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1 Introduction

The main purpose of this package is to analyze metabolic systems and estimate
the biochemical reaction rates in metabolic networks. BiGGR works with the
BiGG [1] database and with files encoded in the Systems Biology Markup Lan-
guage (SBML) from other sources. The BiGG database stores reconstructions
of metabolic networks and is freely accessible. BiGGR is an entirely open source
alternative for a more extensive software package, COBRA 2.0, which is avail-
able for Matlab [2]. BiGGR makes it easy to apply a big variety of open source
R packages to the analysis of metabolic systems. Although it contains less func-
tionality than COBRA, BiGGR may be convenient for R users. The BiGG
system provides metabolic reconstructions on humans, M. barkeri, S. cerevisiae,
H. pylori, E. coli and S. aureus. BiGGR also works with the new reconstruc-
tion of human metabolism Recon 2 [3]. These reconstructions consist of genes,
metabolites, reactions and proteins that are identified and connected with each
other to form a network structure. The BiGGR package provides various func-
tions to interface to the BiGG database, and to perform flux balance analysis
(FBA) after importing selected reactions or pathways from the database. Other
functions included in this package allow users to create metabolic models for
computation, linear optimization routines, and likelihood based ensembles of
possible flux distributions fitting measurement data. To this end, BiGGR in-
terfaces with the LIM package [4]. BiGGR provides models in standard SBML
R object format for each organism within the BiGG database as well as the
new reconstruction of human metabolism from the Biomodels database [3] (see
’data’ directory in the package). This format allows easy construction of the sto-
ichiometric matrix of the entire system which may serve as the core of further
computational analysis. Finally, the package allows automatic visualization of
reaction networks based on a hypergraph framework using the hyperdraw [5]
package.

2 Installation

BiGGR is installed as follows from the R console:

> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")
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> BiocManager::install("BiGGR")

BiGGR depends on the Bioconductor packages rsbml [6], hyperdraw [5]
(which in turn requires the package hypergraph) and the CRAN package LIM
[4]. For detailed installation instructions of the dependencies we refer to the
package documentations at http://www.bioconductor.org/ and http://www.

cran.r-project.org/.

3 Example: A flux balance analysis with BiGGR

The package is imported as follows:

> library("BiGGR")

To get an overview about the functions and databases available in the pack-
age, you can use:

> library(help="BiGGR")

The reference manual which describes all functions of BiGGR in detail can be
found in the documentation directory (’doc’) of the package. In the following we
will provide a step-by-step guide demonstrating a flux estimation procedure in
a model of glycolysis and TCA cycle. The general work flow using this package
consists of the following steps:

• Retrieve a model in SBML object format as provided in the package (al-
ternatively an R object containing the model can be generated from an
SBML file)

• Specify optimization objective and model constraints and create a LIM
model file as input for the linear programmimg package LIM

• Estimate the reaction fluxes with linear programming

• Visualize the results using the hypergraph framework

3.1 Generate Model

There are several ways to create a model within BiGGR:

• Query one of the databases contained in the BiGGR package (use the
command data() to see all available databases). You can query with a
list of genes (function buildSBMLFromGenes), a list of reaction identifiers
(buildSBMLFromReactionIDs) or for specific pathways
(buildSBMLFromPathways).
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• Alternatively: Retrieve a text file with metabolic reactions from the web
interface of the BiGG database (http://bigg.ucsd.edu/bigg/main.pl).
The user can query and select reactions from BiGG which can then be ex-
ported in SBML or text format. BiGG reactions saved in text format can
be converted to an internal SBML object by the function buildSBMLFromBiGG.
An SBML file can be imported using the rsbml_read function from the
rsbml package.

Below we will demonstrate how to build an SBML model from a set of
reaction identifiers using the Recon 1 database. The list of reaction IDs can
be found in the extdata subdirectory in the package. The model comprises the
reactions of glycolysis, pentose-phosphate pathway and TCA cycle [7]:

> ##load reaction identifiers from package examples

> file.name <- system.file("extdata",

+ "brainmodel_reactions.txt",

+ package="BiGGR")

> reaction.ids <- scan(file.name, what=" ")

> ##load database

> data("H.sapiens_Recon_1")

> ##build SBML model

> sbml.model <- buildSBMLFromReactionIDs(reaction.ids, H.sapiens_Recon_1)

The model object sbml.model is an rsbml object of class Model. It has 92
metabolites participating in 73 reactions in 3 compartments.

3.2 Specify constraints, optimization objective and esti-
mate fluxes

After building the model, we specify additional parameters necessary to run
the flux estimation. In the present model, several metabolites are unbalanced
because not all the biochemical reactions involving them are represented inside
the model. Another unbalanced situation is when metabolites accumulate inside
or outside the cell. These metabolites must therefore not be subjected to the
equality constraints (i.e. the steady state constraint) of the linear programming
routine for flux estimation. These metabolites are termed external metabolites
or, in short, externals. The objective of this flux balance analysis is to maximize
the net ATP production in the reaction network given the constraints in the
model. Note that, of course, also minimizing a linear function of fluxes in the
model is possible in BiGGR (’loss’ function as opposed to ’profit’ function).
Below we specify the objective function and the external metabolites.

