
An introduction to rScudo

Matteo Ciciani ∗1, Thomas Cantore 1, and Mario Lauria 2,3

1Centre for Integrative Biology (CIBIO), University of Trento, Italy
2Department of Mathematics, University of Trento, Italy
3The Microsoft Research-University of Trento Centre for Computational and Systems Biology
(COSBI), Rovereto, Italy
∗matteo.ciciani@gmail.com

2019-05-03

Contents

1 Introduction . 2

2 Method in brief . 2

3 Example workflow of rScudo . 3

3.1 Data preparation . 3

3.2 Analysis of the training set . 3

3.3 Analysis of the testing set . 5

3.4 Example of multigroup analysis 7

3.5 Increasing performance through parameter tuning 9

4 Session info . 10

An introduction to rScudo

1 Introduction

This package implements in R the SCUDO rank-based signature identification method described
in [1] and [2]. SCUDO (Signature-based Clustering for Diagnostic Purposes) is a method
for the analysis and classification of gene expression profiles for diagnostic and classification
purposes. The rScudo package implements the very same algorithm that participated in the
SBV IMPROVER Diagnostic Signature Challenge, an open international competition designed
to assess and verify computational approaches for classifying clinical samples based on gene
expression. SCUDO earned second place overall in the competition, and first in the Multiple
Sclerosis sub-challenge, out of 54 submissions [3].

The method is based on the identification of sample-specific gene signatures and their
subsequent analysis using a measure of signature-to-signature similarity. The computation
of a similarity matrix is then used to draw a map of the signatures in the form of a graph,
where each node corresponds to a sample and a connecting edge, if any, encodes the level of
similarity between the connected nodes (short edge = high similarity; no edge = negligible
similarity). The expected result is the emergence of a partitioning of the set of samples
in separate and homogeneous clusters on the basis of signature similarity (clusters are also
sometimes referred to as communities).

The package has been designed with the double purpose of facilitating experimentation
on different aspects of the SCUDO approach to classification, and enabling performance
comparisons with other methods. Given the novelty of the method, a lot of work remain to
be done in order to fully optimize it, and to fully characterize its classification performance.
For this purpose the package includes features that allow the user to implement his/her
own signature similarity function, and/or clustering and classification methods. It also adds
functions to implement steps that were previously performed manually, such as determining
optimal signature length and computing classification performance indices, in order to facilitate
the application and the evaluation of the method.

2 Method in brief

Starting from gene expression data, the functions scudoTrain and scudoNetwork perform the
basic SCUDO pipeline, which can be summarized in 4 steps:

1. First, fold-changes are computed for each gene. Then, a feature selection step is
performed. The user can specify whether to use a parametric or a non parametric test.
The test used also depends on the number of groups present in the dataset. This step
can be optionally skipped.

2. The subsequent operations include single sample gene ranking and the extraction
of signatures formed by up-regulated and down-regulated genes. The length of the
signatures are customizable. Consensus signtures are then computed, both for up- and
down-regulated genes and for each group. The computation of consensus signatures is
performed aggregating the ranks of the genes in each sample and ranking again the
genes.

3. An all-to-all distance matrix is then computed using a distance similar to the GSEA
(Gene Set Enrichment Analysis) [4]: the distance between two samples is computed
as the mean of the enrichment scores (ES) of the signatures of each sample in the
expression profile of the other sample. The distance function used is customizable.

2

An introduction to rScudo

4. Finally, a user-defined threshold N is used to generate a network of samples. The
distance matrix is treated as an adjacency matrix, but only the distances that fall below
the Nth quantile of distances are used to draw edges in the network. This is performed by
the function scudoNetwork. The network can then be displayed in R or using Cytoscape.

The function scudoTrain returns an object of class scudoResults, which contains sample-
specific gene signatures, consensus gene signatures for each group and the sample distance
matrix.

After the identification of a list of genes that can be used to partition the samples in separated
communities, the same procedure can be applied to a testing dataset. The function scudoTest

performs steps 2 and 3 on a testing dataset, taking into account only the genes selected in
the training phase.

Alteranatively, the function scudoClassify can be used to perform supervised classification.
This function takes as input a training set, containing samples with known classification, and
a testing set of samples with unknown classification. For each sample in the testing set, the
function computes a network formed by all the samples in the training set and a single sample
from the training set. Then, classification scores are computed for each sample in the testing
set looking at the neighbors of that sample in the network. See the documentation of the
function for a detailed description of the computation of the classification scores.

