Package 'MAGeCKFlute'

April 16, 2019

Type Package

Title Integrative analysis pipeline for pooled CRISPR functional genetic screens

Version 1.2.3

Date 2019-2-21

Author Wubing Zhang, Feizhen Wu, Binbin Wang

Maintainer Wubing Zhang

Watson5bZhang@gmail.com>

Description MAGeCKFlute is designed to surporting downstream analysis, utilizing the gene summary data provided through MAGeCK or MAGeCK-VISPR. Quality control, normalization, and screen hit identification for CRISPR screen data are performed in pipeline. Identified hits within the pipeline are categorized based on experimental design, and are subsequently interpreted by functional enrichment analysis.

License GPL (>=3)

VignetteBuilder knitr

Depends R (>= 3.5), ggplot2, stats, grDevices, utils, pathview, gridExtra

Suggests knitr, rmarkdown, BiocStyle, org.Mm.eg.db

Imports ggExtra, ggsci, ggrepel, clusterProfiler, png, data.table, pheatmap, sva, DOSE, biomaRt, grid, bladderbatch

LazyData TRUE

NeedsCompilation no

biocViews Software, FunctionalGenomics, CRISPR, ImmunoOncology, BatchEffect, QualityControl, Normalization, GeneSetEnrichment, Pathways, Visualization

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/MAGeCKFlute

git_branch RELEASE_3_8

git_last_commit 0df39fe

git_last_commit_date 2019-02-21

Date/Publication 2019-04-15

R topics documented:

Index

arrangePathview	3
BatchRemove	4
CellCycleView	5
CorrView	6
countsummary	7
CutoffCalling	7
DensityDiffView	8
Density View	9
enrich.GSE	10
enrich.HGT	11
enrich.ORT	
EnrichAB	13
EnrichedGeneView	14
EnrichedGSEView	15
EnrichedView	16
enrichment_analysis	
EnrichSquare	
FluteMLE	
FluteRRA	
getOrg	24
HeatmapView	
IdentBarView	
KeggPathwayView	
MapRates View	
MAView	
mle.gene_summary	32
noEnrichPlot	
normalize.loess	
NormalizeBeta	
RankView	35
ReadBeta	36
ReadGMT	36
ReadRRA	37
ReadsgRRA	
rra.gene_summary	
rra.sgrna_summary	
ScatterView	
Selector	40
sgRankView	41
SquareView	42
TransGeneID	
ViolinView	
VolcanoView	
Zuber_Essential	
=	

47

arrangePathview 3

arrangePathview	Kegg pathway view and arrange grobs on page

Description

Kegg pathway view and arrange grobs on page.

Usage

```
arrangePathview(genelist, pathways = c(), top = 4, ncol = 2,
  title = "Group A", sub = "Negative control normalized",
  organism = "hsa", view_allpath = FALSE, output = ".",
  path.archive = ".", kegg.native = TRUE)
```

Arguments

genelist	a data frame with columns of ENTREZID, Control and Treatment. The columns of Control and Treatment represent gene score in Control and Treatment sample.
pathways	character vector, the KEGG pathway ID(s), usually 5 digit, may also include the 3 letter KEGG species code.
top	integer, specifying how many top enriched pathways to be visualized.
ncol	integer, specifying how many column of figures to be arranged in each page.
title	optional string, or grob.
sub	optional string, or grob.
organism	character, either the kegg code, scientific name or the common name of the target species. This applies to both pathway and gene.data or cpd.data. When KEGG ortholog pathway is considered, species="ko". Default species="hsa", it is equivalent to use either "Homo sapiens" (scientific name) or "human" (common name).
view_allpath	boolean, specifying whether view all pathways. Default view_allpath='FALSE', and only plot top enriched pathways.
output	Path to save plot to.
path.archive	character, the directory of KEGG pathway data file (.xml) and image file (.png). Users may supply their own data files in the same format and naming convention of KEGG's (species code + pathway id, e.g. hsa04110.xml, hsa04110.png etc) in this directory. Default kegg.dir="." (current working directory).
kegg.native	logical, whether to render pathway graph as native KEGG graph (.png) or using graphviz layout engine (.pdf). Default kegg.native=TRUE.

Value

plot on the current device

Author(s)

Wubing Zhang

4 BatchRemove

See Also

```
KeggPathwayView
```

Examples

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
colnames(dd)[3:4] = c("Control", "Treatment")
arrangePathview(dd, "hsa00534", title=NULL, sub=NULL, organism="hsa")
```

BatchRemove

Batch effect removal

Description

Batch effect removal

Usage

```
BatchRemove(mat, batchMat, log2trans = FALSE, positive = FALSE)
```

Arguments

mat Matrix, or a file path of data.

batchMat Matrix like data object or a file path of batch table, in which the first two columns

are 'Samples' (matched colname of mat) and 'Batch', and remaining columns

should be Covariates.

log2trans Boolean, specifying whether do log2 transition before batch removal.

positive Boolean, specifying whether all values should be positive.

Value

A list contrains two objects, including data and p.

Author(s)

Wubing Zhang

See Also

ComBat

```
data(bladderdata, package = "bladderbatch")
dat <- bladderEset[1:50,]
pheno = pData(dat)
edata = exprs(dat)
batchMat = pheno[, c("sample", "batch", "cancer")]
batchMat$sample = rownames(batchMat)
edata1 = BatchRemove(edata, batchMat)</pre>
```

CellCycleView 5

CellCycleView Estimate cell cycle time for all samples compared to control sample and view.	CellCycleVi			ple
---	-------------	--	--	-----

Description

Estimate cell cycle time in different samples by linear fitting of beta scores, and plot fitting lines, in which x-axis is control beta score and y-axis is beta score of all samples.

Usage

```
CellCycleView(beta, ctrlname, treatname, main = NULL, filename = NULL,
  width = 5, height = 4, ...)
```

Arguments

beta	Data frame, which has columns of ctrlname and other samples.
ctrlname	A character, specifying the names of control samples.
treatname	A character, specifying the name of treatment samples.
main	As in 'plot'.
filename	Figure file name to create on disk. Default filename="NULL", which means no output.
width	As in ggsave.

height As in ggsave.

. . . Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
CellCycleView(dd, ctrlname = "dmso", treatname = "plx")
```

CorrView CorrView

CorrView	Visualize the correlation between two object	

Description

Visualize the correlation between two object

Usage

```
CorrView(gg, x, y, smoothMethod = "lm", main = NULL, xlab = NULL, ylab = NULL, filename = NULL, width = 5, height = 4, ...)
```

Arguments

gg	A data frame.
x	A character, indicating column (in countSummary) of x-axis.
у	A character, indicating column (in countSummary) of y-axis.
smoothMethod	A character, indicating fill color of all bars.
main	A charater, specifying the figure title.
xlab	A character, specifying the title of x-axis.
ylab,	A character, specifying the title of y-axis.
filename	Figure file name to create on disk. Default filename="NULL", which means don't save the figure on disk.
width	As in ggsave.
height	As in ggsave.
	Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

```
gg = data.frame(x = rnorm(50), y = rnorm(50))
CorrView(gg, x="x", y="y")
```

countsummary 7

countsummary

Count summary data generated by running MAGeCK count

Description

The summary of QC values at count level

Usage

```
data("countsummary")
```

Format

A data frame with 4 observations on 13 variables.

References

```
https://www.ncbi.nlm.nih.gov/pubmed/25494202 https://www.ncbi.nlm.nih.gov/pubmed/25476604
```

Examples

```
data("countsummary")
head(countsummary)
```

CutoffCalling

Call cutoff

Description

Calculate standard deviation as cutoff for a numeric vector

Usage

```
CutoffCalling(d, scale = FALSE)
```

Arguments

d A numeric vector.

scale Boolean or numeric, whether scale cutoff to whole genome level, or how many

standard deviation will be used as cutoff.