> ##following term is to be maximized

> maximize <- "R_ATPS4m - R_NDPK1m -R_HEX1 - R_PFK - R_PGK + R_PYK"

> ##specify the external metabolites of the system

> externals <- c("M_glc_DASH_D_e", "M_lac_DASH_L_e", "M_ala_DASH_L_e",

+ "M_gln_DASH_L_e", "M_h2o_e", "M_co2_e",
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+ "M_o2_e", "M_h_e", "M_o2s_m",

+ "M_adp_c", "M_atp_c", "M_pi_c",

+ "M_h_c", "M_nadp_c", "M_nadph_c",

+ "M_na1_c", "M_na1_e", "M_gln_DASH_L_c",

+ "M_nh4_c", "M_pyr_e")

Additional equality and inequality constraints can be given for fluxes for
which the values are known beforehand, e.g. if they rely on experimental mea-
surements. Below we use measurements of cerebral metabolic substrate uptake
and release rates in human brain [8]. BiGGR also alows for setting equality
constraints on fluxes relative to other fluxes. Based on the observation that the
GABA shunt accounts for 32% of the total glucose oxidation in the brain [9]
and that in the pentose phosphate pathway flux in brain amounts to 6.9% of
glycolysis [10], we constrain fluxes for GABA shunt and the entry reaction into
the pentose phosphate pathway accordingly. Equality and inequality constraints
are given as lists in the variables eqns and ineq. Finally a LIM model file is
created using the function createLIMFromSBML.

> ##load lying-tunell data

> data(lying.tunell.data)

> ##set equality constraints

> equation.vars <- c("R_GLCt1r", "R_L_LACt2r", "R_GLNtN1",

+ "R_PYRt2r", "R_GLUDC", "R_G6PDH2r")

> equation.values <- c(as.character(

+ lying.tunell.data[c("glucose", "lactate", "glutamine", "pyruvate"),

+ "median"]),

+ "R_GLCt1r * 0.32", "R_GLCt1r * 0.069" )

> eqns <- list(equation.vars, equation.values)

> ##write LIM file to system's temporary directory

> limfile.path <- tempfile()

> createLIMFromSBML(sbml.model, maximize, equations=eqns,

+ externals=externals, file.name=limfile.path)

3.3 Running simulations to estimate fluxes

BiGGR uses Linear Inverse Models for estimating the fluxes as provided by LIM.
All the functionality of this package can be used in this framework. The function
lsei in LIM provides least squares estimation with equalities and inequalities
which is useful to fit the model to biochemical measurements of metabolite
exchange. The interface to LIM’s lsei in BiGGR is getRates which takes the
model file (or a LIM object) as an input parameter to estimate the fluxes with
respect to the objective function.

> rates <- getRates(limfile.path)
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3.4 Sampling of feasible flux distributions

Experimentally quantified fluxes are always subject to measurement error. In
the above example, the rates for, among others glucose and glutamine uptake
(R GLCt1r and R GLUDC, respectively) and uptake of lactate and pyruvate
(R L LACt2r and R PYRt2r) were fixed. However, it is of interest how the
estimated fluxes vary if measurement error on the known fluxes is taken into
account. BiGGR provides the functionality to calculate the uncertainty of all
estimated fluxes by performing a random walk in the feasible flux space with
a Markov chain Monte Carlo (MCMC) method. To this end, BiGGR provides
an interface to the xsample function from the package limSolve [11]. Ensembles
of feasible flux vectors within the precision limits of the known fluxes can be
sampled with the function sampleFluxEnsemble. As an example, we will sample
an ensemble of 10000 flux vectors within the precision limits of the data [8] given
as the standard deviation. As ’burn-in’, we use 10000 Monte-Carlo steps and we
include each 10th. Thus, in total, 2 ∗ 107 steps are taken. Please note that this
may take a long time, depending on your machine. Starting point for the random
walk is the previously optimized flux vector. For quicker convergence of the
MCMC procedure, we set the jump length manually (see ?sampleFluxEnsemble
for details).