3 Example workflow of rScudo

3.1 Data preparation

In this example we will use the ALL dataset, containing gene expression data from T- and B-
cells acute lymphoblastic leukemia patients. In this first part, we are interested in distinguishing
B-cells and T-cells samples, based on gene expression profiles. We begin by loading relevant
libraries and subsetting the dataset, dividing it in a training and a testing set, using the
function createDataPartition from the package caret.

library(rScudo)

library(ALL)

data(ALL)

bt <- as.factor(stringr::str_extract(pData(ALL)$BT, "^."))

set.seed(123)

inTrain <- caret::createDataPartition(bt, list = FALSE)

trainData <- ALL[, inTrain]

testData <- ALL[, -inTrain]

3.2 Analysis of the training set

We start by analyzing the training set. We first run scudoTrain, which returns an object of
class ScudoResults.

3

https://bioconductor.org/packages/3.9/ALL
https://CRAN.R-project.org/package=caret

An introduction to rScudo

trainRes <- scudoTrain(trainData, groups = bt[inTrain], nTop = 100,

nBottom = 100, alpha = 0.1)

trainRes

#> Object of class ScudoResults

#> Result of scudoTrain

#>

#> Number of samples : 65

#> Number of groups : 2

#> B : 48 samples

#> T : 17 samples

#> upSignatures length : 100

#> downSignatures length : 100

#> Fold-changes : computed

#> grouped : No

#> Feature selection : performed

#> Test : Wilcoxon rank sum test

#> p-value cutoff : 0.1

#> p.adjust method : none

#> Selected features : 4286

From this object we can extract the signatures for each sample and the consensus signatures
for each group.

upSignatures(trainRes)[1:5,1:5]

#> 04007 04010 04016 06002 08012

#> 1 36638_at 33273_f_at 36575_at 38355_at 38604_at

#> 2 34362_at 33274_f_at 40511_at 37283_at 1857_at

#> 3 37006_at 38514_at 37623_at 40456_at 878_s_at

#> 4 1113_at 39318_at 547_s_at 41273_at 38355_at

#> 5 40367_at 35530_f_at 37187_at 2036_s_at 37921_at

consensusUpSignatures(trainRes)[1:5,]

#> B T

#> 1 37039_at 38319_at

#> 2 35016_at 33238_at

#> 3 39839_at 38147_at

#> 4 38095_i_at 37078_at

#> 5 38096_f_at 2059_s_at

The function scudoNetwork can be used to generate a network of samples from the object
trainRes. This function returns an igraph object. The parameter N controls the percentage
of edges to keep in the network. We can plot this network using the function scudoPlot.

trainNet <- scudoNetwork(trainRes, N = 0.25)

scudoPlot(trainNet, vertex.label = NA)

4

https://CRAN.R-project.org/package=igraph

An introduction to rScudo

B
T

You can also render the network in Cytoscape, using the function scudoCytoscape. Note that
Cytoscape has to be open when running this function.

scudoCytoscape(trainNet)

Since we obtained a very good separation of the two groups, we proceed to analyze the testing
set.

3.3 Analysis of the testing set

We can use a ScudoResults object and the function scudoTest to analyze the testing set.
The feature selection is not performed in the testing set. Instead, only the features selected in
the training step are used in the analysis of the testing set.

testRes <- scudoTest(trainRes, testData, bt[-inTrain], nTop = 100,

nBottom = 100)

testRes

#> Object of class ScudoResults

#> Result of scudoTest

#>

#> Number of samples : 63

#> Number of groups : 2

#> B : 47 samples

#> T : 16 samples

#> upSignatures length : 100

#> downSignatures length : 100

#> Fold-changes : computed

#> grouped : No

We can generate a network of samples and plot it.

5

An introduction to rScudo

testNet <- scudoNetwork(testRes, N = 0.25)

scudoPlot(testNet, vertex.label = NA)

B
T

We can use a community clustering algorithm to identify clusters of samples. In the following
example we use the function cluster_spinglass from the package igraph to perform clustering
of our network. In Cytoscape we can perform a similar analysis using clustering functions
from the clusterMaker app.

testClust <- igraph::cluster_spinglass(testNet, spins = 2)

plot(testClust, testNet, vertex.label = NA)

6

https://CRAN.R-project.org/package=igraph

An introduction to rScudo

3.3.1 Supervised classification

scudoClassify performs supervised classification of sample in a testing set using a model
built from samples in a training set. It uses a method based on neighbors in the graph to
assign a class label to each sample in the testing set. We suggest to use the same N, nTop,
nBottom and alpha that were used in the training step.

classRes <- scudoClassify(trainData, testData, N = 0.25, nTop = 100,

nBottom = 100, trainGroups = bt[inTrain], alpha = 0.1)

Classification performances can be explored using the confusionMatrix function from caret.

caret::confusionMatrix(classRes$predicted, bt[-inTrain])

#> Confusion Matrix and Statistics

#>

#> Reference

#> Prediction B T

#> B 47 0

#> T 0 16

#>

#> Accuracy : 1

#> 95% CI : (0.9431, 1)