Value

A numeric value.

```
CutoffCalling(rnorm(10000))
```

DensityDiffView

Density plot for beta score deviation between Control and Treatment

Description

Plot the density of beta score deviation between two samples.

Usage

```
DensityDiffView(beta, ctrlname = "Control", treatname = "Treatment",
  main = NULL, filename = NULL, width = 5, height = 4, ...)
```

Arguments

beta Data frame, including ctrlname and treatname as columns.

ctrlname A character, specifying the name of control sample.

treatname A character, specifying the name of treatment sample.

main As in 'plot'.

filename Figure file name to create on disk. Default filename="NULL", which means no

output.

width As in ggsave. height As in ggsave.

... Other parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
# Density plot of beta score deviation between control and treatment
DensityDiffView(dd, ctrlname = "dmso", treatname = "plx")
```

Density View 9

DensityView	Density plot for gene beta scores in Control and Treatment	

Description

Plot the density of gene beta scores in two samples.

Usage

```
DensityView(beta, samples = NULL, main = NULL, xlab = "Beta Score",
  filename = NULL, width = 5, height = 4, ...)
```

Arguments

beta	Data frame, including samples as columns.
samples	Character, specifying sample names in beta.
main	As in 'plot'.
xlab	As in 'plot'.
filename	Figure file name to create on disk. Default filename="NULL", which means don't save the figure on disk.
width	As in ggsave.
height	As in ggsave.
	Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

See Also

ViolinView

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
DensityView(dd, samples=c("dmso", "plx"))
#or
DensityView(dd[, c("dmso", "plx")])
```

10 enrich.GSE

enrich.GSE	GSEA

Description

A universal gene set enrichment analysis tools

Usage

```
enrich.GSE(geneList, keytype = "Entrez", type = "CORUM",
  organism = "hsa", pvalueCutoff = 0.25, pAdjustMethod = "BH",
  limit = c(3, 50), gmtpath = NA)
```

Arguments

geneList A order ranked numeric vector with geneid as names.

keytype "Entrez" or "Symbol".

type Geneset category for testing, one of 'CORUM', 'CPX' (ComplexPortal), 'GOBP',

'GOMF', 'GOCC', 'KEGG', 'BIOCARTA', 'REACTOME', 'WikiPathways', 'EHMN', 'PID', or any combination of them (e.g. 'GOBP+GOMF+CORUM'),

or 'All' (all categories).

organism 'hsa' or 'mmu'.

pvalueCutoff Pvalue cutoff.

pAdjustMethod One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

limit A two-length vector (default: c(3, 50)), specifying the minimal and maximal

size of gene sets for enrichent analysis.

gmtpath The path to customized gmt file.

Value

A enrichResult instance.

Author(s)

Wubing Zhang

See Also

```
enrich.HGT
enrich.ORT
enrichment_analysis
enrichResult-class
```

enrich.HGT

Examples

```
data(geneList, package = "DOSE")
## Not run:
    enrichRes = enrich.GSE(geneList, type = "KEGG", organism="hsa")
    head(slot(enrichRes, "result"))
## End(Not run)
```

enrich.HGT

Do enrichment analysis using Hypergeometric test

Description

Do enrichment analysis using Hypergeometric test

Usage

```
enrich.HGT(geneList, keytype = "Entrez", type = "CORUM",
  organism = "hsa", pvalueCutoff = 0.05, pAdjustMethod = "BH",
  limit = c(3, 50), universe = NULL, gmtpath = NA)
```

Arguments

geneList A numeric vector with gene as names.

keytype "Entrez" or "Symbol".

type Geneset category for testing, one of 'CORUM', 'CPX' (ComplexPortal), 'GOBP',

'GOMF', 'GOCC', 'KEGG', 'BIOCARTA', 'REACTOME', 'WikiPathways', 'EHMN', 'PID', or any combination of them (e.g. 'GOBP+GOMF+CORUM'),

or 'All' (all categories).

organism 'hsa' or 'mmu'.
pvalueCutoff Pvalue cutoff.

pAdjustMethod One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

limit A two-length vector (default: c(3, 50)), specifying the minimal and maximal

size of gene sets for enrichent analysis.

universe A character vector, specifying the backgound genelist, default is whole genome.

gmtpath The path to customized gmt file.

Value

A enrichResult instance.

Author(s)

Wubing Zhang

12 enrich.ORT

See Also

```
enrich.GSE
enrich.ORT
enrichment_analysis
enrichResult-class
```

Examples

```
data(geneList, package = "DOSE")
genes <- geneList[1:300]
enrichRes <- enrich.HGT(genes, type = "KEGG", )
head(slot(enrichRes, "result"))</pre>
```

enrich.ORT

Do enrichment analysis using over-representation test

Description

Do enrichment analysis using over-representation test

Usage

```
enrich.ORT(geneList, keytype = "Entrez", type = "CORUM",
  organism = "hsa", pvalueCutoff = 0.25, pAdjustMethod = "BH",
  limit = c(3, 50), universe = NULL, gmtpath = NA)
```

Arguments

geneList A numeric vector with gene as names.

keytype "Entrez" or "Symbol".

type Geneset category for testing, one of 'CORUM', 'CPX' (ComplexPortal), 'GOBP',

'GOMF', 'GOCC', 'KEGG', 'BIOCARTA', 'REACTOME', 'WikiPathways', 'EHMN', 'PID', or any combination of them (e.g. 'GOBP+GOMF+CORUM'),

or 'All' (all categories).

organism 'hsa' or 'mmu'.
pvalueCutoff Pvalue cutoff.

pAdjustMethod One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

limit A two-length vector (default: c(3, 50)), specifying the minimal and maximal

size of gene sets for enrichent analysis.

universe A character vector, specifying the backgound genelist, default is whole genome.

gmtpath The path to customized gmt file.

Value

A enrichedResult instance.

EnrichAB 13

Author(s)

Wubing Zhang

See Also

```
enrich.HGT
enrich.GSE
enrichment_analysis
enrichResult-class
```

Examples

```
data(geneList, package = "DOSE")
genes <- geneList[1:100]
enrichedRes <- enrich.ORT(genes)
head(slot(enrichedRes, "result"))</pre>
```

EnrichAB

Enrichment analysis for Positive and Negative selection genes

Description

Do enrichment analysis for selected genes, in which positive selection and negative selection are termed as GroupA and GroupB

Usage

```
EnrichAB(data, pvalue = 0.25, enrich_method = "ORT",
  organism = "hsa", pathway_limit = c(3, 50), adjust = "BH",
  filename = NULL, out.dir = ".", gsea = FALSE, width = 6.5,
  height = 4, ...)
```

Arguments

data A data frame containing columns "diff", with rownames of Entrez IDs.

pvalue Pvalue cutoff.

enrich_method One of "ORT"(Over-Representing Test), "GSEA"(Gene Set Enrichment Analy-

sis), and "HGT"(HyperGemetric test).

organism "hsa" or "mmu".

pathway_limit A two-length vector (default: c(3, 50)), specifying the min and max size of

pathways for enrichent analysis.

adjust One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", and

"none".

filename Suffix of output file name.

out.dir Path to save plot to (combined with filename).

gsea Boolean, specifying if do GSEA for GroupA and GroupB genes. Default gsea =

FALSE.

