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1 Introduction

Biological processes, such as cell/tissue differentiation, involve several regu-
latory networks of transcription factors and signalling inputs. The complexity
of these networks and what these pathways control in terms of downstream gene
networks remains largely unknown.

Using the information contained in few known regulatory elements driving
the expression in a specific biological process, this package predicts new cis-
regulatory modules (CRMs) using support vector machine (SVM) learning of
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transcription factor binding sites (TFBS) motifs, next-generation sequencing
(NGS) data signal and any set of pre-calculated values. This vignette uses
Drosophila data, but the package can be used with any species and has been
tested with human data.

2 Description

2.1 Data

The data were generated by collecting experimentally validated CRMs and
random genomic coordinates. In this example, we focused in CRMs involved
in heart differentiation in Drosophila melanogater and ortholog regions in other
Drosophila species. The genomic sequences were scanned and scored with 259
Drosophila Position-Specific Scoring Matrices (PSSMs) using matrix-scan [1].
From these results, a feature matrix (from our mapFeaturesToCRMs function)
containing the training set has been built. It contains a line per genomic region
and a column per feature plus a binary response vector column (1 and -1 for
positive and negative sequences respectively). The files used to produce this
example are stored in the extdata folder of this package.

> library(LedPred)

> data(crm.features)

2.2 Learning from CRM-contained information to predict
new regulatory features

2.2.1 Building the training set

Positive Regions
The positive regions define the template from which new regions will be
predicted. These regions are known to be involved in the process of interest
and we assume that they contain the information specific to this process.

Negative Regions
The negative regions allow the model to learn which information are rele-
vant to describe the positive regions and which are found randomly. These
regions can be provided by the user or computed by shuffling the positive
regions coordinates over a set of background sequences.

Descriptive features: Position-Specific Scoring Matrices
We retrieve the DNA sequences corresponding to the genomic coordinates
and scan them with transcription factor matrices using matrix-scan [1].
This tools computes a p-value with each matrix for each position of the
sequence depending on the likelihood of the site to belong to the matrix
over the likelihood to belong to the background. Both likelihoods are
computed using a markov model. The output is a list of significant p-values
per sequence and region corresponding to binding sites of the transcription
factor (TF) in the sequence. To compute a score per region and TF, we
calculate the sum of the negative logarithm to base 10 of the p-values of
binding sites in a sequence, i.e.

∑
i −log10(p-vali) where i is the index of

the significant p-values corresponding to the binding sites.
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Descriptive features: NGS data
These data can be given in two different formats: (i) Peak files containing
the genomic coordinates in Bed format of regions significantly enriched in
signal. These regions are usually defined by using a peak-calling algorithm.
In this case a binary value is attributed to the region: 1 if there is an
overlap between the region and one or several peaks, 0 otherwise. The
minimal overlap fraction of the region is controlled by the bed.overlap
argument. The default value is 1bp of the region. (ii) Signal files (wig or
bigwig formats, see UCSC help for details) containing the genome-wide
affinity signal. In this case, we compute the average number of reads in
the region.

2.2.2 Optimization of support vector machine model

Machine learning approaches are used to build models that are able to dis-
criminate between positive and negative sets combining and weighting informa-
tion given by some predictors, here we use the presence of instance of PSSMs
in the regions. This model is then used to predict new positive features. The
negative and positive regions are labeled by a binary response vector. The re-
sulting matrix is named the training set. The goal is to define a function as
close as possible to the response vector. The method assigns to each descriptive
feature a weight corresponding to the impact of the feature in the discrimination
between positive and negative regions. Here we propose a method using Sup-
port Vector Machine (SVM) and tested with the linear or radial kernels. This
package is based on the libsvm and can be used in principle with other kernels
of this library [9].

• The SVM with linear kernel assumes that there exists a linear hyper plane
that separates positive and negative data. As it exists an infinity of such
planes, the SVM will maximize the margin between the positive/negative
sets and the plane. The β parameters variance is constrained by the cost
parameter C (1/λ). This parameter allows to avoid overfitting by relaxing
this constrain.

• The radial kernel function is a similarity function which transforms the
descriptive feature space in a space of higher dimension. It assumes that
there is no linear hyperplane able to separate the positive and negative
regions. Two variables are very important: the cost parameter C and
the γ parameter (γ/σ2) which allows to smoothen the similarity function
in order to be more or less stringent. The similarity function returns a
probability between 0 and 1.