> ##specify the fluxes with uncertainty given as SD in a data frame

> uncertain.vars <- data.frame(var=equation.vars[1:4],

+ value=equation.values[1:4],

+ sd=c(0.058,0.032,0.034,0.004))

> uncertain.vars <- data.frame(var=c(equation.vars[c(1,2,3,4)]),

+ value=as.numeric(c(equation.values[c(1,2,3,4)])),

+ sd=lying.tunell.data[c("glucose",

+ "lactate", "glutamine", "pyruvate"), "sd"])

> limfile.path.ens <- tempfile()

> ##Create new LIM model

> equations <- list(c("R_G6PDH2r", "R_GLUDC", "R_G3PD2m") ,

+ c("R_GLCt1r * 0.069", "R_GLCt1r * 0.32", "0"))

> createLIMFromSBML(sbml.model, maximize, externals=externals,

+ file.name=limfile.path.ens, equations=equations)

> ##sample feasible flux distributions with MCMC

> ensemble <- sampleFluxEnsemble(limfile.path.ens, uncertain.vars,

+ x0=rates, iter=1e5, burninlength=1e4,

+ outputlength=1e4, type="mirror", jmp=0.1)

The sampled posterior distributions can then simply be plotted as histograms
as shown in figure 1 for selected fluxes. Furthermore, it is now possible to
assess the effect of possible measurement error in R GLCt1r and R O2t on other
fluxes present in the system. As an example, we calculate the net rate of ATP
production for the whole ensemble from the linear flux combination R ATPS4m
- R NDPK1m - R HEX1 - R PFK - R PGK + R PYK. Note that the net ATP
production was the profit function of the flux balance analysis presented above.
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> par(mfrow=c(2,2))

> metab <- c(as.vector(uncertain.vars[1:2,1]), "R_SUCD1m")

> for (m in metab){

+ title <- paste(m, "\n(", sbml.model@reactions[[m]]@name, ")", sep="")

+ myhist <- hist(ensemble[,m], breaks=9, plot=FALSE)

+ plot(myhist, ylim=c(0, max(myhist$counts) + max(myhist$counts / 10)),

+ xlab="flux (mmol/min)",main=title, col="cornflowerblue", cex.lab=1.3,

+ xlim=c(min(myhist$breaks) - sd(myhist$breaks),

+ max(myhist$breaks)+sd(myhist$breaks)))

+ text(mean(myhist$mids), max(myhist$counts) + max(myhist$counts / 10),

+ label=bquote(mu== ~.(round(mean(ensemble[,m]),3)) ~

+ "," ~ sigma== ~.(round(sd(ensemble[,m]),3))), cex=1.2)

+ }

> ## get ensemble of net ATP production

> atp.prod.ens <- eval(parse(text=maximize), envir=data.frame(ensemble))

> ##plot ensemble

> title <- paste("Net ATP production")

> myhist <- hist(atp.prod.ens, breaks=9, plot=FALSE)

> plot(myhist, ylim=c(0, max(myhist$counts) +

+ max(myhist$counts / 10)), xlab="flux (mmol/min)",

+ main=title, col="cornflowerblue", cex.lab=1.3,

+ xlim=c(min(myhist$breaks) - sd(myhist$breaks),

+ max(myhist$breaks)+sd(myhist$breaks)))

> text(mean(myhist$mids), max(myhist$counts) + max(myhist$counts / 10),

+ label=bquote(mu== ~.(round(mean(atp.prod.ens),3)) ~

+ "," ~ sigma== ~.(round(sd(atp.prod.ens),3))), cex=1.2)

The spread in the rates of net ATP production is given in the last histogram
in Figure 1. In this way, the uncertainty of the objective function value can
be investigated with respect to possible measurement noise of the fluxes in the
model.

3.5 Visualization of networks and fluxes

BiGGR provides visualization using hypergraphs. To this end, BiGGR uses
the package hyperdraw which in turn uses the Graphviz engine. Hypergraphs
are graphs which can connect multiple nodes by one edge. Metabolites are
represented by nodes and reactions are represented by edges connecting the
nodes. The fluxes of the biochemical reactions can be represented by the width of
the edges (a wider edge corresponds to a higher flux value). An SBML model can
be converted into a hyperdraw object using the function sbml2hyperdraw. Since
many models contain numerous metabolites and reactions, a ’human readable’
automatic graphical representation of the system in one single plot is often
infeasible. Therefore, specific subsets of metabolites and/or reactions can be
passed as an argument to the sbml2hyperdraw function and only metabsolites
or reactions belonging to the specified sets are visualized. Below we will visualize
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Figure 1: Posterior distributions of delected fluxes and the net ATP production
rate after the sampling with Markov Chain Monte Carlo.
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a subset of metabolites and reactions in the glycolytic pathway and parts of the
pentose phosphate pathway, which is a subset of our example model. As a second
argument we pass the reaction rates calculated in 3.3 in order to represent the
reaction rates by the width of the edges.