14 EnrichedGeneView

```
width As in ggsave.

height As in ggsave.

Other available parameters in ggsave.
```

Value

A list containing enrichment results for each group genes. This list contains items four items, keggA, keggB, goA, goB. Four items are all list object, containing subitems of gridPlot and enrichRes. gridPlot is a ggplot object, and enrichRes is a enrichResult instance

Author(s)

Binbin Wang

See Also

EnrichSquare

Examples

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
data=ScatterView(dd, ctrlname = "dmso", treatname = "plx")$data
## Not run:
  #GO and KEGG enrichment analysis
enrich_result = EnrichAB(data, pvalue=0.05, organism="hsa")
  print(enrich_result$keggA$gridPlot)
print(enrich_result$goA$gridPlot)
## End(Not run)
```

EnrichedGeneView

Visualize selected genes in enriched genesets

Description

Visualize selected genes in enriched genesets

```
EnrichedGeneView(enrichment, geneList, keytype = "Symbol",
  gene_cutoff = c(-log2(1.5), log2(1.5)), top = 5, bottom = 5,
  charLength = 40, filename = NULL, width = 7, height = 5, ...)
```

EnrichedGSEView 15

Arguments

enrichment A data frame of enrichment result.

geneList The geneList used in enrichment analysis.

keytype "Entrez" or "Symbol".

gene_cutoff A tow-length numeric vector, specifying cutoff for negative and positive selec-

tions.

top An integer, specifying the number of top enriched terms to show.

bottom An integer, specifying the number of bottom enriched terms to show.

charLength Integer, specifying max length of enriched term name to show as coordinate lab.

filename Figure file name to create on disk. Default filename="NULL", which means no

output.

width As in ggsave. height As in ggsave.

Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

```
data(geneList, package = "DOSE")
enrichRes <- enrich.GSE(geneList)
EnrichedGeneView(enrichment=as.data.frame(enrichRes), geneList, keytype = "Entrez")</pre>
```

EnrichedGSEView

View enriched terms in GSEA

Description

Grid plot for enriched terms in GSEA

```
EnrichedGSEView(enrichment, top = 5, bottom = 5, charLength = 40,
   main = NULL, filename = NULL, width = 7, height = 4, ...)
```

16 Enriched View

Arguments

enrichment A data frame of enrichment result, with columns of ID, Description, p.adjust

and NES

top An integer, specifying the number of top enriched terms to show.

bottom An integer, specifying the number of bottom enriched terms to show.

charLength Integer, specifying max length of enriched term name to show as coordinate lab.

main Same as 'title' in 'plot'.

filename Figure file name to create on disk. Default filename="NULL", which means no

output.

width As in ggsave. height As in ggsave.

... Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

See Also

EnrichedView

Examples

```
## Not run:
    data(geneList, package = "DOSE")
    enrichRes = enrich.GSE(geneList, type = "KEGG", organism="hsa")
    EnrichedGSEView(as.data.frame(enrichRes), main = "GSEA Analysis")
## End(Not run)
```

EnrichedView

View enriched terms

Description

Grid plot for enriched terms

```
EnrichedView(enrichment, main = NULL, color = "#3f90f7",
  termNum = 15, charLength = 40, filename = NULL, width = 7,
  height = 4, ...)
```

enrichment_analysis 17

Arguments

A data frame of enrichment result, with columns of ID, Description, p.adjust enrichment

and Count.

Same as 'title' in 'plot'. main

color Color of nodes.

Integer, specifying number of top enriched terms to show. termNum

Integer, specifying max length of enriched term name to show as coordinate lab. charLength Figure file name to create on disk. Default filename="NULL", which means no filename

output.

width As in ggsave. height As in ggsave.

Other available parameters in ggsave. . . .

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Feizhen Wu

See Also

KeggPathwayView EnrichedGSEView

Examples

```
data(geneList, package = "DOSE")
enrichRes <- enrich.HGT(geneList[1:100])</pre>
EnrichedView(enrichment=enrichRes@result)
```

enrichment_analysis Enrichment analysis

Description

Enrichment analysis

```
enrichment_analysis(geneList, method = "HGT", keytype = "Entrez",
  type = "KEGG", organism = "hsa", pvalueCutoff = 0.25,
 pAdjustMethod = "BH", limit = c(3, 50), universe = NULL,
 plotTitle = NULL, color = "#3f90f7")
```

18 enrichment_analysis

Arguments

geneList A numeric vector with gene as names.

method One of "ORT" (Over-Representing Test), "GSEA" (Gene Set Enrichment Analy-

sis), and "HGT"(HyperGemetric test).

keytype "Entrez" or "Symbol".

type Geneset category for testing, one of 'CORUM', 'CPX' (ComplexPortal), 'GOBP',

'GOMF', 'GOCC', 'KEGG', 'BIOCARTA', 'REACTOME', 'WikiPathways', 'EHMN', 'PID', or any combination of them (e.g. 'GOBP+GOMF+CORUM'),

or 'All' (all categories).

organism 'hsa' or 'mmu'.

pvalueCutoff Pvalue cutoff.

 $\verb|pAdjustMethod| One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".$

limit A two-length vector (default: c(3, 50)), specifying the minimal and maximal

size of gene sets for enrichent analysis.

universe A character vector, specifying the backgound genelist, default is whole genome.

plotTitle Same as 'title' in 'plot'.

color Color of points.

Value

A list, including two items, gridPlot and enrichRes. gridPlot is a ggplot object, and enrichRes is a enrichResult instance.

Author(s)

Feizhen Wu

See Also

```
enrich.GSE
enrich.ORT
enrich.HGT
enrichResult-class
```

```
data(geneList, package = "DOSE")
genes <- geneList[1:100]
keggA = enrichment_analysis(genes, method = "HGT", type = "KEGG")
print(keggA$gridPlot)</pre>
```

EnrichSquare 19

EnrichSquare	Enrichment analysis for selected treatment related genes	

Description

Do enrichment analysis for selected treatment related genes in 9-squares

Usage

```
EnrichSquare(beta, pvalue = 0.05, enrich_method = "ORT",
  organism = "hsa", pathway_limit = c(3, 50), adjust = "BH",
  filename = NULL, out.dir = ".", width = 6.5, height = 4, ...)
```

Arguments

beta	Data frame, with rownames of Entrez IDs, which contains columns of 'group' and 'diff'.
pvalue	Pvalue cutoff.
enrich_method	One of "ORT" (Over-Representing Test) and "HGT" (HyperGemetric test).
organism	"hsa" or "mmu".
pathway_limit	A two-length vector (default: c(3, 50)), specifying the min and max size of pathways for enrichent analysis.
adjust	One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".
filename	Suffix of output file name. NULL(default) means no output.
out.dir	Path to save plot to (combined with filename).
width	As in ggsave.
height	As in ggsave.

Value

A list containing enrichment results for each group genes. This list contains several elements:

Other available parameters in ggsave.

kegg1	a list record enriched KEGG pathways for Group1 genes in 9-Square
kegg2	a list record enriched KEGG pathways for Group2 genes in 9-Square
kegg3	a list record enriched KEGG pathways for Group3 genes in 9-Square
kegg4	a list record enriched KEGG pathways for Group4 genes in 9-Square
kegg13	a list record enriched KEGG pathways for Group1&Group3 genes in 9-Square
kegg14	a list record enriched KEGG pathways for Group1&Group4 genes in 9-Square
kegg23	a list record enriched KEGG pathways for Group2&Group3 genes in 9-Square
kegg24	a list record enriched KEGG pathways for Group2&Group4 genes in 9-Square
go1	a list record enriched GO terms for Group1 genes in 9-Square
go2	a list record enriched GO terms for Group2 genes in 9-Square
go3	a list record enriched GO terms for Group3 genes in 9-Square
go4	a list record enriched GO terms for Group4 genes in 9-Square

20 FluteMLE

go13	a list record enriched GO terms for Group1&Group3 genes in 9-Square
go14	a list record enriched GO terms for Group1&Group4 genes in 9-Square
go23	a list record enriched GO terms for Group2&Group3 genes in 9-Square
go24	a list record enriched GO terms for Group2&Group4 genes in 9-Square

Each item in the returned list has two sub items:

gridPlot an object created by ggplot, which can be assigned and further customized.
enrichRes a enrichResult instance.

Author(s)

Wubing Zhang

See Also

SquareView EnrichSquare

Examples