The aim of this package is to compute a predictive model general enough
to avoid the overfitting the training set. We propose a sequential pipeline to
achieve this purpose:

2.2.3 Definition of the optimal SVM parameters (γ and C)

We test the different combinations of C and γ parameters given by the user
and return the prediction error computed using cross-validation. At this step,
each set (positive and negative) is partitioned in subsets. One subset of each
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group is used as a training set to predict in the remaining subsets the positive and
negative regions, the error of prediction is then calculated. This error represents
overfitting, which means that the model is too specific to the training set and
fails to generalise and predict new regions.

2.2.4 Sorting and selecting features according to their importance
in the traing set description

The ranked list of features based on decreasing ”importance” is computed
by recursive feature elimination (RFE) [2,3]. During this step, SVM is train on
subsets of the feature.matrix and ranked according to the weight given by the
resulting classifier. A mean rank (”importance”) is attributed to each feature.

To select the optimal number of features, we compute the Cohen’s kappa co-
efficient [4] of models built from increasing number of features from the sorted
list of features, the step of the incrementation is defined by the step.nb param-
eter.
The kappa coefficient is defined as:

κ =
Pr(a) − Pr(e)

1 − Pr(e)
(1)

where Pr(a) is the observed accuracy, that is the proportion of well predicted
regions (True Positive TP, True Negative TN) among the total number of regions
(N).

Pr(a) =
TP + TN

N
(2)

Pr(e) is the expected accuracy that represents the accuracy that any random
classifier would be expected to achieve. Pr(e) is defined as:

Pr(e) =
(TP + FN) ∗ (TP + FP )

N
+

(FP + TN) ∗ (FN + TN)

N
(3)

where, TP : True Positive; TN : True Negative; FP : False Positive; FN :
False Negative; N the total number of objects.

Given the optimal parameters and features, we can create now the model.

2.2.5 Plotting the performances of the model

We can evaluate the selected model by plotting the precision/recall, the
precision/cut off, the recall/cut off and the ROC curves. This is performed
using cross-validation results. We used the R package ROCR [5].

precision =
TP

TP + FP
(4)

recall = true positive rate =
TP

TP + FN
(5)

false positive rate =
FP

TN + FP
(6)
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The precision indicate the proportion of true positive among all the regions
predicted as positive. The recall indicates the proportion of true positive de-
tected among all the true positive. Thanks to these curves we can choose the
most appropriate cut off on the probability according to the question. Here we
want to select regions in order to test them experimentally so we want high pre-
cision to avoid false positive. The ROC curve represents the false positive rate
against the truepositiverate, a high area under the resulting curve means that
the model can return high number of positive regions with a low false positive
rate.

2.3 Function description

2.3.1 From bed CRM genomic coordinates to training set matrix

The mapFeaturesToCRMs function takes BED files containing the coordi-
nates of the positive regions and for the negative set a bed file or a set of back-
ground sequences for sampling randomly. Regarding the features, a transfac file
with PSSMs and another file with background frequences, BED or WIG files
for NGS data and a BED files with arbitrary values in the first column. This
function requires a very diverse palette of tools for this computation, namely
RSAT matrix-scan [1], BedTools [7] and IntervalStats [8]. To simplify its use,
the mapFeaturesToCRMs function will connect to a REST server, send the data,
and get the results of the calculations. The result is a list with the matrix as a
data.frame object, and the standard and error logs of the computation.

> dirPath <- system.file("extdata", package="LedPred")

> file.list <- list.files(dirPath, full.names=TRUE)

> background.freq <- file.list[grep("freq", file.list)]

> positive.regions <- file.list[grep("positive", file.list)]

> negative.regions <- file.list[grep("negative", file.list)]

> TF.matrices <- file.list[grep("tf", file.list)]

> ngs.path <- system.file("extdata/ngs", package="LedPred")

> ngs.files=list.files(ngs.path, full.names=TRUE)

> #crm.feature.list <- mapFeaturesToCRMs(URL = 'http://ifbprod.aitorgonzalezlab.org/map_features_to_crms.php', positive.bed=positive.regions, negative.bed=negative.regions, background.freqs=background.freq, pssm=TF.matrices, genome="dm3", ngs=ngs.files, crm.feature.file = "vignette_crm.features.tab", stderr.log.file = "vignette_stderr.log", stdout.log.file = "vignette_stdout.log")

> #names(crm.feature.list)

> #class(crm.feature.list$crm.features)

2.3.2 Scaling of the CRM feature matrix

The PSSM calculation returns feature vectors with values organized similar
to negative exponential distributions and average of around 0.08. The intersec-
tion of BED files with the sequences return mostly zero values and and some
ones. To bring both values to the same range all values are divided internally
with the Euclidean length of the feature vector.

