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1 Overview

This document presents an overview of the Clonality package. This package can be used
to test whether two tumors are clonal (metastases) or independent (double primaries) using
their somatic mutations, copy number or loss of heterozygosity (LOH) profiles. For LOH
data it implements Concordant Mutations (CM) test (Begg et al., 2007) and Likelihood
Ratio (LR) test (Ostrovnaya et al., 2008). For copy number profiles the package implements
the methodology based on the likelihood ratio described in (Ostrovnaya et al., 2010). For
somatic mutations we included the methods described in (Ostrovnaya et al., 2015) and
(Mauguen et al., 2017).

2 Copy number profiles

We will show how to test independence of the copy number profiles from the same patient
using simulated data. First we simulate the dataset with 10 pairs of tumors with 22 chro-
mosomes, 100 markers each. Simulated log-ratios are equal to signal + noise. The signal
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is defined in the following way: each chromosome has 50% chance to be normal, 30% to
be whole-arm loss/gain, and 20% to be partial arm loss/gain, where endpoints are drawn
at random, and loss/gain means are drawn from standard normal distribution. There are
no chromosomes with recurrent losses/gains. Noise is drawn from normal distribution with
mean 0, standard deviation 0.4 and added to the signal. First 9 patients have independent
tumors, while last patient has two tumors with identical signal, but independent noise.

> library(Clonality)

> set.seed(100)

> chrom<-paste("chr",rep(c(1:22),each=100),"p",sep="")

> chrom[nchar(chrom)==5]<-paste("chr0",substr(chrom[nchar(chrom)==5] ,4,5),sep="")

> maploc<- rep(c(1:100),22)

> data<-NULL

> for (pt in 1:9) #first 9 patients have independent tumors

+ {

+ tumor1<-tumor2<- NULL

+ mean1<- rnorm(22)

+ mean2<- rnorm(22)

+ for (chr in 1:22)

+ {

+ r<-runif(2)

+ if (r[1]<=0.5) tumor1<-c(tumor1,rep(0,100))

+ else if (r[1]>0.7) tumor1<-c(tumor1,rep(mean1[chr],100))

+ else { i<-sort(sample(1:100,2))

+ tumor1<-c(tumor1,mean1[chr]*c(rep(0, i[1]),rep(1, i[2]-i[1]), rep(0, 100-i[2])))

+ }

+ if (r[2]<=0.5) tumor2<-c(tumor2,rep(0,100))

+ else if (r[2]>0.7) tumor2<-c(tumor2,rep(mean2[chr],100))

+ else {i<-sort(sample(1:100,2))

+ tumor2<-c(tumor2,mean2[chr]*c(rep(0, i[1]),rep(1, i[2]-i[1]), rep(0, 100-i[2])))

+ }

+ }

+ data<-cbind(data,tumor1,tumor2)

+ }

> #last patient has identical profiles

> tumor1<- NULL

> mean1<- rnorm(22)

> for (chr in 1:22)

+ {

+ r<-runif(1)

+ if (r<=0.4) tumor1<-c(tumor1,rep(0,100))

+ else if (r>0.6) tumor1<-c(tumor1,rep(mean1[chr],100))

+ else { i<-sort(sample(1:100,2))

+ tumor1<-c(tumor1,mean1[chr]*c(rep(0, i[1]),rep(1, i[2]-i[1]), rep(0, 100-i[2])))

+ }
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+

+ }

> data<-cbind(data,tumor1,tumor1)

> data<-data+matrix(rnorm( 44000,mean=0,sd=0.4) ,nrow=2200,ncol=20)

> samnms<-paste("pt",rep(1:10,each=2),rep(1:2,10),sep=".")

>

Rows of data correspond to probes (genomic markers). The first column is the chromo-
some and the second column is probe’s genomic position. All subsequent columns corre-
spond to the samples and contain log-ratios. Here the genomic is an index, but normally it
would be actual probe’s location along the genome, and then ’splitChromosomes’ function
should be used to divide the chromosome into p and q arms, thus increasing the number of
independent units for the analysis.

> dim(data)

[1] 2200 20

As the next step of data preparation, we have to create a CNA (copy number array)
object as described DNAcopy.