```
data(mle.gene_summary)
dd = ReadBeta(mle.gene_summary, organism="hsa")
p = SquareView(dd, ctrlname = "dmso", treatname = "plx")
## Not run:
# Read beta score from gene summary table in MAGeCK MLE results
E1 = EnrichSquare(p$data, organism="hsa")
print(E1$kegg1$gridPlot)
## End(Not run)
```

FluteMLE

Downstream analysis based on MAGeCK-MLE result

Description

Integrative analysis pipeline using the gene summary table in MAGeCK MLE results

```
FluteMLE(gene_summary, ctrlname, treatname, keytype = "Symbol",
  organism = "hsa", scale_cutoff = 1, top = 10, bottom = 10,
  interestGenes = NA, pathway_limit = c(3, 50), pvalueCutoff = 0.25,
  adjust = "BH", enrich_kegg = "HGT", gsea = FALSE,
  posControl = NULL, loess = FALSE, prefix = "", width = 10,
  height = 7, outdir = ".", view_allpath = FALSE)
```

FluteMLE 21

Arguments

gene_summary Either a file path or a data frame, which contains columns of 'Gene', ctrlname.beta

and treatname.beta which corresponding to the parameter ctrlname and treatm-

name.

ctrlname A character vector, specifying the names of control samples.

treatname A character vector, specifying the names of treatment samples.

keytype Type of gene id in 'gene_summary', which should be one of "Entrez" or "Sym-

bol".

organism "hsa" or "mmu".

scale_cutoff Boolean or numeric, whether scale cutoff to whole genome level, or how many

standard deviation will be used as cutoff.

top An integer, specifying number of top selected genes to be labeled in rank figure.

An integer, specifying number of bottom selected genes to be labeled in rank

figure.

interestGenes A character vector, specifying interested genes to be labeled in rank figure.

pathway_limit A two-length vector (default: c(3, 50)), specifying the minimal and maximal

size of gene sets for enrichent analysis.

pvalueCutoff A numeric, specifying pvalue cutoff of enrichment analysis, default 1.

adjust One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

enrich_kegg One of "ORT"(Over-Representing Test), "GSEA"(Gene Set Enrichment Analy-

sis), and "HGT"(HyperGemetric test).

gsea Boolean, indicating whether GSEA analysis is needed for positive and negative

selection genes.

posControl A file path or a character vector, specifying a list of gene entrezid as positive

controls used for cell cycle normalization.

loess Boolean, whether include loess normalization in the pipeline.

prefix A character, indicating the prefix of output file name, which can't contain special

characters.

width The width of summary pdf in inches.
height The height of summary pdf in inches.

outdir Output directory on disk.

view_allpath Boolean, whether output all pathway view figures.

Details

MAGeCK-MLE can be used to analyze screen data from multi-conditioned experiments. MAGeCK-MLE also normalizes the data across multiple samples, making them comparable to each other. The most important ouput of MAGeCK MLE is 'gene_summary' file, which includes the beta scores of multiple conditions and the associated statistics. The 'beta score' for each gene describes how the gene is selected: a positive beta score indicates a positive selection, and a negative beta score indicates a negative selection.

The downstream analysis includes identifying essential, non-essential, and target-associated genes, and performing biological functional category analysis and pathway enrichment analysis of these genes. The function also visualizes genes in the context of pathways to benefit users exploring screening data.

22 FluteRRA

Value

All of the pipeline results is output into the out.dir/prefix_Results, which includes a pdf file and many folders. The pdf file 'prefix_Pipeline_results.pdf' is the summary of pipeline results. For each section in this pipeline, figures and useful data are outputed to corresponding subfolders. Distribution_of_BetaScores: Density plot and violin plot of beta scores. MAplot: Maplot for each normalized data. Linear_Fitting_of_BetaScores: Linear fitting of beta scores indicates the difference of cell cycle time between Control and Treatment samples. Scatter_Treat_Ctrl: Positive selection and negative selection Enrichment_Treat-Ctrl: Enrichment analysis for positive and negative selection genes Pathview_Treat_Ctrl: Pathway view for top enriched pathways Scatter_9Square: Using 9 Square to select drug related genes Enrichment_9Square: Enrichment analysis for selected genes Pathview_9Square: Pathway view for top enriched pathways

Author(s)

Wubing Zhang

See Also

FluteRRA

Examples

FluteRRA

Downstream analysis based on MAGeCK-RRA result

Description

Integrative analysis pipeline using the gene summary table in MAGeCK RRA results

Usage

```
FluteRRA(gene_summary, sgrna_summary, lfcCutoff = c(-1, 1),
  organism = "hsa", pathway_limit = c(3, 50), pvalueCutoff = 0.25,
  adjust = "BH", prefix = "Test", width = 12, height = 6,
  outdir = ".")
```

Arguments

gene_summary A file path or a data frame of gene summary data.

sgrna_summary A file path or a data frame of sgRNA summary data.

lfcCutoff A two-length vector (default: c(-1, 1)), specifying the

A two-length vector (default: c(-1, 1)), specifying the logFC cutoff for negative

selection and positive selection.

FluteRRA 23

organism "hsa" or "mmu".

pathway_limit A two-length vector (default: c(3, 50)), specifying the minimal and maximal size of gene sets for enrichent analysis.

pvalueCutoff A numeric, specifying pvalue cutoff of enrichment analysis, default 1.

adjust One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

prefix A character, indicating the prefix of output file name.

width The width of summary pdf in inches.

height The height of summary pdf in inches.

Output directory on disk.

Details

outdir

MAGeCK RRA allows for the comparison between two experimental conditions. It can identify genes and sgRNAs are significantly selected between the two conditions. The most important output of MAGeCK RRA is the file 'gene_summary.txt'. MAGeCK RRA will output both the negative score and positive score for each gene. A smaller score indicates higher gene importance. MAGeCK RRA will also output the statistical value for the scores of each gene. Genes that are significantly positively and negatively selected can be identified based on the p-value or FDR.

The downstream analysis of this function includes identifying positive and negative selection genes, and performing biological functional category analysis and pathway enrichment analysis of these genes.

Value

All of the pipeline results is output into the out.dir/prefix_Results, which includes a pdf file and a folder named 'RRA'.

Author(s)

Wubing Zhang

See Also

FluteMLE

```
data(rra.gene_summary)
## Not run:
    # Run the FluteRRA pipeline
    FluteRRA(rra.gene_summary, prefix="GSC", organism="hsa")
## End(Not run)
```

24 Heatmap View

get0rg

Determine the gene annotation package.

Description

Determine the gene annotation package. for specific organism

Usage

```
getOrg(organism, update = FALSE)
```

Arguments

organism Character, KEGG species code, or the common species name, used to determine

the gene annotation package. For all potential values check: data(bods); bods.

Default org="hsa", and can also be "human" (case insensitive).

update Boolean, indicating whether download recent annotation from NCBI.

Value

A list containing three elements:

```
organism species
```

pkgannotation package name Symbol_Entreza data frame, mapping between gene symbol and entrez id

Author(s)

Wubing Zhang

Examples

```
ann = getOrg("human")
print(ann$pkg)
```

HeatmapView

Draw heatmap

Description

Draw heatmap

```
HeatmapView(mat, limit = c(-2, 2), colPal = rev(colorRampPalette(c("\#c12603", "white", "\#0073B6"), space = "Lab")(199)), filename = NA, width = NA, height = NA, ...)
```

25 **IdentBarView**

Arguments

mat	Matrix like object, each row is gene and each column is sample.
limit	Max value in heatmap
colPal	colorRampPalette.
filename	File path where to save the picture.
width	Manual option for determining the output file width in inches.
height	Manual option for determining the output file height in inches.
	Other parameters in pheatmap.

Value

Invisibly a pheatmap object that is a list with components.

Author(s)

Wubing Zhang

Examples

