
How to use breakpointR

David Porubsky ∗

∗david.porubsky@gmail.com

October 31, 2018

Contents

1 Introduction . 2

2 Quickstart . 2

2.1 Running breakpointR . 3

3 Recommended settings . 4

3.1 Reading BAM files . 4

3.2 Removing certain regions . 4

3.3 Binning strategy . 4

3.4 Breakpoint peak detection . 4

3.5 Background reads . 5

3.6 Calling breakpoint hotspots . 5

3.7 Loading results and plotting single cells 6

4 Session Info . 7

mailto:david.porubsky@gmail.com

How to use breakpointR

1 Introduction

BreakpointR is a novel algorithm designed to accurately tracks template strand changes in
Strand-seq data using a bi-directional read-based binning. Read-based binning strategy scales
bin size dynamically to accommodate defined number of reads what accounts for mappability
bias in sparsely covered single-cell Strand-seq data. In such dynamically scaled bins, read
directionality is tracked in order to search for points where template strand state changes.
BreakpointR takes as an input reads aligned to the reference genome stored in BAM files.
BreakpointR outputs locations where directionality of sequenced teplate strands changes.

2 Quickstart

The main function of this package is called breakpointr() and performs all the necessary
steps to get from aligned reads in BAMs to interpretable output. For an unexperienced user
we advise to run breakpointR with default parameters and later based on the obtained results
start to tweak certain parameters. For more datailed guidance on parameter tweaking see
section 3.
library(breakpointR)

Run breakpointR with default paprameters

breakpointr(inputfolder='folder-with-BAM', outputfolder='output-directory')

Although in most cases the one of the above commands will produce reasonably good results,
it might be worthwile to adjust the default parameters to improve performance and the quality
of the results. You can get a description of all available parameters by typing
?breakpointr

After the function has finished, you will find the folder output-directory containing all
produced files and plots. This folder contains the following files and folders:

• breakpointR.config : This file contains all the parameters that are necessary to reproduce
your analysis. You can specify this file as
breakpointr(..., configfile='breakpointR.config')

to run another analysis with the same parameter settings.
• breakpoints UCSC browser formated bedgraphs compiling all breakpoints across all

single-cell libraries. This folder also contains list of all localized breakpoints in all
single-cell libraries. Lastly, locations of breakpoint hotspots are reported here if
callHotSpots=TRUE

• browserfiles UCSC browser formated files with exported reads, deltaWs and break-
Points for every single-cell library.

• data Contains RData files storing results of BreakpointR analysis for each single-cell
library.

2

How to use breakpointR

• plots: Genome-wide plots for selected chromsosome, genome-wide heatmap of strand
states as well as chromosome specific read distribution together with localized break-
points. All plots are created by default.

2.1 Running breakpointR

The function breakpointr() takes an input BAM files stored in the inputfolder and produces
an output folder with results, plots and browserfiles. The following code is an example of
how to run breakpointR for single-end reads with windowsize defined by size. Results will be
stored in outputfolder/data as RData objects. Such data can be later loaded for further
processing and customized plotting.
library(breakpointR)

Get some example files

datafolder <- system.file("extdata", "example_bams", package="breakpointRdata")

outputfolder <- tempdir()

Run breakpointR

breakpointr(inputfolder = datafolder, outputfolder = outputfolder,

chromosomes = 'chr22', pairedEndReads = FALSE,

reuse.existing.files = FALSE, windowsize = 1000000,

binMethod = 'size', pair2frgm = FALSE, min.mapq = 10,

filtAlt = TRUE)

3

How to use breakpointR

3 Recommended settings

3.1 Reading BAM files

Currently breakpointR can take as an input only aligned reads stored in BAM files. All BAM
files are expected to be present in a folder specified in breakpointr(..., inputfolder).
We advise to remove reads with low mapping qualityand reads with alternative alignments.
Duplicated reads are removed by default (to keep them .
breakpointr(..., min.mapq = 10, filtAlt = TRUE)

3.2 Removing certain regions

breakpointR allows a user to exclude certain genomic regions from the analysis. This comes
handy when one wants to remove reads that falls into low complexity regions such as seg-
mental duplications or centromeres. To mask certain genomic regions user has to define
option breakpointr(..., maskRegions) to a bed formated text file. All reads falling into
these regions will be discarded prior to breakpoint detection. User defined regions to mask
can be downloaded from the UCSC Table Browser.