2.3.3 SVM parameter optimization

The mcTune function is a modified version of the function tune from package
e1071 that uses parallel computation [6]. It tests the different combinations of
cost C and gamma parameters given as vectors in a list and will return the
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prediction error computed during the cross-validation step. The results is a list
containing the best parameters (Fig. 1)..

> #crm.features=crm.feature.list$crm.features

> #cost.vector <- c(1,3,10)

> #gamma.vector <- c(1,3,10)

> #c.g.obj <- mcTune(data = crm.features, ranges = list(cost=cost.vector, gamma=gamma.vector), kernel='linear', file.prefix = "vignette")

> #names(c.g.obj)

> #cost <- c.g.obj$e1071.tune.obj$best.parameters$cost

> #gamma <- c.g.obj$e1071.tune.obj$best.parameters$gamma

Figure 1: Error prediction by SVM linear kernel method. We use the same plot
for linear and radial kernel mcTune optimization but gamma does not give any
information for the linear kernel.

2.3.4 Features ranking

The rankFeatures function performs a Recursive Feature Elimination (RFE)
and return a data.frame object containing the ranked features list, their ID
(number of the column in the feature matrix) and the average rank.

> #feature.ranking <- rankFeatures(data=crm.features, cost=cost, gamma=gamma, kernel='linear', file.prefix = "vignette")

> #head(feature.ranking)
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2.3.5 Selecting features

The tuneFeatureNb function computes the kappa measure on the feature ma-
trix in which the features are ranked according to their decreasing importance.
It starts with one feature and increases the number of features included in the
matrix by an step (nb.step argument) until all features are included. This step
depends feature.ranking object from the step before. The returned object is a
list contaning a data frame summarizing the kappa coefficient for the different
number of features included in the model. We keep the number corresponding
to the highest kappa for the following steps (Fig. 2).

> #feature.nb.tuner.obj <- tuneFeatureNb(data=crm.features, feature.ranking=feature.ranking, kernel='linear', cost=cost, gamma=gamma, file.prefix = "vignette")

> #names(feature.nb.tuner.obj)

> #feature.nb.tuner.obj$best.feature.nb

Figure 2: Kappa coefficient showing the performance of the model as a function
of the number of features.

2.3.6 Creating the best model

The createModel function takes the tuned SVM parameters, the ranked fea-
tures and the optimal number of features and returns a SVM model.

> #feature.nb <- 60

> #model.obj <- createModel(data=crm.features, cost=cost, gamma=gamma, feature.ranking=feature.ranking, feature.nb=feature.nb, file.prefix="vignette")

> #names(model.obj)

> #model.obj$model
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An interesting information is the sign of the feature weights, which tells
whether the feature is over- or under-represented in the positive or negative
sets. It can be shown for each feature with this command:

> #feature.weights <- as.data.frame(t(t(model.obj$model$coefs) %*% model.obj$model$SV))

> #head(feature.weights)

2.3.7 Plotting model perfomance

The evaluateModelPerformance function returns a list of prediction probabil-
ities computed during the rounds of cross-validation and plots the performance
results (Fig 3).

> #probs.labels.list <- evaluateModelPerformance(data=crm.features, feature.ranking=feature.ranking, feature.nb=feature.nb, cost=cost, gamma=gamma, file.prefix = "vignette")

Figure 3: Model performance. Four plots and the AUC are given to evaluate
the performance of the model: Precision and recall as a function of the score,
precision versus recall and the ROCR curve with the area under the curve
(AUC).

2.3.8 Using the model to score unknown sequences

In the last step, we want the model to score unknown sequences. With this
aim, we need first to create a numerical matrix for the unknown sequences with
the best features. This matrix can be created by our mapFeaturesToCRMs func-
tion using the feature.nb and the feature.rank arguments to select the relevant
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features, by setting negative.bed argument at NULL and shuffling argument at
0 to produce a feature matrix that does not contain negative sequences.