> relevant.species <- c("M_glc_DASH_D_c", "M_g6p_c", "M_f6p_c",

+ "M_fdp_c", "M_dhap_c", "M_g3p_c",

+ "M_13dpg_c", "M_3pg_c", "M_2pg_c",

+ "M_pep_c", "M_pyr_c",

+ "M_6pgl_c", "M_6pgc_c", "M_ru5p_DASH_D_c",

+ "M_xu5p_DASH_D_c", "M_r5p_c", "M_g3p_c", "M_s7p_c")

> relevant.reactions <- c("R_HEX1", "R_PGI", "R_PFK", "R_FBA", "R_TPI",

+ "R_GAPD", "R_PGK", "R_PGM", "R_ENO", "R_PYK",

+ "R_G6PDH2r", "R_PGL", "R_GND", "R_RPE", "R_RPI", "R_TKT1")

> hd <- sbml2hyperdraw(sbml.model, rates=rates,

+ relevant.species=relevant.species,

+ relevant.reactions=relevant.reactions,

+ layoutType="dot", plt.margins=c(20, 0, 20, 80))

The hypergraph object can then simply be plotted using the plot function:

> plot(hd)

The resulting plot is shown in Figure 2. Flux values are displayed following
each reaction identifier. The forward direction is defined in the BiGG database
according to biochemical conventions, but if the actual calculated flux is back-
wards accroding to the definition the arrow is colored red. Additional graphical
arguments are documented in the help file (see ?sbml2hyperdraw).

Below, we give various reactions and metabolites in the TCA cycle which are
present in our example model and plot all components using a circular layout
(see Figure 3):

> relevant.species <- c("M_cit_m", "M_icit_m" , "M_akg_m",

+ "M_succoa_m", "M_succ_m", "M_fum_m",

+ "M_mal_DASH_L_m", "M_oaa_m")

> relevant.reactions <- c("R_CSm", "R_ACONTm", "R_ICDHxm",

+ "R_AKGDm", "R_SUCOAS1m", "R_SUCD1m",

+ "R_FUMm", "R_MDHm", "R_ICDHyrm", "R_ME1m",

+ "R_ME2m", "R_ASPTAm","R_AKGMALtm", "R_GLUDym",

+ "R_ABTArm", "R_SSALxm","R_CITtam")

> hd <- sbml2hyperdraw(sbml.model, rates=rates,

+ relevant.reactions=relevant.reactions,

+ relevant.species=relevant.species,

+ layoutType="circo", plt.margins=c(150, 235, 150, 230))

> dev.new() ##Open a new plotting device

> plot(hd)
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Figure 2: Estimated fluxes in the glycolytic pathway and parts of the pentose
phosphate pathway. For each reaction, the arrow points in the direction of the
calculated flux. If that is backward relative to the direction defined as forward in
the metabolic reconstruction, the arrow is colored red. Note that only a subset
of all metabolites and reactions is plotted.

In this example, reactions with a flux equal to zero are displayed in grey.
Note that metabolites which are not specified are not plotted, even if reactions in
which they participate are drawn. This is for instance the case for the exchange
reaction below:

M_akg_m + M_mal_DASH_L_c -> M_akg_c + M_mal_DASH_L_m

The visualization function sbml2hyperdraw is not restricted to FBA models, but
sbml2hyperdraw can be used as a generic plotting function for SBML models.
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Figure 3: Estimated fluxes in the citric acid cycle in the mitochondrion.

To this end, in case that no reaction rates are given as argument, all edges are
plotted with the same width and in the same color.

4 Troubleshooting BiGGR

Model building is an iterative process and requires careful selection of param-
eters and arguments. Some of the most common problems and solutions are
described below:

• Infeasible solution: This problem can be encountered when using the
linp method form the LIM package. This problem occurs when the con-
straints provided by the user for the model are conflicting. (A trivial ex-
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ample is that a constraint says that a specific flux is greater than 5 units
and another constraint says the same flux is smaller than 4. Such conflicts
can be much more subtle). The reactions in the model file may sometimes
be defined incorrectly, for instance with regard to their reversibility.

• Visualizing too many metabolites and reactions: If the plotting
area is too small to fit all boxes for metabolites, the following error is
produced by the hyperdraw package:

Error in `[.unit`(pts$x, ref + step) :

Index out of bounds (unit subsetting)

In case you encounter this error when plotting your model, you can con-
sider several possibilities:

– Increase the size of the plotting area: When plotting to the screen,
width and height of the plotting window can be set with the x11()

command. Type ?x11 for more information. Similarly, figure dimen-
sions can be set when plotting to a jpeg, png, pdf, eps etc. device.
Type for instance ?pdf for the documentation.

– Consider plotting only a subset of the metabolites and reactions
in the model. It is possible to pass a list or vector of relevant
species and/or relevant reactions to the function sbml2hyperdraw.
See ?sbml2hyperdraw for more information.

• Resizing the plotting window: Resizing the plotting window after
plotting a model can cause the edges to get distorted. We advice not to
manually resize the plotting window. Instead, if a larger plotting area is
desired, the dimensions of the plotting area can be set as described above.
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