
Glimma:
Interactive Graphics for RNA-seq Analyses

User’s Guide

Shian Su, Charity W. Law, Matthew E. Ritchie

First edition 28 January 2016
Last revised 2 May 2019

1

Contents

1 Quick start 3

2 Creating and sharing output 7

3 Multi-dimensional scaling plots 8

4 Mean-difference plots 10
4.1 General . 10
4.2 Plotting options . 11
4.3 Table options . 12

5 XY plots 14

6 Using microarray data 16

7 Appendix 21
7.1 Extra mean-difference plots . 21

7.1.1 edgeR-style analysis . 21
7.1.2 DESeq2-style analysis . 21

7.2 R session information . 21

2

1 Quick start

Glimma is a Bioconductor [11] package for interactive visualization of results from dif-
ferential expression analyses of RNA-sequencing (RNA-seq) and microarray data. Its
functionality is intended to enhance reporting capabilities so that results can be explored
more conveniently by end-users. Glimma, which loosely stands for interactive Graphics
from limma, extends some of the popular plotting capabilities in the limma [1] pack-
age such as multi-dimensional scaling (MDS) plots and mean-difference (MD) plots. For
seamless integration between the analysis by external packages and Glimma’s interactive
plots, Glimma accepts differential expression results from limma, edgeR [3] or DESeq2
[4] packages as input and creates an html page which presents the results interactively.
Figure 1 gives an overview of the input data types and processing functions in Glimma.
The displays within Glimma were inspired by visualisations from Degust software [2].

Figure 1: Overview of workflow showing the input and output types for functions in
Glimma.

The main dataset used in this vignette is taken from an RNA-seq experiment exam-
ining lymphoma cell lines in mice with alterations to the Smchd1 gene [5]. The count
data is available as an edgeR DGEList object within Glimma for 4 wildtype samples and
3 samples that have a null allele of the Smchd1 gene (we call these samples Smchd1-null).

library(Glimma)

library(limma)

library(edgeR)

data(lymphomaRNAseq)

rnaseq <- lymphomaRNAseq

rnaseq$samples$group

[1] Smchd1-null Smchd1-null Smchd1-null Smchd1-null WT WT WT

Levels: WT Smchd1-null

Lowly expressed genes are removed from downstream analysis and TMM-normalisation
[9] is carried out.

3

rnaseq <- rnaseq[rowSums(cpm(rnaseq)>1)>=3,]

rnaseq <- calcNormFactors(rnaseq)

Using the glMDSPlot functon, an interactive MDS plot can be created to examine
the clustering of samples in an unsupervised fashion. Distances in the plot represent
similarities and dissimilarities between samples. Glimma’s MDS plot allows users to
interactively browse through different dimensions of the plot. A MDS plot is created
here using a DGEList object of sample expression and vector specifying sample groups, a
screen-capture of the html output is shown in Figure 2.

groups <- rnaseq$samples$group

glMDSPlot(rnaseq, groups=groups)

Figure 2: Interactive MDS plot where the dimensions displayed in the MDS plot (left)
can be changed by clicking on the associated bars in the barplot (right). Samples, or
points, in the MDS plot are colored by genotype.

We demonstrate the usage of Glimma by carrying out a limma-style analysis and using
the corresponding output as input to Glimma functions. The same functions would work
just as easily on output from edgeR or DESeq2 analyses, where examples of these are
shown explicitly in the Appendix in Section 7. Here, differential expression of genes be-
tween Smchd1-null and wildtype samples is carried out using limma’s voom with quality
weights method [6, 7]. An adjusted p-value cutoff of 5% detects 882 genes as down-
regulated in the Smchd1-null group relative to wildtypes, and 634 genes as up-regulated.

design <- model.matrix(~0+groups)

contrasts <- cbind(Smchd1null.vs.WT=c(-1,1))

vm <- voomWithQualityWeights(rnaseq, design=design)

fit <- lmFit(vm, design=design)

fit <- contrasts.fit(fit, contrasts)

fit <- eBayes(fit)

dt <- decideTests(fit)

summary(dt)