> dataCNA<-CNA(data,chrom=chrom,maploc=maploc,sampleid=samnms)

> as.matrix(dataCNA)[1:5,1:10]

chrom maploc pt.1.1 pt.1.2 pt.2.1

1 "chr01p" " 1" " 5.229029e-01" " 0.2959505888" "-3.479070e-01"

2 "chr01p" " 2" " 1.787454e-01" "-0.0747496473" " 3.863461e-01"

3 "chr01p" " 3" "-3.404918e-01" " 0.2797033500" " 1.739630e-01"

4 "chr01p" " 4" "-4.191789e-01" " 0.3877484789" " 2.237324e-01"

5 "chr01p" " 5" " 1.597503e-03" " 0.6996900997" "-1.257982e-01"

pt.2.2 pt.3.1 pt.3.2 pt.4.1

1 " 3.365784e-01" " 0.5740303360" "-0.138725302" "-5.097874e-01"

2 "-2.887743e-01" " 0.1649959341" " 0.643577307" "-1.060686e-01"

3 " 8.558146e-02" " 0.3676130117" "-0.263964372" "-1.285919e-01"

4 "-3.226487e-01" " 0.3157696773" "-0.936102251" "-6.465105e-01"

5 " 1.276517e-01" " 0.4961418049" "-0.126477964" "-2.908564e-01"

pt.4.2

1 " 1.196744e-01"

2 "-4.829711e-01"

3 "-1.506162e-01"

4 "-1.710028e-01"

5 "-2.945648e-01"

>

Our methodology allows at most one genomic change per chromosome arm, estimated
by the one-step Circular Binary Segmentation (CBS) algorithm ((Venkatraman and Olshen,
2007)).
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If the data had many more than 15,000 markers, most outstanding, and likely a short
change would be picked up, which would not be representative of the chromosome pattern.
To avoid this, one can use the following function:

> dataAve<- ave.adj.probes(dataCNA,2)

Total number of markers after averaging is 1100

Here we have averaged every two consecutive markers. For this dataset, though, aver-
aging is not necessary.

Next we have to create a vector of patient labels that matches the samples.

> ptlist<- paste("pt",rep(1:10,each=2),sep=".")

Finally, we can run the clonality analysis:

> results<-clonality.analysis(dataCNA, ptlist, pfreq = NULL, refdata = NULL, nmad = 1, reference = TRUE, allpairs = TRUE)

Calculating LR..........

Calculating reference LR: %completed 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

The main information is in the output LR:

> results$LR

Sample1 Sample2 LR1 LR2 GGorLL NN GL GNorLN

1 pt.1.1 pt.1.2 2.682477e-02 2.682477e-02 0 12 0 10

2 pt.2.1 pt.2.2 2.830516e-02 4.816474e-03 1 9 0 12

3 pt.3.1 pt.3.2 7.263437e-03 7.263437e-03 0 9 0 13

4 pt.4.1 pt.4.2 1.793088e-01 1.793088e-01 2 10 0 10

5 pt.5.1 pt.5.2 1.897357e-02 2.700118e-03 2 8 3 9

6 pt.6.1 pt.6.2 7.441437e-03 7.441437e-03 0 11 2 9

7 pt.7.1 pt.7.2 1.084280e+00 1.784246e-01 4 8 1 9

8 pt.8.1 pt.8.2 1.350562e-01 1.350562e-01 1 15 3 3

9 pt.9.1 pt.9.2 9.918617e-03 9.918617e-03 1 8 1 12

10 pt.10.1 pt.10.2 5.790525e+04 4.402231e+09 12 10 0 0

IndividualComparisons LR2pvalue

1 0.3944444

2 chr20p 0.17 0.7944444

3 0.7388889

4 0.1555556

5 chr15p 0.14 0.8777778

6 0.6833333

7 chr18p 0.16 0.1555556

8 0.2000000

9 0.6388889

10 chr03p 27.5; chr05p 52.81; chr20p 52.34 0.0000000

4



The likelihood ratios LR2 for patients 1:9 are much smaller than 1, therefore these tumors
are independent. Patient 10 has LR2 much higher than one, and we can conclude that this
patient’s tumors are clonal. The reference distribution for LR2 under the hypothesis of
independence is constructed by pairing tumors from different patients that are independent
by default. The p-value column reflects the percentiles of a particular patient’s LR2 in the
reference distribution: clonal tumors would have small p-values.