```
data(mle.gene_summary)
dd = ReadBeta(mle.gene_summary, organism="hsa")
gg = cor(dd[,3:ncol(dd)])
HeatmapView(gg, display_numbers = TRUE)
```

IdentBarView

Identical bar plot

Description

Identical bar plot

Usage

```
IdentBarView(gg, x = "x", y = "y", fill = c("\#CF3C2B", "\#394E80"),
  main = NULL, xlab = NULL, ylab = NULL, filename = NULL,
  width = 5, height = 4, \dots)
```

Arguments

gg	A data frame.
X	A character, indicating column (in countSummary) of x-axis.
У	A character, indicating column (in countSummary) of y-axis.
fill	A character, indicating fill color of all bars.
main	A charater, specifying the figure title.
xlab	A character, specifying the title of x-axis.
ylab,	A character, specifying the title of y-axis.

KeggPathway View

filename Figure file name to create on disk. Default filename="NULL", which means

don't save the figure on disk.

width As in ggsave. height As in ggsave.

... Other available parameters in ggsave.

Value

26

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Examples

```
data(countsummary)
IdentBarView(countsummary, x="Label", y="Reads")
```

KeggPathwayView

Kegg pathway view

Description

Plot kegg pathway and color specific genes.

Usage

```
KeggPathwayView(gene.data = NULL, cpd.data = NULL, pathway.id,
   species = "hsa", kegg.dir = ".", cpd.idtype = "kegg",
   gene.idtype = "ENTREZ", gene.annotpkg = NULL, min.nnodes = 3,
   kegg.native = TRUE, map.null = TRUE, expand.node = FALSE,
   split.group = FALSE, map.symbol = TRUE, map.cpdname = TRUE,
   node.sum = "sum", discrete = list(gene = FALSE, cpd = FALSE),
   limit = list(gene = 1, cpd = 1), bins = list(gene = 10, cpd = 10),
   both.dirs = list(gene = TRUE, cpd = TRUE), trans.fun = list(gene =
   NULL, cpd = NULL), low = list(gene = "deepskyblue1", cpd = "blue"),
   mid = list(gene = "gray", cpd = "gray"), high = list(gene = "red",
   cpd = "yellow"), na.col = "transparent", ...)
```

Arguments

gene.data

Either vector (single sample) or a matrix-like data (multiple sample). Vector should be numeric with gene IDs as names or it may also be character of gene IDs. Character vector is treated as discrete or count data. Matrix-like data structure has genes as rows and samples as columns. Row names should be gene IDs. Here gene ID is a generic concepts, including multiple types of gene, transcript and protein uniquely mappable to KEGG gene IDs. KEGG ortholog IDs are also treated as gene IDs as to handle metagenomic data. Check details for mappable ID types. Default gene.data=NULL.

KeggPathwayView 27

cpd.data The same as gene.data, except named with IDs mappable to KEGG compound IDs. Over 20 types of IDs included in CHEMBL database can be used here. Check details for mappable ID types. Default cpd.data=NULL. Note that gene.data and cpd.data can't be NULL simultaneously. pathway.id Character vector, the KEGG pathway ID(s), usually 5 digit, may also include the 3 letter KEGG species code. species Character, either the kegg code, scientific name or the common name of the target species. This applies to both pathway and gene.data or cpd.data. When KEGG ortholog pathway is considered, species="ko". Default species="hsa", it is equivalent to use either "Homo sapiens" (scientific name) or "human" (common name). Character, the directory of KEGG pathway data file (.xml) and image file (.png). kegg.dir Users may supply their own data files in the same format and naming convention of KEGG's (species code + pathway id, e.g. hsa04110.xml, hsa04110.png etc) in this directory. Default kegg.dir="." (current working directory). Character, ID type used for the cpd.data. Default cpd.idtype="kegg" (include cpd.idtype compound, glycan and drug accessions). Character, ID type used for the gene.data, case insensitive. Default gene.idtype="entrez", gene.idtype i.e. Entrez Gene, which are the primary KEGG gene ID for many common model organisms. For other species, gene.idtype should be set to "KEGG" as KEGG use other types of gene IDs. For the common model organisms (to check the list, do: data(bods); bods), you may also specify other types of valid IDs. To check the ID list, do: data(gene.idtype.list); gene.idtype.list. Character, the name of the annotation package to use for mapping between other gene.annotpkg gene ID types including symbols and Entrez gene ID. Default gene.annotpkg=NULL. Integer, minimal number of nodes of type "gene", "enzyme", "compound" or min.nnodes "ortholog" for a pathway to be considered. Default min.nnodes=3. kegg.native Logical, whether to render pathway graph as native KEGG graph (.png) or using graphviz layout engine (.pdf). Default kegg.native=TRUE. Logical, whether to map the NULL gene.data or cpd.data to pathway. When map.null NULL data are mapped, the gene or compound nodes in the pathway will be rendered as actually mapped nodes, except with NA-valued color. When NULL data are not mapped, the nodes are rendered as unmapped nodes. This argument mainly affects native KEGG graph view, i.e. when kegg.native=TRUE. Default map.null=TRUE. Logical, whether the multiple-gene nodes are expanded into single-gene nodes. expand.node Each expanded single-gene nodes inherits all edges from the original multiplegene node. This option only affects graphviz graph view, i.e. when kegg.native=FALSE. This option is not effective for most metabolic pathways where it conflits with converting reactions to edges. Default expand.node=FLASE. Logical, whether split node groups are split to individual nodes. Each split split.group member nodes inherits all edges from the node group. This option only affects graphviz graph view, i.e. when kegg.native=FALSE. This option also effects most metabolic pathways even without group nodes defined orginally. For these pathways, genes involved in the same reaction are grouped automatically when converting reactions to edges unless split.group=TRUE. d split.group=FLASE. Logical, whether map gene IDs to symbols for gene node labels or use the map.symbol graphic name from the KGML file. This option is only effective for kegg.native=FALSE or same.layer=FALSE when kegg.native=TRUE. For same.layer=TRUE when

kegg.native=TRUE, the native KEGG labels will be kept. Default map.symbol=TRUE.

map.cpdname	Logical, whether map compound IDs to formal names for compound node labels or use the graphic name from the KGML file (KEGG compound accessions). This option is only effective for kegg.native=FALSE. When kegg.native=TRUE, the native KEGG labels will be kept. Default map.cpdname=TRUE.
node.sum	Character, the method name to calculate node summary given that multiple genes or compounds are mapped to it. Poential options include "sum", "mean", "median", "max", "max.abs" and "random". Default node.sum="sum".
discrete	A list of two logical elements with "gene" and "cpd" as the names. This argument tells whether gene.data or cpd.data should be treated as discrete. Default dsicrete=list(gene=FALSE, cpd=FALSE), i.e. both data should be treated as continuous.
limit	A list of two numeric elements with "gene" and "cpd" as the names. This argument specifies the limit values for gene.data and cpd.data when converting them to pseudo colors. Each element of the list could be of length 1 or 2. Length 1 suggests discrete data or 1 directional (positive-valued) data, or the absolute limit for 2 directional data. Length 2 suggests 2 directional data. Default limit=list(gene=1, cpd=1).
bins	A list of two integer elements with "gene" and "cpd" as the names. This argument specifies the number of levels or bins for gene.data and cpd.data when converting them to pseudo colors. Default limit=list(gene=10, cpd=10).
both.dirs	A list of two logical elements with "gene" and "cpd" as the names. This argument specifies whether gene.data and cpd.data are 1 directional or 2 directional data when converting them to pseudo colors. Default limit=list(gene=TRUE, cpd=TRUE).
trans.fun	A list of two function (not character) elements with "gene" and "cpd" as the names. This argument specifies whether and how gene.data and cpd.data are transformed. Examples are log, abs or users' own functions. Default limit=list(gene=NULL cpd=NULL).
low	A list of two colors with "gene" and "cpd" as the names.
mid	A list of two colors with "gene" and "cpd" as the names.
high	A list of two colors with "gene" and "cpd" as the names.
na.col	Color used for NA's or missing values in gene.data and cpd.data. d na.col="transparent".
	Extra arguments passed to keggview.native or keggview.graph function.

Details

The function KeggPathwayView is a revised version of pathview function in pathview package. KeggPathwayView maps and renders user data on relevant pathway graphs. KeggPathwayView is a stand alone program for pathway based data integration and visualization. It also seamlessly integrates with pathway and functional analysis tools for large-scale and fully automated analysis. KeggPathwayView provides strong support for data Integration. It works with: 1) essentially all types of biological data mappable to pathways, 2) over 10 types of gene or protein IDs, and 20 types of compound or metabolite IDs, 3) pathways for over 2000 species as well as KEGG orthology, 4) varoius data attributes and formats, i.e. continuous/discrete data, matrices/vectors, single/multiple samples etc. To see mappable external gene/protein IDs do: data(gene.idtype.list), to see mappable external compound related IDs do: data(rn.list); names(rn.list). KeggPathwayView generates both native KEGG view and Graphviz views for pathways. Currently only KEGG pathways are implemented. Hopefully, pathways from Reactome, NCI and other databases will be supported in the future.

KeggPathwayView 29

The argument low, mid, and high specifies the color spectra to code gene.data and cpd.data. When data are 1 directional (TRUE value in both.dirs), only mid and high are used to specify the color spectra. Default spectra (low-mid-high) "green"-"gray"-"red" and "blue"-"gray"-"yellow" are used for gene.data and cpd.data respectively. The values for 'low, mid, high' can be given as color names ('red'), plot color index (2=red), and HTML-style RGB, ("\#FF0000"=red).

Value

The result returned by KeggPathwayView function is a named list corresponding to the input pathway ids. Each element (for each pathway itself is a named list, with 2 elements ("plot.data.gene", "plot.data.cpd"). Both elements are data.frame or NULL depends on the corresponding input data gene.data and cpd.data. These data.frames record the plot data for mapped gene or compound nodes: rows are mapped genes/compounds, columns are:

kegg.names standard KEGG IDs/Names for mapped nodes. It's Entrez Gene ID or KEGG

Compound Accessions.

labels Node labels to be used when needed.

all.mapped All molecule (gene or compound) IDs mapped to this node.

type node type, currently 4 types are supported: "gene", "enzyme", "compound" and

"ortholog".

x x coordinate in the original KEGG pathway graph.
y y coordinate in the original KEGG pathway graph.
width node width in the original KEGG pathway graph.
height node height in the original KEGG pathway graph.

other columns of the mapped gene/compound data and corresponding pseudo-color

codes for individual samples

Author(s)

Wubing Zhang

See Also

pathview

30 MapRates View

MapRatesView View mapping ratio

Description

View mapping ratio of each sample

Usage