4

Smchd1null.vs.WT

Down 879

NotSig 10083

Up 633

Glimma’s interactive MD plot displays gene-wise log2-fold changes (logFCs) against
average expression values together with a plot of sample expression. This allows users to
see summarised results from all of the genes as a whole whilst being able to scrutinise the
expression of individual genes at the same time. Using the glMDPlot function, a MD plot
is created using fit which is an MArrayLM object, and dt a TestResults object that is used
to highlight differentially expressed (DE) genes. The EList object from voom contains
log2-counts per million (logCPM) values which are used in the plot of sample expression.
A screen-capture of the html output is shown in Figure 3.

glMDPlot(fit, status=dt, counts=vm, groups=groups, side.main="Symbols")

Figure 3: Interactive MD plot where gene-wise logFCs are plotted against mean ex-
pression values (top left). Significantly up- and down-regulated genes are highlighted in
red and blue respectively. A table of associated gene information is displayed (bottom).
Sample expression is displayed for an given gene (top right) by selecting a point in the
main plot or a row in the table.

For a general plot of any two gene-wise summarised statistics, the glXYPlot allows
one to plot any two vectors of equal length against each other and associate these with
sample expression. We display below the R-code for creating a volcano plot using logFC
values and log-odds. It is important to ensure that ordering of genes is the same for the
two vectors and the expression matrix!

5

glXYPlot(x=fit$coef, y=fit$lod, xlab="logFC", ylab="logodds",

status=dt, counts=vm, groups=groups, anno=fit$genes)

6

2 Creating and sharing output

All interactive plots are automatically saved as html files in a “glimma-plots” folder
that is created in the current working directory, unless specified otherwise using the
path and folder arguments. By default MDS plots are saved as “MDS-Plot.html”, MD
plots as “MD-Plot.html”, and XY plots “XY-Plot.html”. Alternate file names can be
specified using the html argument. As each plot is created and saved, an html page is
also launched automatically in your default web browser; launch can be set to FALSE if
this is not desired.

Glimma’s interactive plots can be distributed to collaborators by sharing the complete
“glimma-plots” folder with its contents. Note that sharing html files alone will not work.
In an Rmarkdown analysis report the interactive plots can be included as links in their
relevant sections

7

3 Multi-dimensional scaling plots

Interactive MDS plots show similarities between the transcriptional profile of samples
via unsupervised clustering. Glimma’s MDS plot can be created on expression data in
the form of a numeric matrix, DGEList, Elist, or DESeqDataSet object. Raw counts in an
DGEList are automatically converted by glMDSPlot into logCPM values using normali-
sation factors within the object. For an equivalent plot using an expression matrix, raw
counts need to be manually converted to logCPM values. An example is shown below us-
ing the cpm function in edgeR which takes into account the normalisation factors stored
within the DGEList.

lcpm <- cpm(rnaseq, log=TRUE, normalized.lib.sizes=TRUE)

glMDSPlot(lcpm, groups=groups)

The output contains two key components. On the left is an MDS plot showing two
consecutive dimensions plotted against each other with each sample represented by a
point in the plot. The distance between two samples reflect the leading logFC or typical
logFC of genes separating the samples. By default the top 500 genes are used to calculate
distances unless specified otherwise using the top argument. For more information on
MDS plots, see ?limma::plotMDS.

On the right, a barplot is displayed representing the proportion of variation in the
data that is explained by the dimensions or eigenvectors in the MDS plot. Dimension 1
which explains the largest proportion of variation is associated with the first, left-most
bar. The second bar is associated with dimensions 2, the third bar is for dimensions 3,
and so on. Clicking on a bar on the page will highlight two consecutive bars and display
the associated dimensions in the MDS plot.

Hovering your cursor over each of the points in the MDS plot brings up sample
information such as sample labels and groups which can be specified using the labels and
groups arguments. The coloring of points in the plot are associated with each unique
group label. Typically groups would be a vector specifying the main condition by which
samples are separated, but for more complex experimental designs a dataframe can also
be used to represent multiple categorical variables.