We can view the genomewide plots of patient 10 using:

> genomewidePlots(results$OneStepSeg, results$ChromClass,ptlist , c("pt.10.1", "pt.10.2"),results$LR, plot.as.in.analysis = TRUE)
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Sample pt.10.1

Sample pt.10.2

Patterns for each chromosome would be plotted by:

> chromosomePlots(results$OneStepSeg, ptlist,ptname="pt.10",nmad=1)
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The overlap between the histograms of LR2 from original pairs of tumors and the refer-
ence distribution are produced by:

> histogramPlot(results$LR[,4], results$refLR[,4])
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2.1 Choice of segmentation algorithm

Note that the user can potentially specify the segmentation method to be used. Currently
the default behavior of the clonality.analysis function is to use the CBS algorithm to identify
the most significant change in each chromosome arm. The internal function for this purpose
is ”oneseg” called as oneseg(x, alpha, nperm, sbdry)

There are 4 arguments to oneseg:

x: is the finite logratio data ordered by genomic position.
alpha: the significance level used by CBS.
nperm: the number of permutations for the reference distribution.
sbdry: early stopping boundary for declaring no change (calculated from alpha and nperm).
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The output of this function is a vector of 3 numbers where the first is the number of
change-points detected (must be 0, 1 or 2), and the second and the third numbers are the
start and end of the left segment if there is only one change-point, and of the middle segment
when there are 2 change-points.

The function allows the user to specify alternative alpha and nperm for ’oneseg’ as a
list using the segpar argument e.g. segpar=list(alpha=0.05, nperm=1000). Since sbdry is
always calculated in clonality.analysis function from alpha and nperm it is not specified.

Alternate segmentation algorithm can be used. It requires the user to create a function
that takes the ordered logratio from one chromosome arm as argument ”x” as in oneseg.
The name of this function should not be ’oneseg’ and is passed through the ’segmethod’
argument and all other necessary arguments that are needed passed as a list through ’segpar’
argument.

3 LOH data

The LOH data has to be combined in a matrix where first column has marker names and
the following columns have LOH calls for each sample. Here we simulate a dataset with
10 pairs of tumors and 20 markers. First pair of tumor is clonal, and the rest of them are
independent. If the marker is heterozygous and there is no LOH, then it is denoted by 0.
LOH at maternal or paternal alleles is marked by 1 or 2.

> set.seed(25)

> LOHtable<-cbind(1:20,matrix(sample(c(0,1,2),20*20,replace=TRUE),20))

> LOHtable[,3]<-LOHtable[,2]

> LOHtable[1,3]<-0

> LOHtable[,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 0 2 0

[2,] 2 2 2 0 0

[3,] 3 0 0 1 0

[4,] 4 2 2 2 2

[5,] 5 0 0 1 1

[6,] 6 2 2 0 2

[7,] 7 1 1 2 1

[8,] 8 1 1 2 2

[9,] 9 0 0 0 1

[10,] 10 0 0 2 0

[11,] 11 0 0 0 2

[12,] 12 1 1 2 0

[13,] 13 2 2 2 0

[14,] 14 1 1 1 2

[15,] 15 2 2 1 0
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[16,] 16 0 0 0 1

[17,] 17 1 1 0 0

[18,] 18 2 2 1 2

[19,] 19 1 1 0 0

[20,] 20 2 2 0 0

> LOHclonality(LOHtable,rep(1:10,each=2),pfreq=NULL,noloh=0,loh1=1,loh2=2)

Testing clonality for patient 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Done

Sample1 Sample2 a e f g h Ntot CMpvalue LRpvalue

1 1 1 13 13 0 1 6 20 2.20457220717234e-08 0

2 2 2 3 6 4 6 4 20 0.633257174327221 1

3 3 3 6 9 2 5 4 20 0.13247418005031 0.458

4 4 4 6 9 4 5 2 20 0.271731009940983 0.807

5 5 5 3 6 7 5 2 20 0.768026723950271 1

6 6 6 1 5 8 3 4 20 0.964059678147575 0.442

7 7 7 6 12 3 4 1 20 0.607636663320756 1

8 8 8 5 11 4 2 3 20 0.585520481546597 0.719

9 9 9 4 7 6 5 2 20 0.597049677704141 0.911

10 10 10 6 10 3 6 1 20 0.424944369195046 0.794

First p-value is small, indicating clonality, for both CM and LR tests. The rest of the
p-values are not significant.