> dirPath <- system.file("extdata", package="LedPred")

> file.list <- list.files(dirPath, full.names=TRUE)

> background.freqs <- file.list[grep("freq", file.list)]

> positive.bed <- file.list[grep("prediction_small", file.list)]

> TF.matrices <- file.list[grep("259_matrices_lightNames", file.list)]

> ngs.path <- system.file("extdata/ngs", package="LedPred")

> ngs.files=list.files(ngs.path, full.names=TRUE)

> #prediction.crm.features.list <- mapFeaturesToCRMs(URL = 'http://ifbprod.aitorgonzalezlab.org/map_features_to_crms.php', positive.bed=positive.bed,

> # pssm=TF.matrices, background.freqs=background.freqs,

> # genome='dm3', ngs=ngs.files, feature.ranking=feature.ranking, feature.nb=feature.nb,

> # crm.feature.file = "vignette_pred.crm.features.tab",

> # stderr.log.file = "vignette_pred.stderr.log", stdout.log.file = "vignette_pred.stdout.log")

> #names(prediction.crm.features.list)

> #prediction.crm.features <- prediction.crm.features.list$crm.features

This creates a matrix for the unknown sequences that can be used by the
scoreData function with the model argument to score the sequences of the ma-
trix.

> #pred.test <- scoreData(data=prediction.crm.features, model=model.obj, score.file="vignette_prediction.tab")

> #pred.test

2.3.9 From the matrix to the model in one function

The LedPred function takes the numerical matrix created by mapFeaturesToCRMs
and runs sequentially all functions needed to create the model. It returns a list
containing all the objects produced at each each step.

> crm.features=data(crm.features)

> cost.vector <- c(1,3,10)

> gamma.vector <- c(1,3,10)

> #ledpred.obj=LedPred(data=crm.features, cl=1, ranges = list(cost=cost.vector, gamma=gamma.vector), kernel="linear", file.prefix="vignette2")

> #names(ledpred.obj)

We annotate test data again

> dirPath <- system.file("extdata", package="LedPred")

> file.list <- list.files(dirPath, full.names=TRUE)

> background.freqs <- file.list[grep("freq", file.list)]

> positive.bed <- file.list[grep("prediction_small", file.list)]

> TF.matrices <- file.list[grep("259_matrices_lightNames", file.list)]

> ngs.path <- system.file("extdata/ngs", package="LedPred")

> ngs.files=list.files(ngs.path, full.names=TRUE)

> #prediction.crm.features.obj2 <- mapFeaturesToCRMs(URL = 'http://ifbprod.aitorgonzalezlab.org/map_features_to_crms.php', positive.bed=positive.bed,

> # pssm=TF.matrices, background.freqs=background.freqs,

> # genome='dm3', ngs=ngs.files, feature.ranking=ledpred.obj$feature.ranking, feature.nb=ledpred.obj$feature.nb,

> # crm.feature.file = "vignette2_pred.crm.features.tab",

> # stderr.log.file = "vignette2_pred.stderr.log", stdout.log.file = "vignette2_pred.stdout.log")

> #names(prediction.crm.features.obj2)

> #prediction.crm.features2 <- prediction.crm.features.obj2$crm.features
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Now we can score test data

> #pred.test2 <- scoreData(data=prediction.crm.features2, model=ledpred.list$model.obj, score.file="vignette2_prediction.tab")

> #pred.test2

3 Session Information

Here is the output of sessionInfo on the system on which this document was
compiled:

> sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: OS X El Capitan 10.11.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] LedPred_1.18.0 e1071_1.7-1

loaded via a namespace (and not attached):

[1] Rcpp_1.0.1 pillar_1.3.1 compiler_3.6.0 plyr_1.8.4

[5] bitops_1.0-6 class_7.3-15 tools_3.6.0 testthat_2.1.1

[9] jsonlite_1.6 tibble_2.1.1 gtable_0.3.0 lattice_0.20-38

[13] pkgconfig_2.0.2 rlang_0.3.4 parallel_3.6.0 akima_0.6-2

[17] irr_0.84.1 dplyr_0.8.0.1 caTools_1.17.1.2 gtools_3.8.1

[21] plot3D_1.1.1 grid_3.6.0 tidyselect_0.2.5 glue_1.3.1

[25] R6_2.4.0 sp_1.3-1 gdata_2.18.0 ggplot2_3.1.1

[29] purrr_0.3.2 ROCR_1.0-7 magrittr_1.5 scales_1.0.0

[33] gplots_3.0.1.1 assertthat_0.2.1 misc3d_0.8-4 lpSolve_5.6.13

[37] colorspace_1.4-1 KernSmooth_2.23-15 RCurl_1.95-4.12 lazyeval_0.2.2

[41] munsell_0.5.0 crayon_1.3.4
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