```
MapRatesView(countSummary, Label = "Label", Reads = "Reads",
   Mapped = "Mapped", filename = NULL, width = 5, height = 4, ...)
```

Arguments

countSummary	A data frame, which contains columns of 'Label', 'Reads', and 'Mapped'
Label	A character, indicating column (in countSummary) of sample names.
Reads	A character, indicating column (in countSummary) of total reads.
Mapped	A character, indicating column (in countSummary) of mapped reads.
filename	Figure file name to create on disk. Default filename="NULL", which means don't save the figure on disk.
width	As in ggsave.
height	As in ggsave.
	Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

```
data(countsummary)
MapRatesView(countsummary)
```

MAView 31

|--|

Description

MAplot of gene beta scores in Control vs Treatment

Usage

```
MAView(beta, ctrlname = "Control", treatname = "Treatment",
  main = NULL, show.statistics = TRUE, add.smooth = TRUE, lty = 1,
  smooth.col = "red", plot.method = c("loess", "lm", "glm", "gam"),
  filename = NULL, width = 5, height = 4, ...)
```

Arguments

beta Data frame, including ctrlname and treatname as columns.

ctrlname Character vector, specifying the name of control sample.

treatname Character vector, specifying the name of treatment sample.

main As in plot.

show.statistics

Show statistics.

add. smooth Whether add a smooth line to the plot.

1ty Line type for smooth line. smooth.col Color of smooth line.

plot.method A string specifying the method to fit smooth line, which should be one of "loess"

(default), "lm", "glm" and "gam".

filename Figure file name to create on disk. Default filename="NULL", which means

don't save the figure on disk.

width As in ggsave. height As in ggsave.

... Other available parameters in function 'ggsave'.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
MAView(dd, ctrlname = "dmso", treatname = "plx")
```

32 noEnrichPlot

mle.gene_summary

Gene summary table in MAGeCK MLE results

Description

The gene summary results generated by running MAGeCK MLE on CRISPR screens.

Usage

```
data("mle.gene_summary")
```

Format

A data frame.

References

```
https://www.ncbi.nlm.nih.gov/pubmed/25494202 https://www.ncbi.nlm.nih.gov/pubmed/26673418
```

Examples

```
data("mle.gene_summary")
head(mle.gene_summary)
```

noEnrichPlot

Blank figure

Description

Blank figure

Usage

```
noEnrichPlot(main)
```

Arguments

main

Same as 'title' in 'plot'.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

normalize.loess 33

Description

Loess normalization method.

Usage

```
normalize.loess(mat, subset = sample(1:(dim(mat)[1]), min(c(5000, nrow(mat)))), epsilon = 10^-2, maxit = 1, log.it = FALSE, verbose = TRUE, span = 2/3, family.loess = "symmetric", ...)
```

Arguments

mat	A matrix with columns containing the values of the chips to normalize.
subset	A subset of the data to fit a loess to.
epsilon	A tolerance value (supposed to be a small value - used as a stopping criterion).
maxit	Maximum number of iterations.
log.it	Logical. If TRUE it takes the log2 of mat.
verbose	Logical. If TRUE displays current pair of chip being worked on.
span	Parameter to be passed the function loess
family.loess	Parameter to be passed the function loess. "gaussian" or "symmetric" are acceptable values for this parameter.
•••	Any of the options of normalize.loess you would like to modify (described above).

Value

A matrix similar as mat.

Author(s)

Wubing Zhang

See Also

loess

NormalizeBeta

```
beta = ReadBeta(mle.gene_summary, organism="hsa")
beta_loess = normalize.loess(beta[,c("dmso", "plx")])
```

34 NormalizeBeta

|--|

Description

Two normalization methods are available. cell_cycle method normalizes gene beta scores based on positive control genes in CRISPR screening. loess method normalizes gene beta scores using loess.

Usage

```
NormalizeBeta(beta, samples = NULL, method = "cell_cycle",
    posControl = NULL, minus = 0.2)
```

Arguments

beta Data frame, in which rows are EntrezID, columns are samples.

samples Character vector, specifying the samples in beta to be normalized. If NULL

(default), normalize beta score of all samples in beta.

method Character, one of 'cell_cycle' (default) and 'loess'.

posControl A file path or a character vector, specifying a list of gene entrezids as positive

controls used for cell cycle normalization

minus Numeric, scale for cell cycle normalization. Between 0 and 1.

Details

In CRISPR screens, cells treated with different conditions (e.g., with or without drug) may have different proliferation rates. So we defined a list of core essential genes, which is equally negatively selected between samples with different proliferation rate. Normalization of gene beta scores is performed using these essential genes. cell_cycle in MAGeCKFlute normalizes the beta scores of all genes based on the median beta score of essential genes. After normalization, the beta scores are comparable across samples. loess is another optional normalization method, which is used to normalize array data before.

Value

A data frame with same format as input data beta.