Markers that are not informative (e.g. homozygous) in a particular tumor should be
given NA instead of a call. Such markers will be dropped from the analysis of this specific
patient.

4 LOH data for 3 and more tumors

It is possible to test clonality of 3 or more tumors using Extended Concordant Mutations
test, implemented in function ’ECMtesting’. The input LOH matrix can be in the same
format as for ’LOHclonality’ function: first column of a matrix contains marker names,
subsequent columns are samples. For each patient all possible subsets of tumors are tested
for clonality, with adjustment for multiple comparison performed using permutation MinP
procedure.

Likelihood model can be extended for 3 or 4 tumors with function ’LRtesting3or4tumors’.
The likelihood function depends on 2 parameters for 3 tumors, and 3 parameters for 4
tumors, allowing for non-symmetric relationship among tumors. Likelihood ratio test is
computed and p-value is calculated using permutations.

5 Inference using profiles of somatic mutations

5.1 Likelihood model

In (Ostrovnaya et al., 2015) we presented statistical test for evaluating evidence for clonality
against null hypothesis that the two tumors are independent using their mutational profiles
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obtained by next generation sequencing, such as targeted panel sequencing or whole exome
sequencing. It utilizes conditional likelihood model where for each patient only loci where at
least one tumor has a mutation are contributing to the test statistic. Marginal frequencies
of mutations are assumed to be known and usually can be computed from TCGA data or
other similar resources.

Below we download the exome sequencing data from study of Lobular Carcinoma in
Situ (LCIS) and Invaisve lobular carcinomas (ILC) and Invasive Ductal Carcinomas (IDC)
in the same patients ((Begg et al., 2016)). Marginal probabilities in the column probi are
obtained from breast cancer TCGA data and are not directly applicable to other cancers.

> data(lcis)

[1] "lcis"

> n<-nrow(lcis)

[1] 938

> summary(lcis$probi)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0009862 0.0009862 0.0009862 0.0012743 0.0009862 0.1370809

> table(lcis$TK47IDC.TK47LCIS1 )

0 1 2

880 1 57

> lcis$probi[lcis$TK47IDC.TK47LCIS1==1]

[1] 0.0009861933

Here variable TK47IDC.TK47LCIS1 takes values 0 if a mutation is not observed, 1 if
shared mutation is observed in both tumors, and 2 if it’s a private mutation. We can see
that IDC and LCIS tumors in patient 47 have 1 mutation in common, and 57 present in
only one of the tumors. The single match is at a locus where the mutations are relatively
rare, having probability 0.000986.

Below is the test of clonality of these two tumors. Note that the p-value is calculated
using the simulated null distribution, thus setting the random seed is recommended for
reproducibility. We will assign private mutations to tumor 1 here since the likelihood doesn’t
depend on which tumor has the private mutation.

> x1<-x2<-rep(0,n)

> x1[lcis$TK47IDC.TK47LCIS1==1]<-x2[lcis$TK47IDC.TK47LCIS1==1]<-1

> x1[lcis$TK47IDC.TK47LCIS1==2]<-1

> set.seed(1)

> SNVtest(x1,x2,lcis$probi)
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n1 n2 n_match LRstat maxKsi LRpvalue

58.00000000 1.00000000 1.00000000 2.58936185 0.03290253 0.02100000

The p-value of 0.021 confirms that these two tumors are clonal, i.e. originate from the
same cell harboring the matching mutation.

5.2 Random effects model

Here we show how to test the independence of the somatic mutation profile, following the
random effects model proposed by Mauguen et al (http://biostats.bepress.com/mskccbiostat/paper33,
(Mauguen et al., 2017)). The example uses the data from 22 cases with both lobular car-
cinoma in situ (LCIS) and an invasive breast tumor (Begg et al., 2016). Data from whole-
exome sequencing were available and used to compare the mutation profile of the two tumors.
Those data correspond to the dataset lcis included in the package. The random-effect model
is estimated on the data using the following code:

> data(lcis)

> mod <- mutation.rem(lcis)

> print(mod)

Estimation done on 22 pairs

___ Parameter estimates

Random-effect distribution

mean mu = -2.26

standard-deviation sigma = 1.47

Proportion of clonal pairs

pi = 0.749

___ Model likelihood and convergence

likelihood -282.1317

convergence status 0

convergence message (from optim) CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