#> No Information Rate : 0.746

#> P-Value [Acc > NIR] : 9.632e-09

#>

#> Kappa : 1

#>

#> Mcnemar's Test P-Value : NA

#>

#> Sensitivity : 1.000

#> Specificity : 1.000

#> Pos Pred Value : 1.000

#> Neg Pred Value : 1.000

#> Prevalence : 0.746

#> Detection Rate : 0.746

#> Detection Prevalence : 0.746

#> Balanced Accuracy : 1.000

#>

#> 'Positive' Class : B

#>

3.4 Example of multigroup analysis

The analysis can also be performed on more than two groups. In this section, we try to predict
the stage of B-cells ALL using gene expression data. We focus only on stages B1, B2 and B3,
since they have a suitable sample size.

isB <- which(as.character(ALL$BT) %in% c("B1", "B2", "B3"))

ALLB <- ALL[, isB]

stage <- ALLB$BT[, drop = TRUE]

table(stage)

7

https://CRAN.R-project.org/package=caret

An introduction to rScudo

#> stage

#> B1 B2 B3

#> 19 36 23

We divide the dataset in a training and a testing set and we apply scudoTrain, identifying
suitable parameter values. Then, we perform supervised classification of the samples in the
testing set using the function scudoClassify.

inTrain <- as.vector(caret::createDataPartition(stage, p = 0.6, list = FALSE))

stageRes <- scudoTrain(ALLB[, inTrain], stage[inTrain], 100, 100, 0.01)

stageNet <- scudoNetwork(stageRes, 0.2)

scudoPlot(stageNet, vertex.label = NA)

B2
B1
B3

classStage <- scudoClassify(ALLB[, inTrain], ALLB[, -inTrain], 0.25, 100, 100,

stage[inTrain], alpha = 0.01)

caret::confusionMatrix(classStage$predicted, stage[-inTrain])

#> Confusion Matrix and Statistics

#>

#> Reference

#> Prediction B1 B2 B3

#> B1 6 3 1

#> B2 1 10 1

#> B3 0 1 7

#>

#> Overall Statistics

#>

#> Accuracy : 0.7667

#> 95% CI : (0.5772, 0.9007)

#> No Information Rate : 0.4667

#> P-Value [Acc > NIR] : 0.0008038

#>

8

An introduction to rScudo

#> Kappa : 0.6441

#>

#> Mcnemar's Test P-Value : 0.5724067

#>

#> Statistics by Class:

#>

#> Class: B1 Class: B2 Class: B3

#> Sensitivity 0.8571 0.7143 0.7778

#> Specificity 0.8261 0.8750 0.9524

#> Pos Pred Value 0.6000 0.8333 0.8750

#> Neg Pred Value 0.9500 0.7778 0.9091

#> Prevalence 0.2333 0.4667 0.3000

#> Detection Rate 0.2000 0.3333 0.2333

#> Detection Prevalence 0.3333 0.4000 0.2667

#> Balanced Accuracy 0.8416 0.7946 0.8651

3.5 Increasing performance through parameter tuning

Parameters such as nTop and nBottom can be optimally tuned using techniques such as
cross-validation. The package caret offers a framework to perform grid search for parameters
tuning. Here we report an example of cross-validation, in the context of the multigroup
analysis previously performed. Since feature selection represents a performance bottleneck,
we perform it before the cross-validation. Notice that we also transpose the dataset, since
functions in caret expect features on columns and samples on rows.

trainData <- exprs(ALLB[, inTrain])

virtControl <- rowMeans(trainData)

trainDataNorm <- trainData / virtControl

pVals <- apply(trainDataNorm, 1, function(x) {

stats::kruskal.test(x, stage[inTrain])$p.value})

trainDataNorm <- t(trainDataNorm[pVals <= 0.01,])

We use the function scudoModel to generate a suitable input model for train. scudo

Model takes as input the parameter values that have to be explored and generates all
possible parameter combinations. We then call the function trainControl to specify control
parameters for the training procedure and perform it using train. Then we run scudoClassify

on the testing set using the best tuning parameters found by the cross-validation. We use
parallelization to speed up the cross-validation.

cl <- parallel::makePSOCKcluster(2)

doParallel::registerDoParallel(cl)

model <- scudoModel(nTop = (2:6)*20, nBottom = (2:6)*20, N = 0.25)

control <- caret::trainControl(method = "cv", number = 5,

summaryFunction = caret::multiClassSummary)

cvRes <- caret::train(x = trainDataNorm, y = stage[inTrain], method = model,

trControl = control)

parallel::stopCluster(cl)

9

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret

An introduction to rScudo

classStage <- scudoClassify(ALLB[, inTrain], ALLB[, -inTrain], 0.25,

cvRes$bestTune$nTop, cvRes$bestTune$nBottom, stage[inTrain], alpha = 0.01)

caret::confusionMatrix(classStage$predicted, stage[-inTrain])