To demonstrate this, a dataframe is created using genotype and sequencing lane
information (all samples were sequenced on lane 4 except for the last sample which was
sequenced on lane 3). An interactive MDS plot is created by using the dataframe to define
groups. The screen-captures in Figure 4 from the html output shows the switching of
sample colors by genotype to sequencing lane, and a change in the displayed dimensions.

groups.df <- as.data.frame(cbind(

genotype=as.character(groups),

lane=c(rep(4,6),3)))

groups.df

genotype lane

1 Smchd1-null 4

2 Smchd1-null 4

3 Smchd1-null 4

4 Smchd1-null 4

8

5 WT 4

6 WT 4

7 WT 3

glMDSPlot(lcpm, groups=groups.df)

Figure 4: Interactive MDS plots showing (A) dimensions 1 and 2 with samples colored
by group (or genotype) and (B) dimensions 2 and 3 with sampled colored by sequencing
lane.

9

4 Mean-difference plots

4.1 General

Mean-difference plots provide a visual summary of the results and are useful for high-
lighting genes with unusually large absolute logFCs amongst all of the genes that are
tested. When “stand out” genes are spotted in the MD plot it is often of interest to see
the expression of individual samples for that gene to check the consistency of expression
within groups and for the potential of outliers. Glimma’s MD plot makes that connection
between summarised results (across all genes) and individual sample expression (for any
selected gene) so that the data can be interrogated more thoroughly by having the two
plots side-by-side.

Figure 5: Layout of MD plots with three key components – two plots on top and a table
below. Green arrows represent the direction of interaction between components.

The interactive MD plot contains three key components which interact with each
other to show multiple aspects of the data in the one display. The layout of such a plot
is shown in Figure 5. The main component is a plot of gene-wise summarised statistics
which takes the top-left panel of the html page. Gene-wise logFCs are plotted against
gene-wise average logCPM values where each point on the plot represents a single gene.
Hovering your cursor over or clicking on a gene (or point) within the main plot brings
the expression of each sample for the selected gene in a plot in the top-right panel At
the same time, associated gene information is displayed in the table below.

Users can simply scroll through the table looking for any gene that is of interest,
or hone into specific genes or groups of genes using the search function in the table.
Clicking on a gene (or row) in the table interacts with both of the plots simultaneously –
the selected gene is highlighted in the MD plot and next to it, the expression each sample
is displayed.

The order of genes displayed in the table can be re-ordered in an increasing or de-
creasing fashion by clicking on the header of a column. This is useful to see which genes
have the smallest raw or adjusted p-value, or for sorting genes into those that are most
up- or down-regulated in terms of logFC. The ordering function in the table used in
conjunction with the search function can be especially powerful as an exploratory tool,

10

for example, one can search by a keyword of interest, say “structural maintanence” and
then order the reduced table of genes by adjusted p-value.

When working with limma output, average expression values, logFCs and associated
gene information are automatically extracted from MArrayLM objects. By default the last
coefficient in the object is used unless specifed otherwise using the coef argument. In it’s
simplest form, glMDSPlot can take an MArrayLM object alone with counts unspecified, as
shown in the R-code below. In this way, only the main plot and table will be displayed.

glMDPlot(fit)

When it is used, counts can be raw or transformed counts (e.g. cpm or logCPM) that
must have the same ordering of genes as in the main argument x. If raw counts are given,
they can be transformed into logCPM values by setting transform to TRUE.

4.2 Plotting options

Sample expression can be sorted into groups using the groups argument, where groups is
a vector matching in length and order to the samples (or columns) in counts. Typically
groups will be a character or factor vector separating samples into different conditions,
as demonstrated in Section 1. However, groups can also be a numeric vector associating
expression values with a covariate of interest, for example, the age of mice at the time of
RNA extraction.

groups.age <- runif(ncol(rnaseq), min=3, max=12)

groups.age

[1] 3.6 10.9 11.2 8.9 7.6 10.4 9.5

In the main plot, up- and down-regulated genes can be highlighted using the status
argument which is a vector containing integer values of -1 to represent down-regulated
genes, 0 for no differential expression, and 1 for up-regulated genes. These values can be
given in the form of a numeric vector that is of the same length and ordering of genes in
x. Alternatively, if a matrix or a TestResults object is supplied, then the column specified
by coef will be used to highlight genes. By default, down-regulated genes are colored in
blue and up-regulated genes are in red. Alternatively, your own colors can be specified
using the cols argument which accepts both R-defined colors such as “blue”, and numeric
values which references your current color palette.