3.3 Binning strategy

breakpointR uses read based binning strategy and offers two approaches to set the bin size:
(1) user defined number of reads in each bin or (2) number of reads in every bin is selected
based on desired bin length.
library(breakpointR)

Binning strategy based on desired bin length

breakpointr(inputfolder='folder-with-BAM', outputfolder='output-directory',

windowsize=1e6, binMethod='size')

Binning strategy based user-defined number of reads in each bin

breakpointr(inputfolder='folder-with-BAM', outputfolder='output-directory',

windowsize=100, binMethod='reads')

Based on the size of the user defined bin changes sensitivity and specifity of breakpoint
detection. We recomend to select rather large bin size (>=1Mb) in order to reliably detect
low frequency SCE events. In order to detect smaller events like inversions smaller bin size
is recommended. Keep in mind that such settings also leads to higher level of false positive
breakpoints. In this case one might need to tweak some breakpoint detection parameters
(see subsection 3.4).

3.4 Breakpoint peak detection

Breakpoint detection is based on finding significant peaks in deltaW values. Level of sig-
nifcance is measured in z-score (or number SDs) from the set threshold breakpointr(...,

peakTh). By default the threshold is set to the 1/3 of the highest detlaW value. For the data

4

How to use breakpointR

with noisy coverage we recommend to set this threshold little bit higher, for example 1/2 of
the highest deltaW value. In case of noisy data we also recommend to tweak trim option
breakpointr(..., trim) which used to calculate SD after trimming extreme deltaW values.
Example deltaW values

exampleFolder <- system.file("extdata", "example_results",

package="breakpointRdata")

exampleFile <- list.files(exampleFolder, full.names=TRUE)[1]

breakpoint.object <- loadFromFiles(exampleFile)

head(breakpoint.object[[1]]$deltas)

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | deltaW

<Rle> <IRanges> <Rle> | <numeric>

[1] chr1 7560-7594 - | 17

[2] chr1 8569-8612 + | 0

[3] chr1 15116-15143 - | 57

[4] chr1 17235-17240 - | 130

[5] chr1 19615-19720 - | 41

[6] chr1 19849-19911 - | 38

seqinfo: 23 sequences from an unspecified genome

3.5 Background reads

Backround reads are a common feature of Strand-seq libraries. Strand-seq is based on removal
of newly synthesized strand during DNA replication, however this process is not perfect.
Therefore, we usually expect low abundance reads aligned in opposite direction even for
puraly WW or CC chromosomes. Another reason to see such artefacs is imperfect read
mapping especially in repetitive regions. To remove reads falling into the repetitive regions
see subsection 3.2.

3.6 Calling breakpoint hotspots

In order to find locations where breakpoints occur around the same genomic position in
multiple Strand-seq libraries there is hotspotter(). Function can be invoked by setting
corresponding parameter to ’TRUE’. It make sense to set this parameter only if there is
available a reasonable number (>=50) of Strand-seq libraries.
To run breakpoint hotspot analysis using the main breakpointR function

breakpointr(..., callHotSpots=TRUE)

To run breakpoint hotspot analysis using exported data

exampleFolder <- system.file("extdata", "example_results",

package="breakpointRdata")

exampleFiles <- list.files(exampleFolder, full.names=TRUE)

breakpoint.objects <- loadFromFiles(exampleFiles)

Extract breakpoint coordinates

breaks <- lapply(breakpoint.objects, '[[', 'breaks')

5

How to use breakpointR

Get hotspot coordinates

hotspots <- hotspotter(breaks, bw=1e6)