#> Confusion Matrix and Statistics

#>

#> Reference

#> Prediction B1 B2 B3

#> B1 6 4 1

#> B2 1 9 0

#> B3 0 1 8

#>

#> Overall Statistics

#>

#> Accuracy : 0.7667

#> 95% CI : (0.5772, 0.9007)

#> No Information Rate : 0.4667

#> P-Value [Acc > NIR] : 0.0008038

#>

#> Kappa : 0.6512

#>

#> Mcnemar's Test P-Value : 0.2838861

#>

#> Statistics by Class:

#>

#> Class: B1 Class: B2 Class: B3

#> Sensitivity 0.8571 0.6429 0.8889

#> Specificity 0.7826 0.9375 0.9524

#> Pos Pred Value 0.5455 0.9000 0.8889

#> Neg Pred Value 0.9474 0.7500 0.9524

#> Prevalence 0.2333 0.4667 0.3000

#> Detection Rate 0.2000 0.3000 0.2667

#> Detection Prevalence 0.3667 0.3333 0.3000

#> Balanced Accuracy 0.8199 0.7902 0.9206

4 Session info

sessionInfo()

#> R version 3.6.0 (2019-04-26)

#> Platform: x86_64-apple-darwin15.6.0 (64-bit)

#> Running under: OS X El Capitan 10.11.6

#>

#> Matrix products: default

#> BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

#> LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

#>

#> locale:

#> [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

#>

10

An introduction to rScudo

#> attached base packages:

#> [1] parallel stats graphics grDevices utils datasets methods

#> [8] base

#>

#> other attached packages:

#> [1] ALL_1.25.0 Biobase_2.44.0 BiocGenerics_0.30.0

#> [4] rScudo_1.0.0 BiocStyle_2.12.0

#>

#> loaded via a namespace (and not attached):

#> [1] tidyselect_0.2.5 xfun_0.6 reshape2_1.4.3

#> [4] purrr_0.3.2 splines_3.6.0 lattice_0.20-38

#> [7] colorspace_1.4-1 generics_0.0.2 stats4_3.6.0

#> [10] htmltools_0.3.6 yaml_2.2.0 survival_2.44-1.1

#> [13] prodlim_2018.04.18 rlang_0.3.4 e1071_1.7-1

#> [16] ModelMetrics_1.2.2 pillar_1.3.1 withr_2.1.2

#> [19] glue_1.3.1 foreach_1.4.4 plyr_1.8.4

#> [22] lava_1.6.5 stringr_1.4.0 timeDate_3043.102

#> [25] munsell_0.5.0 gtable_0.3.0 recipes_0.1.5

#> [28] codetools_0.2-16 evaluate_0.13 knitr_1.22

#> [31] doParallel_1.0.14 caret_6.0-84 class_7.3-15

#> [34] Rcpp_1.0.1 scales_1.0.0 BiocManager_1.30.4

#> [37] S4Vectors_0.22.0 ipred_0.9-9 ggplot2_3.1.1

#> [40] digest_0.6.18 stringi_1.4.3 bookdown_0.9

#> [43] dplyr_0.8.0.1 grid_3.6.0 tools_3.6.0

#> [46] magrittr_1.5 lazyeval_0.2.2 tibble_2.1.1

#> [49] crayon_1.3.4 pkgconfig_2.0.2 MASS_7.3-51.4

#> [52] Matrix_1.2-17 data.table_1.12.2 lubridate_1.7.4

#> [55] gower_0.2.0 assertthat_0.2.1 rmarkdown_1.12

#> [58] iterators_1.0.10 R6_2.4.0 rpart_4.1-15

#> [61] igraph_1.2.4.1 nnet_7.3-12 nlme_3.1-139

#> [64] compiler_3.6.0

References

[1] Lauria M. Rank-based transcriptional signatures. Systems Biomedicine. 2013;
1(4):228-239.

[2] Lauria M, Moyseos P, Priami C. SCUDO: a tool for signature-based clustering of
expression profiles. Nucleic Acids Research. 2015; 43(W1):W188-92.

[3] Tarca AL, Lauria M, Unger M, Bilal E, Boue S, Kumar Dey K, Hoeng J, Koeppl H,
Martin F, Meyer P, et al. IMPROVER DSC Collaborators. Strengths and limitations of
microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic
Signature Challenge. Bioinformatics. 2013; 29:2892–2899.

[4] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich
A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005;
102(43):15545-15550.

11

	1 Introduction
	2 Method in brief
	3 Example workflow of rScudo
	3.1 Data preparation
	3.2 Analysis of the training set
	3.3 Analysis of the testing set
	3.4 Example of multigroup analysis
	3.5 Increasing performance through parameter tuning

	4 Session info