NULL

In this example, the estimation converged (convergence status=0). The proportion of clonal
cases in the LCIS dataset is estimated to be 75%. The function allows the computation of
standard-errors using the option sd.err=TRUE. The individual probabilities of clonality for
those 22 cases are obtained using:

> data(lcis)

> mod <- mutation.rem(lcis, proba=TRUE)

>
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> print(mod)

Estimation done on 22 pairs

___ Parameter estimates

Random-effect distribution

mean mu = -2.26

standard-deviation sigma = 1.47

Proportion of clonal pairs

pi = 0.749

___ Model likelihood and convergence

likelihood -282.1317

convergence status 0

convergence message (from optim) CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

___ Individual probabilities

Tumor pairs Probability of being clonal

TK24ILC.TK24LCIS1 1.000

TK24ILC.TK24LCIS2 0.997

TK26IDC.TK26LCIS 0.352

TK46ILC.TK46LCIS 0.352

TK46ILC.TK46LCIS3 0.381

TK47IDC.TK47LCIS1 0.943

TK47IDC.TK47LCIS2 0.875

TK47ILC.TK47LCIS1 1.000

TK47ILC.TK47LCIS2 1.000

TK48ILC.TK48LCIS1 1.000

TK48ILC.TK48LCIS2 0.939

TK53IDC2.TK53LCIS1 0.999

TK53IDC2.TK53LCIS2 0.966

TK55ILC.TK55LCIS 1.000

TK68ILC.TK68LCIS1 0.308

TK69ILC.TK69LCIS 1.000

TK73ILC.TK73LCIS1 0.331

TK74IDC.TK74LCIS1 0.331

TK74IDC.TK74LCIS2 0.323

TK74IDC.TK74LCIS3 1.000

TK75IDC.TK75LCIS2 0.384

TK75ILC.TK75LCIS1 1.000

Tumor pairs Probability of being clonal
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1 TK24ILC.TK24LCIS1 1.000

2 TK24ILC.TK24LCIS2 0.997

3 TK26IDC.TK26LCIS 0.352

4 TK46ILC.TK46LCIS 0.352

5 TK46ILC.TK46LCIS3 0.381

6 TK47IDC.TK47LCIS1 0.943

7 TK47IDC.TK47LCIS2 0.875

8 TK47ILC.TK47LCIS1 1.000

9 TK47ILC.TK47LCIS2 1.000

10 TK48ILC.TK48LCIS1 1.000

11 TK48ILC.TK48LCIS2 0.939

12 TK53IDC2.TK53LCIS1 0.999

13 TK53IDC2.TK53LCIS2 0.966

14 TK55ILC.TK55LCIS 1.000

15 TK68ILC.TK68LCIS1 0.308

16 TK69ILC.TK69LCIS 1.000

17 TK73ILC.TK73LCIS1 0.331

18 TK74IDC.TK74LCIS1 0.331

19 TK74IDC.TK74LCIS2 0.323

20 TK74IDC.TK74LCIS3 1.000

21 TK75IDC.TK75LCIS2 0.384

22 TK75ILC.TK75LCIS1 1.000

The individual probability of clonality varies from 31% for case 68 with no shared mu-
tations to >99% for several cases having 2 or more mutations shared between the two
tumors.

Finally, once the model is estimated on a given population, it is possible to estimate the
probability of clonality of a new case using:

> # generate a case with 30 mutations

> # probabilities of each observed mutation

> set.seed(159)

> pi <- runif(30,0.001,0.13)

> # mutation 1=shared or 2=private

> newpair <- cbind(pi,rbinom(30,1,1-pi^2)+1)

> # generate the matrix of likelihood values

> new.likmat <- grid.lik(xigrid=c(0, seq(0.0005, 0.9995, by=0.001)),

+ as.matrix(newpair[,c(-1)]), newpair[,1])

> # probability of being clonal using the model previoulsy estimated

> proba <- mutation.proba(c(mod$mu, mod$sigma, mod$pi), t(as.matrix(new.likmat)) )

> print(proba)

[1] 0.47

[1] 0.47
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For this hypothetical case with 30 private mutations, the probability of being clonal is
47%.

Below are the details of the session information:

R version 3.5.1 Patched (2018-07-24 r75008)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] Clonality_1.30.0 DNAcopy_1.56.0

loaded via a namespace (and not attached):

[1] compiler_3.5.1 tools_3.5.1
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