glue_1.3.1 evaluate_0.14

[85] ShortRead_1.42.0 biovizBase_1.32.0

[87] latticeExtra_0.6-28 data.table_1.12.4

[89] BiocManager_1.30.4 vctrs_0.2.0

[91] gtable_0.3.0 purrr_0.3.2

[93] reshape_0.8.8 assertthat_0.2.1

[95] ggplot2_3.2.1 xfun_0.10

[97] AnnotationFilter_1.8.0 survival_2.44-1.1

[99] SingleCellExperiment_1.6.0 OrganismDbi_1.26.0

[101] tibble_2.1.3 GenomicAlignments_1.20.1

[103] memoise_1.1.0 cluster_2.1.0

17

	1 Introduction
	2 Quick Start
	3 Stepwise Tutorial For CEL-Seq Samples
	3.1 Load Example Dataset
	3.2 Demultiplex and Assign Cell Specific Reads
	3.3 Alignment
	3.4 UMI correction and Generation of Count Matrix
	3.5 Visualization of QC metrics
	3.6 Visualization of Read mapping locations

	4 10X BAM File Quality Assessment
	5 Session Information