3.7 Loading results and plotting single cells

Plotting a single library

exampleFolder <- system.file("extdata", "example_results",

package="breakpointRdata")

exampleFile <- list.files(exampleFolder, full.names=TRUE)[1]

plotBreakpoints(exampleFile)

[[1]]

−250
0

250
500

R
ea

d
co

un
ts background.estimate=0.01566 | med.reads.per.MB=595 | perc.coverage=4.78

example_lib1.bam

| |

B
re

ak
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202122 X

Chromosomes

S
ta

te
s

Plotting a single library

exampleFolder <- system.file("extdata", "example_results",

package="breakpointRdata")

exampleFiles <- list.files(exampleFolder, full.names=TRUE)[1:4]

plotBreakpointsPerChr(exampleFiles, chromosomes = 'chr7')

$chr7

example_lib5.bam
chr7

example_lib4.bam
chr7

example_lib3.bam
chr7

example_lib1.bam
chr7

4.0e+07 8.0e+07 1.2e+08

4.0e+07 8.0e+07 1.2e+08

4.0e+07 8.0e+07 1.2e+08

4.0e+07 8.0e+07 1.2e+08
−1000

100200300

−80
−40

0
40
80

−1000
100200300

−200
−100

0

Genomic position

R
ea

d
co

un
ts

6

How to use breakpointR

4 Session Info

toLatex(sessionInfo())

• R version 3.5.1 Patched (2018-07-24 r75008), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Running under: Windows Server 2012 R2 x64 (build 9600)

• Matrix products: default
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: BiocGenerics 0.28.0, GenomeInfoDb 1.18.0, GenomicRanges 1.34.0,

IRanges 2.16.0, S4Vectors 0.20.0, breakpointR 1.0.0, breakpointRdata 0.99.2,
cowplot 0.9.3, ggplot2 3.1.0, knitr 1.20

• Loaded via a namespace (and not attached): Biobase 2.42.0, BiocManager 1.30.3,
BiocParallel 1.16.0, BiocStyle 2.10.0, Biostrings 2.50.0, DelayedArray 0.8.0,
GenomeInfoDbData 1.2.0, GenomicAlignments 1.18.0, Matrix 1.2-14, R6 2.3.0,
RCurl 1.95-4.11, Rcpp 0.12.19, Rsamtools 1.34.0, SummarizedExperiment 1.12.0,
XVector 0.22.0, assertthat 0.2.0, backports 1.1.2, bindr 0.1.1, bindrcpp 0.2.2,
bitops 1.0-6, codetools 0.2-15, colorspace 1.3-2, compiler 3.5.1, crayon 1.3.4,
digest 0.6.18, doParallel 1.0.14, dplyr 0.7.7, evaluate 0.12, foreach 1.4.4, glue 1.3.0,
grid 3.5.1, gtable 0.2.0, gtools 3.8.1, highr 0.7, htmltools 0.3.6, iterators 1.0.10,
labeling 0.3, lattice 0.20-35, lazyeval 0.2.1, magrittr 1.5, matrixStats 0.54.0,
munsell 0.5.0, pillar 1.3.0, pkgconfig 2.0.2, plyr 1.8.4, purrr 0.2.5, rlang 0.3.0.1,
rmarkdown 1.10, rprojroot 1.3-2, scales 1.0.0, stringi 1.2.4, stringr 1.3.1, tibble 1.4.2,
tidyselect 0.2.5, tools 3.5.1, withr 2.1.2, yaml 2.2.0, zlibbioc 1.28.0

7

	1 Introduction
	2 Quickstart
	2.1 Running breakpointR

	3 Recommended settings
	3.1 Reading BAM files
	3.2 Removing certain regions
	3.3 Binning strategy
	3.4 Breakpoint peak detection
	3.5 Background reads
	3.6 Calling breakpoint hotspots
	3.7 Loading results and plotting single cells

	4 Session Info