In the side sample expression plot, side.main specifies the column from table which is
used as the main title, for example, side.main= “GeneName”. side.xlab and side.ylab is
used to specify the labels for x- and y- axes. Sample labels which appear when clicking on
or hovering over a point can be changed using the samples argument; and colors of points
can be specified using the sample.cols argument. Other arguments include jitter which
jitters points horizontally to minimise the amount of overlap (does not apply when groups
is numeric), side.log which re-scales the y-axis to a log-scale (but does not transform the
data), and side.gridstep which adds horizontal grid lines to the plot.

Using the age of mice in the sample expression plot, we demonstrate the use of some
of the options described above (Figure 6). Notice that the color of points in both the
MD plot and sample expression plot has changed, and more informative labels have been
specified.

11

cols <- c("yellow","blue","magenta")

sample.cols <- c("limegreen", "purple")[groups]

glMDPlot(fit, status=dt, counts=vm, groups=groups.age,

sample.cols=sample.cols, cols=cols,

side.ylab="logCPM", side.xlab="Age (in months)",

side.main="Symbols", main=colnames(dt))

Figure 6: Interactive MD plot (left) where sample expression (right) has been stratified
by age. The table is not displayed here to highlight changes to MD and sample expression
plots.

4.3 Table options

Gene information is automatically extracted from MArrayLM and DGEList objects and
displayed within the table, along with the values for average gene expression, logFC and
adjusted p-value. glMDPlot does this by looking under the $genes slot of x.

Extra gene annotation can be added to the table using the anno argument. This
would combine and display both the gene information from x and anno, where anno is
a dataframe with the same ordering and number of genes as in x. To display specific
columns in the table use the display.columns argument.

In the example below, we create extra gene annotation, where ID combines gene sym-
bol with Entrez gene ID and DE specifies whether genes are downregulated, upregulated
or not differentially expressed (notDE). Using display.columns, we display only ID and
DE, and full gene names from fit$genes.

ID <- paste(fit$genes$Symbols, fit$genes$GeneID)

DE <- c("downregulated", "notDE", "upregulated")[as.factor(dt)]

anno <- as.data.frame(cbind(ID, DE))

head(anno)

ID DE

1 Abca1 11303 downregulated

2 Abca2 11305 notDE

3 Abcb7 11306 notDE

4 Abcg1 11307 downregulated

12

5 Abi1 11308 notDE

6 Abl1 11350 downregulated

glMDPlot(fit, counts=vm, groups=groups, side.main="ID",

anno=anno, display.columns=c("ID", "GeneName", "DE"))

Figure 7: Interactive MD plot with changes to default gene information displayed in the
table.

Adjusted p-values that are included in the table are automatically calculated using the
Benjamini and Hochberg method [10] on raw p-values stored within x. Other multiple-
testing correction methods that are available in stats::p.adjust can be specified to the
p.adj.method argument.

When performing differential expression analyses using edgeR, the examples in this
section would work by simply replacing limma’s MArrayLM object with either of edgeR’s
DGEExact or DGELRT object; the same goes for DESeqDataSet objects from a DESeq2-
style analysis. LogFC values, average expression values and raw p-values are automat-
ically extracted from all objects. Gene information, however, is only automatically ex-
tracted from the limma and edgeR objects but not for DESeq2. See Subsection ?? and
?? for examples using output from edgeR and DESeq2.

13

5 XY plots

Glimma’s XY plots have the same layout as MD plots (Figure 5) but can be used to
display any gene-wise summary statistic against any other gene-wise summary statistic
as the main plot in the top left panel. The MD plot is essentially the XY plot with
the x-component specified as average logCPM values and the y-component specified as
logFC values. Since the XY plot is for general usage it works with basic R objects
such as vectors, matrices and dataframes, rather than MArrayLM, DGEExact, DGELRT
or DESeqDataSet objects where gene information or raw p-values could otherwise be
automatically extracted. The two main arguments in glXYPlot are x and y, both of
which are numeric vectors of equal length. To create a volcano plot, we specify x as the
logFC between Smchd1-null versus wildtype, and y as the log-odds that the gene is DE.

glXYPlot(x=fit$coef, y=fit$lod)

Since no other information is given to the function, genes are automatically assigned
gene identifiers (GeneID) and labels remain as ‘x’ and ‘y’. The labels can be specified
as something more meaningful, such as ‘logFC’ and ‘logodds’ using the xlab and ylab
arguments.