Author(s)

Wubing Zhang

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
#Cell Cycle normalization
dd_essential = NormalizeBeta(dd, samples=c("dmso", "plx"), method="cell_cycle")
head(dd_essential)
```

Rank View 35

```
#Optional loess normalization
dd_loess = NormalizeBeta(dd, samples=c("dmso", "plx"), method="loess")
head(dd_loess)
```

RankView

View the rank of gene points

Description

Rank all genes according to beta score deviation, and label top and bottom meaningful genes. Some other interested genes can be labeled too.

Usage

```
RankView(rankdata, genelist = NA, top = 20, bottom = 20,
  cutoff = c(-sd(rankdata), sd(rankdata)), main = NULL,
  filename = NULL, width = 5, height = 4, ...)
```

Arguments

rankdata	Numeric vector, with gene as names.
genelist	Character vector, specifying genes to be labeled in figure.
top	Integer, specifying number of top genes to be labeled.
bottom	Integer, specifying number of bottom genes to be labeled.
cutoff	A two-length numeric vector, in which first value is bottom cutoff, and second value is top cutoff.
main	As in 'plot'.
filename	Figure file name to create on disk. Default filename="NULL", which means no output.
width	As in ggsave.
height	As in ggsave.
	Other available parameters in function 'ggsave'.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

```
data(rra.gene_summary)
rra = ReadRRA(rra.gene_summary, organism = "hsa")
rankdata = rra$LFC
names(rankdata) = rra$Official
RankView(rankdata)
```

36 ReadGMT

ReadBeta

Read gene beta scores

Description

Read gene beta scores from file or data frame

Usage

```
ReadBeta(gene_summary, keytype = "Symbol", organism = "hsa")
```

Arguments

gene_summary A file path or a data frame, data frame, which has columns of 'Gene' and

'*lbeta'.

keytype Type of gene id in 'gene_summary', which should be one of "Entrez" or "Sym-

bol".

organism Character, KEGG species code, or the common species name, used to determine

the gene annotation package. For all potential values check: data(bods); bods.

Default org="hsa", and can also be "human" (case insensitive).

Value

A data frame, in which the first column is ENTREZID, and the later columns are beta score for each samples.

Author(s)

Wubing Zhang

Examples

```
data(mle.gene_summary)
dd = ReadBeta(mle.gene_summary, organism="hsa")
head(dd)
```

ReadGMT

ReadGMT

Description

Parse gmt file to a data.frame

```
ReadGMT(gmtpath, limit = c(3, 30))
```

ReadRRA 37

Arguments

gmtpath The path to gmt file.

limit A integer vector of length two, specifying the limit of geneset size.

Value

An data.frame, in which the first column is gene, and the second column is pathway name.

Author(s)

Wubing Zhang

ReadRRA

Read gene summary file in MAGeCK-RRA results

Description

Read gene summary file in MAGeCK-RRA results

Usage

```
ReadRRA(gene_summary, organism = "hsa")
```

Arguments

gene_summary A file path or a data frame of gene summary data generated by command 'mageck

test'.

organism "hsa" or "mmu".

Value

A data frame including four columns, named "Official", "EntrezID", "LFC" and "FDR".

Author(s)

Wubing Zhang

```
data(rra.gene_summary)
dd.rra = ReadRRA(rra.gene_summary, organism = "hsa")
head(dd.rra)
```

38 rra.gene_summary

ReadsgRRA

Read sgRNA summary in MAGeCK-RRA results

Description

Read sgRNA summary in MAGeCK-RRA results

Usage

```
ReadsgRRA(sgRNA_summary)
```

Arguments

 ${\tt sgRNA_summary} \quad A \ file \ path \ or \ a \ data \ frame \ of \ sgRNA \ summary \ data.$

Value

A data frame.

Author(s)

Wubing Zhang

Examples

```
data(rra.sgrna_summary)
sgrra = ReadsgRRA(rra.sgrna_summary)
head(sgrra)
```

rra.gene_summary

Gene summary data generated by running MAGeCK RRA

Description

The gene summary results generated by running MAGeCK on CRISPR screens.

Usage

```
data("rra.gene_summary")
```

Format

A data frame.

References

https://www.ncbi.nlm.nih.gov/pubmed/25494202 https://www.ncbi.nlm.nih.gov/pubmed/25476604

rra.sgrna_summary 39

Examples

```
data("rra.gene_summary")
head(rra.gene_summary)
```

rra.sgrna_summary

sgRNA summary data generated by running MAGeCK RRA

Description

The sgRNA summary results generated by running 'mageck test' on CRISPR screens.

Usage

```
data("rra.sgrna_summary")
```

Format

A data frame.

References

```
https://www.ncbi.nlm.nih.gov/pubmed/25494202 https://www.ncbi.nlm.nih.gov/pubmed/25476604
```

Examples

```
data(rra.sgrna_summary)
head(rra.sgrna_summary)
```

ScatterView

Scatter plot

Description

Scatter plot of all genes, in which x-axis is mean beta score in Control samples, y-axis is mean beta scores in Treatment samples.

```
ScatterView(beta, ctrlname = "Control", treatname = "Treatment",
    scale_cutoff = 2, main = NULL, filename = NULL, width = 5,
    height = 4, ...)
```

40 Selector

Arguments

beta Data frame, including ctrlname and treatname as columns.

ctrlname A character, specifying the names of control samples.

treatname A character, specifying the names of treatment samples.

scale_cutoff Boolean or numeric, whether scale cutoff to whole genome level, or how many

standard deviation will be used as cutoff.

main As in 'plot'.

filename Figure file name to create on disk. Default filename="NULL", which means

don't save the figure on disk.

width As in ggsave. height As in ggsave.

... Other available parameters in function 'ggsave'.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

See Also

SquareView

Examples

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
ScatterView(dd, ctrlname = "dmso", treatname = "plx")
```

Selector Select signatures from candidate list (according to the consistence in most samples).

Description

Select signatures from candidate list (according to the consistence in most samples).

```
Selector(mat, cutoff = 0, type = "<", select = 0.8)
```

sgRankView 41

Arguments

mat Data matrix, each row is candidates (genes), each column is samples.

cutoff Cutoff to define the signatures.
type Direction to select signatures.

select Proportion of samples in which signature is selected.

Value

An list containing two elements, first is selected signature and second is a ggplot object.

Examples

```
mat = matrix(rnorm(1000*30), 1000, 30)
rownames(mat) = paste0("Gene", 1:1000)
colnames(mat) = paste0("Sample", 1:30)
hits = Selector(mat, select = 0.68)
print(hits$p)
```

sgRankView

View sgRNA rank.

Description

View sgRNA rank.

Usage

```
sgRankView(df, gene = NULL, top = 3, bottom = 3, neg_ctrl = NULL,
binwidth = 0.3, interval = 0.1, bg.col = "gray90",
filename = NULL, width = 5, height = 3.5, ...)
```

Arguments df

. . .

gene	Character vector, specifying genes to be plotted.
top	Integer, specifying number of top genes to be plotted.
bottom	Integer, specifying number of bottom genes to be plotted.
neg_ctrl	A vector specifying negative ctrl genes.
binwidth	A numeric value specifying the bar width.
interval	A numeric value specifying the interval length between each bar.
bg.col	A character value specifying the background color.
filename	Figure file name to create on disk. Default filename="NULL", which means no output.
width	As in ggsave.
height	As in ggsave.

Other available parameters in function 'ggsave'.

A data frame, which contains columns of 'sgrna', 'Gene', and 'LFC'.

Square View

Value

An object created by ggplot.

Author(s)

Yihan Xiao

Examples

```
data(rra.sgrna_summary)
sgrra = ReadsgRRA(rra.sgrna_summary)
sgRankView(sgrra)
```

SquareView

Scatter plot of 9-Square

Description

Plot a scatter plot with Control beta score as x-axis and Treatment beta score as y-axis, and colored treatment related genes.