Other arguments in XY plot are analogous to those that are in the MD plot. In
brief, status and cols are used to highlight DE genes in the main plot; anno adds gene
information to the table where display.columns specifies the columns that are display;
counts is used to add a plot of sample expression with groups separating observations
into different conditions; samples and sample.cols labels and colors points in the sample
expression plot, where jitter is applied to points avoid overlapping, and side.main is used
as the title label.

Using some of the options mentioned, an enhanced version of the volcano plot is
created using the R-code below (Figure 8).

glXYPlot(x=fit$coef, y=fit$lod, xlab="logFC", ylab="logodds",

status=dt, anno=anno, side.main="ID",

counts=vm, groups=groups, sample.cols=sample.cols)

The XY plot allows users to come up with an unlimited number of plotting combi-
nations between any two gene-wise statistcs for a dataset and relate these to sample-
specific expression. It can also be used to compare results between datasets, for example
the logFC from one experiment could be plotted against the logFC from a second ex-
periment, with the corresponding sample expression presented in the left-hand panel as
before.

14

Figure 8: Interactive volcano plot (top left) with DE genes highlighted, and samples in
the sample expression plot (top right) separated into genotype.

15

6 Using microarray data

Although Glimma was developed with RNA-sequencing data analyses in mind and de-
signed to interact specifically with the limma, edgeR and DESeq2, it can be just as easily
applied to microarray data especially when the data is processed with limma.

In this section, we demonstrate the usage of Glimma on an Illumina microarray
dataset taken from a study on the Ezh2 gene in mouse mammary epithelium [13]. The
study includes two cell populations, one that is enriched for mammary stem cells (labeled
as DP) and another that is enriched for luminal progenitor cells (labeled as Lum). In each
population, there are three samples where the Ezh2 gene has been knocked-out (labeled
as cre Ezh2) and three wildtype samples (labeled as ev).

For this dataset, normexp [12] background correction and normalisation was carried
out, and probes are removed from downstream analysis if they were not detected in any
of the samples or are of low quality. Probes are considered as “detected” if they have
a detection score of greater than 0.95, and are considered to have reasonable quality if
it is graded as “Good” or better. The pre-processed expression data is available within
Glimma as an EListRaw object and a targets file of associated sample information is
included.

data(arraydata)

arrays <- arraydata$arrays

targets <- arraydata$targets

dim(arrays)

[1] 10571 12

targets

Array SampleID Condition Chip Section Experiment

1 1 TB.05 DP ev 5233006042 A 2

2 2 TB.04 Lum cre Ezh2 5233006042 B 1

3 3 TB.06 DP cre Ezh2 5233006042 C 2

4 4 TB.01 DP ev 5233006042 D 1

5 5 TB.03 Lum ev 5233006042 E 1

6 6 TB.02 DP cre Ezh2 5233006042 F 1

7 7 TB.08 Lum cre Ezh2 5233006024 A 2

8 8 TB.7 Lum ev 5233006024 B 2

9 9 TB.11 Lum ev 5233006024 C 3

10 10 TB.12 Lum cre Ezh2 5233006024 D 3

11 11 TB.10 DP cre Ezh2 5233006024 E 3

12 12 TB.09 DP ev 5233006024 F 3

An MDS plot is created on the Elist object with samples colored by sample condition,
the Illumina beadchip on which samples were processed on, and experiment number. The
plot shows that samples separate first by cell population (DP and Lum) over Dimension
1 (Figure 9A), and then separate by the beadchip and experiment over Dimension 2 (Fig-
ure 9B,C). Variations in the experimental design are easily explored using the interactive
plot.

16

glMDSPlot(arrays, groups=targets[,c("Condition", "Chip", "Experiment")])

Figure 9: Interactive MDS plot with samples colored by condition (A), beadchip (B)
and experiment (C). The plot showing the proportion of variation explained by each
dimension (top right panel) has been hidden in panels B and C, to highlight the change
in MDS Color Group.

Within each cell population we test for the probes that are DE for Ezh2 knock-out
versus wildtype using a limma-style analysis. Sample conditions and experiment number
is included as parameters used in linear modelling. Using an adjusted p-value of 0.1, 131

17

probes are detected as DE in the mammary stem cell-enriched population, and 85 probes
are detected in the luminal population.

design <- model.matrix(~0+targets$Condition+as.factor(targets$Experiment))

contrasts <- cbind(

DP_Ezh2KO.vs.WT=c(1,-1,0,0,0,0),

Lum_Ezh2KO.vs.WT=c(0,0,1,-1,0,0))

fit <- lmFit(arrays, design)

fit <- contrasts.fit(fit, contrasts)

fit <- eBayes(fit)

dt <- decideTests(fit, p.value=0.1)

summary(dt)

DP_Ezh2KO.vs.WT Lum_Ezh2KO.vs.WT

Down 37 65

NotSig 10440 10486

Up 94 20

A MD plot is created for each of the comparisons, with sample expression grouped
by condition and colored by experiment number. Since gene identifiers are non-unique in
microarray data, probe identifiers are used to label sample expression plots. Amongst the
DE top genes that are displayed (as ranked by adjusted p-value), probe 6940037 is up-
regulated in the comparison of Ezh2 knock-out versus wildtype in both cell populations
(Figure ??).

sample.cols <- c("purple", "magenta", "green")[targets$Experiment]

for (COEF in 1:2) {
glMDPlot(fit, status=dt, coef=COEF, main=colnames(fit)[COEF],

counts=arrays, groups=targets$Condition, sample.cols=sample.cols,

side.ylab="Log-expression", side.main="ProbeID")

}

To take a look at both comparisons at the same time, the logFC for DP Ezh2 knock-
out versus wildtype is plotted against the logFC for Lum Ezh2 knock-out versus wildtype
(Figure 11). Probes that are DE in either one of the comparisons are highlighted in the
plot in black, and probes that are DE in both comparisons are highlighted in the plot in
red. We search specifically for “Ltf” to find probe 6940037 using the table’s search bar.
Probe 6940037 has the largest positive logFC in both comparisons. In general, logFCs
in the two cell populations are postively correlated for the comparison between Ezh2
knock-out versus wildtype.

dt2 <- rep(0, nrow(dt))

dt2[rowSums(dt!=0)==1] <- -1

dt2[rowSums(dt!=0)==2] <- 1

table(dt2)

dt2

-1 0 1

184 10371 16

18

Figure 10: Interactive MD plot for the comparison between Ezh2 knock-out and wild-
type for A) mammary stem cell-enriched samples and B) luminal populations, where
up-regulated genes are colored in red and down-regulated genes are colored in blue.
Samples in the sample expression plot are grouped by condition and colored by experi-
ment number. Both tables in A) and B) show the top DE genes are ranked by adjusted
p-value. Probe 6940037 for gene Ltf is amongst the top DE genes in both comparisons.

19

cols <- c("black", "grey", "red")

glXYPlot(fit$coef[,1], y=fit$coef[,2], xlab="DP", ylab="Lum",

status=dt2, cols=cols, anno=fit$genes, side.main="ProbeID",

counts=arrays, groups=targets$Condition, sample.cols=sample.cols,

side.ylab="Log-expression", main="logFCs")

Figure 11: Interactive plot of logFCs for Ezh2 knock-out versus wildtype in DP (x-axis)
and Lum (y-axis) in the top left panel. Probes that are DE in one comparison are
highlighted in black, and probes that are DE in both comparisons are highlighted in red.
Sample expression is separated into conditions and colored by experiment number. The
table of results is restricted to those that match with “Ltf”.

20

7 Appendix

7.1 Extra mean-difference plots

7.1.1 edgeR-style analysis

In the R code below, DE analysis is carried out using edgeR’s exact test method. A MD
plot is created using a DGEExact object, and dt.edger which is limma’s TestResults object
is used to highlight genes that are detected as differentially expressed. Since raw counts
are given to the glMDPlot function, a logCPM transformation is carried out using the
transform argument. For an analysis using edgeR’s likelihood ratio tests, one can easily
replace the DGEExact object below with a DGELRT object.

groups <- rnaseq$samples$group

design <- model.matrix(~groups)

colnames(design) <- c("WT", "Smchd1null.vs.WT")

rnaseq.edger <- estimateDisp(rnaseq, design=design)

fit.edger <- exactTest(rnaseq.edger)

dt.edger <- decideTestsDGE(fit.edger)

glMDPlot(fit.edger, status=dt.edger, counts=rnaseq, groups=groups, transform=TRUE)

7.1.2 DESeq2-style analysis

Differential expression analysis is carried out here using DESeq2. A MD plot is created
using a DESeqResults object. Genes are highlighted (without distinction between up- or
down-regulation) using the numeric vector dt.deseq2.