Usage

```
SquareView(beta, ctrlname = "Control", treatname = "Treatment",
  label = 0, label.top = TRUE, top = 5, genelist = c(),
  scale_cutoff = 1.96, main = NULL, filename = NULL, width = 5,
  height = 4, ...)
```

Arguments

beta	Data frame, including columns of ctrlname and treatname, with Gene Symbol as rowname.
ctrlname	A character, specifying the names of control samples.
treatname	A character, specifying the name of treatment samples.
label	An integer or a character specifying the column used as the label, default value is 0 (row names).
label.top	Boolean, whether label the top selected genes, default label the top 10 genes in each group.
top	Integer, specifying the number of top selected genes to be labeled. Default is 5.
genelist	Character vector, specifying labeled genes.
scale_cutoff	Numeric, specifying the number of standard deviation to be used as cutoff.
main	As in 'plot'.
filename	Figure file name to create on disk. Default filename="NULL", which means don't save the figure on disk.
width	As in ggsave.
height	As in ggsave.
	Other available parameters in function 'ggsave'.

TransGeneID 43

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

See Also

ScatterView

Examples

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
SquareView(dd, ctrlname = "dmso", treatname = "plx", label = "Gene")
```

TransGeneID

Gene ID conversion between ENTREZID and SYMBOL

Description

Gene ID conversion between ENTREZID and SYMBOL

Usage

```
TransGeneID(genes, fromType = "Symbol", toType = "Entrez",
  organism = "hsa", useBiomart = FALSE,
  ensemblHost = "www.ensembl.org")
```

Arguments

genes	A character vector, input genes to be converted.	
fromType	The input ID type, one of "Symbol" (default), "Entrez" and "Ensembl"; you can also input other valid attribute names for biomaRt.	
toType	The output ID type, one of "Symbol", "Entrez" (default), "Ensembl"; you can also input other valid attribute names for biomaRt.	
organism	One of "hsa"(or 'Human'), "mmu"(or 'Mouse'), "bta", "cfa", "ptr", "rno", and "ssc".	
useBiomart	Boolean, indicating whether use Biomart to do the transformation.	
ensemb1Host	String, specifying ensembl host, you can use 'listEnsemblArchives()' to show all available Ensembl archives hosts.	

Value

A character vector, named by unique input gene ids.

44 ViolinView

Author(s)

Wubing Zhang

See Also

eg2id

Examples

```
data(mle.gene_summary)
TransGeneID(mle.gene_summary$Gene[1:10], organism="hsa")
TransGeneID(mle.gene_summary$Gene[1:10], organism="hsa", useBiomart = TRUE)
```

ViolinView

Violin plot

Description

Plots the violin of beta scores in Control and Treatment samples.

Usage

```
ViolinView(beta, samples = NULL, main = NULL, ylab = "Beta Score",
  filename = NULL, width = 5, height = 4, ...)
```

Arguments

beta	Data frame, , including samples as columns.	
samples	Character, specifying the name of samples to be compared.	
main	As in 'plot'.	
ylab	As in 'plot'.	
filename	Figure file name to create on disk. Default filename="NULL", which means don't save the figure on disk.	
width	As in ggsave.	
height	As in ggsave.	

Value

An object created by ggplot, which can be assigned and further customized.

Other available parameters in function 'ggsave'.

Author(s)

Wubing Zhang

See Also

DensityView

VolcanoView 45

Examples

```
data(mle.gene_summary)
# Read beta score from gene summary table in MAGeCK MLE results
dd = ReadBeta(mle.gene_summary, organism="hsa")
ViolinView(dd, samples=c("dmso", "plx"))
#or
ViolinView(dd[, c("dmso", "plx")])
```

VolcanoView

Volcano View

Description

Volcano plot

Usage

```
VolcanoView(df, x = "logFC", y = "adj.P.Val", Label = NA, top = 5,
  topnames = NULL, filename = NULL, x_cutoff = log2(1.5),
  y_cutoff = 0.05, main = NULL, xlab = "Log2 Fold Change",
  ylab = "-Log10(Adjust.P)", ...)
```

Arguments

df	Data frame
X	Colname of df specifying x-axis in Volcanno figure, 'logFC' (default).
У	Colname of df specifying y-axis in Volcanno figure, 'adj.P.Val' (default).
Label	Colname of df specifying labeled terms in Volcanno figure.
top	Interger, the number of top significant terms to be labeled.
topnames	Character vector, indicating interested terms to be labeled.
filename	Figure file name to create on disk. Default filename="NULL", which means don't save the figure on disk.
x_cutoff	Cutoff of x-axis.
y_cutoff	Cutoff of y-axis.
main	Title of volcano figure.
xlab	Label of x-axis in figure.
ylab	Label of y-axis in figure.
	Other available parameters in ggsave.

Value

An object created by ggplot, which can be assigned and further customized.

Author(s)

Wubing Zhang

Zuber_Essential

Examples

```
data(rra.gene_summary)
rra = ReadRRA(rra.gene_summary)
VolcanoView(rra, x = "LFC", y = "FDR", Label = "Official")
```

Zuber_Essential

Core essential gene list

Description

A gene list of core essential genes

Usage

```
data("Zuber_Essential")
```

Format

A dataframe including 664 rows, representing 664 core essential gene.

Index

*Topic datasets	Hypergeometric (enrich.HGT), 11
countsummary, 7	Tiday (Day) Cara 25
mle.gene_summary, 32	IdentBarView, 25
rra.gene_summary,38	KeggPathwayView, 4, 17, 26
rra.sgrna_summary,39	
Zuber_Essential, 46	loess, <i>33</i>
	loess.normalize(normalize.loess), 33
arrangePathview,3	
Datab Damassa 4	MapRatesView, 30
BatchRemove, 4	MAView, 31
CellCycle, MAGeCKFlute-method	mle.gene_summary,32
(CellCycleView), 5	noEnrichPlot, 32
CellCycleView, 5	normalize.loess, 33
ComBat, 4	NormalizeBeta, 33, 34
CorrView, 6	normalizebeta (NormalizeBeta), 34
countsummary, 7	normalizabeta (normalizabeta), 54
CutoffCalling, 7	pathview, 29
cutor realiting, 7	
DensityDiffView, 8	RankView, 35
DensityView, 9, 44	rankview (RankView), 35
3 , ,	ReadBeta, 36
eg2id, <i>44</i>	readbeta (ReadBeta), 36
enrich.GSE, 10, 12, 13, 18	ReadGMT, 36
enrich.HGT, <i>10</i> , 11, <i>13</i> , <i>18</i>	ReadRRA, 37
enrich.ORT, 10, 12, 12, 18	readrra (ReadRRA), 37
EnrichAB, 13	ReadsgRRA, 38
EnrichedGeneView, 14	rra.gene_summary,38
EnrichedGSEView, 15, 17	rra.sgrna_summary, 39
EnrichedView, 16, 16	RRApipeline (FluteRRA), 22
enrichGSE (enrich.GSE), 10	ScatterView, 39, 43
enrichgseview (EnrichedGSEView), 15	scatterview (ScatterView), 39
<pre>enrichment (enrichment_analysis), 17</pre>	Selector, 40
enrichment_analysis, <i>10</i> , <i>12</i> , <i>13</i> , 17	sgRankView, 41
enrichORT (enrich.ORT), 12	SquareView, 20, 40, 42
EnrichSquare, <i>14</i> , 19, <i>20</i>	squareview (SquareView), 42
enrichview (EnrichedView), 16	5qua. 5,15,1 (5qua. 5,15,1); ;=
	TransGeneID, 43
FluteMLE, 20, 23	transGeneID (TransGeneID), 43
flutemle (FluteMLE), 20	W. 1. W. O. 44
FluteRRA, 22, 22	ViolinView, 9, 44
	violinview (ViolinView), 44
getOrg, 24	VolcanoView, 45
HeatmanView 24	Zuber_Essential,46