BUG regarding the scale of sample expression

library(DESeq2)

rnaseq.deseq2 <- DESeqDataSetFromMatrix(

rnaseq$counts, colData=rnaseq$samples, design=~group)

mcols(rnaseq.deseq2) <- DataFrame(mcols(rnaseq.deseq2), rnaseq$genes)

rnaseq.deseq2 <- DESeq(rnaseq.deseq2)

fit.deseq2 <- results(rnaseq.deseq2, contrast=c("group", "Smchd1-null", "WT"))

dt.deseq2 <- as.numeric(fit.deseq2$padj<0.05)

glMDPlot(fit.deseq2, status=dt.deseq2, counts=rnaseq, groups=groups, transform=FALSE,

samples=colnames(rnaseq), anno=rnaseq$genes)

7.2 R session information

sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: OS X El Capitan 10.11.6

##

21

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] edgeR_3.26.0 limma_3.40.0 Glimma_1.12.0 knitr_1.22

##

loaded via a namespace (and not attached):

[1] compiler_3.6.0 magrittr_1.5 tools_3.6.0 Rcpp_1.0.1 stringi_1.4.3 highr_0.8

[7] grid_3.6.0 locfit_1.5-9.1 jsonlite_1.6 stringr_1.4.0 xfun_0.6 lattice_0.20-38

[13] evaluate_0.13

22

References

[1] Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. (2015) limma
powers differential expression analyses for RNA-sequencing and microarray studies,
Nucleic Acids Research, 43(7):e47.

[2] Powell DR. (2015) Degust: Visualize, explore and appreciate RNA-seq dif-
ferential gene-expression data, http://victorian-bioinformatics-consortium.

github.io/degust/.

[3] Robinson MD, McCarthy DJ, Smyth GK. (2010) edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data, Bioinformatics,
26(1):139–40.

[4] Love MI, Huber W, Anders S. (2014) Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2, Genome Biology, 15(12):550.

[5] Liu R, Chen K, Jansz N, Blewitt ME, Ritchie, ME (2016) Transcriptional profiling
of the epigenetic regulator Smchd1, Genomics Data, 7:144–7.

[6] Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear
model analysis tools for RNA-seq read counts, Genome Biology, 15:R29.

[7] Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME, Asselin-Labat ML,
Smyth GK, Ritchie ME (2015) Why weight? Combining voom with estimates of sample
quality improves power in RNA-seq analyses, Nucleic Acids Research, 43(15):e97.

[8] McCarthy DJ, Smyth GK (2009) Testing significance relative to a fold-change thresh-
old is a TREAT, Bioinformatics, 25(6):765-71.

[9] Robinson MD, Oshlack A (2010) A scaling normalization method for differential ex-
pression analysis of RNA-seq data, Genome Biology, 11:R25.

[10] Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical
and powerful approach to multiple testing, Journal of the Royal Statistical Society
Series B 57, 289-300.

[11] Huber W, Carey V, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo
HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA,
Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A,
Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating
high-throughput genomic analysis with Bioconductor, Nature Methods 12(2):151–121.

[12] Shi W, Oshlack A, Smyth GK (2010) Optimizing the noise versus bias trade-off for
Illumina Whole Genome Expression BeadChips, Nucleic Acids Research 38e204.

[13] Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, Fu N, Breslin K, Jiang K, Ritchie
ME, Young M, Lindeman GJ, Smyth GK, Visvader JE (2013) Global changes in the
mammary epigenome are induced by hormonal cues and coordinated by Ezh2, Cell
Reports 3:411-426.

23

http://victorian-bioinformatics-consortium.github.io/degust/
http://victorian-bioinformatics-consortium.github.io/degust/

	Quick start
	Creating and sharing output
	Multi-dimensional scaling plots
	Mean-difference plots
	General
	Plotting options
	Table options

	XY plots
	Using microarray data
	Appendix
	Extra mean-difference plots
	edgeR-style analysis
	DESeq2-style analysis

	R session information

