
Training Signalling Pathway Maps to Biochemical Data with

Logic-Based Ordinary Differential Equations

David Henriques1,2 and Thomas Cokelaer *1

1European Bioinformatics Institute, Saez-Rodriguez group, Cambridge, United Kingdom
2Instituto de Investigaciones Marinas-CSIC, Vigo, Spain

January 4, 2019

Contents

1 Introduction 1

2 Installation 2

3 Quick Start 2

1 Introduction

Mathematical models are used to understand protein signalling networks so as to provide an integrative view
of pharmacological and toxicological processes at molecular level. CellNOptR [1] is an existing package (see
http://bioconductor.org/packages/release/bioc/html/CellNOptR.html) that provides functionalities
to combine prior knowledge network (about protein signalling networks) and perturbation data to infer
functional characteristics (of the signalling network). While CellNOptR has demonstrated its ability to infer
new functional characteristics, it is based on a boolean formalism where protein species are characterised
as being fully active or inactive. In contrast, logic-based ordinary differential equations allow a quantitive
description of a given Boolean model.

The method used here was first published by Wittmann et al. [9] by the name of odefy. For a detailed
description of the methodology the user is adressed to [9] and for a published application example to [6].

This package implements the Odefy method and focus mainly extending the CellNOptR capabilities in
order to simulate and calibrate logic-based ordinary differential equation model. We provide direct and
easy to use interface to optimization methods available in R such as eSSR [7] (enhanced Scatter Search
Metaheuristic for R) and an R genetic algorithm implementation by the name of genalg in order to perform
parameter estimation. Additionally we were specially careful in tackling the main computanional bottlenecks
by implementing CNORode simulation engine in the C language using the CVODES library [10].

This brief tutorial shows how to use CNORode using as a starting point a Boolean model and a dataset
consisting in a time-series of several proteins.

*cokelaer@ebi.ac.uk

1

http://bioconductor.org/packages/release/bioc/html/CellNOptR.html

2 Installation

CNORode depends on CellNOptR and genalg, which are 2 bioconductor packages. Therefore, in order to
install CNORode, open a R session and type:

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("CNORode")

It may take a few minutes to install all dependencies if you start from scratch (i.e, none of the R packages
are installed on your system). Note also that under Linux system, some of these packages necessitate the
R-devel package to be installed (e.g., under Fedora type sudo yum install R-devel).

Additionally, for parameter estimation we recommend the use of eSSR. This algorithm algorithm is part
of the MEIGOR toolbox. Although this package is not available on BioConductor, it can be downloaded
from http://www.ebi.ac.uk/saezrodriguez/cno/downloads.html. Once downloaded, install MEIGOR
by typing:

install.packages("MEIGOR_0.99.3_svn2444.tar.gz",type="source")

Note ”̃/” should point to the directory where the file is saved.
Finally, once CNORode is installed you can load it by typing:

library(CNORode)

3 Quick Start

In this section, we provide a quick example on how to use CNORode to find the set of continuous parameters
which minimize the squared difference between a model simulation and the experimental data.

Since here we will not be modifying the model structure as opposed to CellNOptR we will use a model
that already contains AND type gates. Such model can be for instance the result of calibrating a prior
knowledge network(PKN) with CellNOptR. Please note that a PKN can also be used as Boolean model
which will contain only OR type gates.

Detailed information about the model used here (ToyModelMMB FeedbackAnd) and additional models
can be found at:

http://www.ebi.ac.uk/~cokelaer/cno/doc/sampleModels/

The example used here is shipped with the CNORode. In order to load the data and model you should
type the following commands:

library(CNORode)

model=readSIF(system.file("doc", "ToyModelMMB_FeedbackAnd.sif",

package="CNORode"));

cno_data=readMIDAS(system.file("doc", "ToyModelMMB_FeedbackAnd.csv",

package="CNORode"));

cnolist=makeCNOlist(cno_data,subfield=FALSE);

2

http://www.ebi.ac.uk/saezrodriguez/cno/downloads.html
http://www.ebi.ac.uk/~cokelaer/cno/doc/sampleModels/

● ●

Akt

● ●

Hsp27

● ●

NFkB

● ●

Erk

● ●

p90RSK

● ●

Jnk

● ●

cJun

● ●

Cues

●

●

0.
0

0.
5

● ● ●

●

●

●

●

●

● ● ● ●

●

●

0.
0

0.
5

●

●

●

●

● ● ● ● ●

●

●

●

●

●

0.
0

0.
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
5

● ● ●

●

● ● ● ● ● ● ● ●

●

●

0.
0

0.
5

●

●

●

●

● ● ● ● ●

●

●

●

●

●

0.
0

0.
5

●

●

●

●

● ● ● ● ●

●

●

●

● ●0.
0

0.
5

● ● ● ● ●

●

●

●

● ● ● ●

● ●0.
0

0.
5

●

●

●

●

● ● ● ● ●

●

●

●

● ●

0 10

0.
0

0.
5

●

●

0 10

●

●

0 10

●

●

0 10

●

●

0 10

●

●

0 10

●

●

0 10

E
G

F

T
N

Fa

R
af

−
i

P
I3

K
−

i

Figure 1: The used model(left panel). A plot from the data, resulting from the plotCNOlist function (right
panel).

The structure from the CNOlist and the Model object is exactly the same as used in the CellNOptR and
therefore for a detailed explanation about these structure we direct the reader to the CellNOptR manual.

In order to simulate the model and perform parameter estimation we first need to create a list with the
ODE parameters associated with each dynamic state as described in [9]. Each dynamic state will have a
τ parameter, as many n and k parameters as inputs. Although the default is to use the normalized Hill
function it also possible to use the standard Hill or even not to use any transfer function at all. To illustrate
the shape of the equations associated to each dynamic state and the meaning of each parameter, let us show
the differential of Mek :

˙Mek =

[(
1 − Aktn1/(k1

n1 +Aktn1)

1/(k1
n1 + 1)

)
·

(
Rafn2/(k2

n2 +Rafn2)

1/(k2
n2 + 1)

)
−Mek

]
· τMek

To create a list of ODE parameters we will typically use the createLBodeContPars function:

ode_parameters=createLBodeContPars(model, LB_n = 1, LB_k = 0.1,

LB_tau = 0.01, UB_n = 5, UB_k = 0.9, UB_tau = 10, default_n = 3,

default_k = 0.5, default_tau = 1, opt_n = TRUE, opt_k = TRUE,

opt_tau = TRUE, random = FALSE)

This function creates a general structure where the ODE parameters are ordered according to the model.
Some tweaks have been added in order to ease tasks we have found to be common, nevertheless you can edit
several attributes manually. If you print the ode parameters list you will see the following attributes.

3

print(ode_parameters)

$parNames

[1] "cJun_n_Jnk" "cJun_k_Jnk" "TRAF6_n_Jnk" "TRAF6_k_Jnk"

[5] "tau_Jnk" "Mek_n_Erk" "Mek_k_Erk" "tau_Erk"

[9] "Jnk_n_cJun" "Jnk_k_cJun" "tau_cJun" "TRAF6_n_p38"

[13] "TRAF6_k_p38" "tau_p38" "TNFa_n_TRAF6" "TNFa_k_TRAF6"

[17] "tau_TRAF6" "PI3K_n_Akt" "PI3K_k_Akt" "tau_Akt"

[21] "Ras_n_Raf" "Ras_k_Raf" "tau_Raf" "TNFa_n_PI3K"

[25] "TNFa_k_PI3K" "EGF_n_PI3K" "EGF_k_PI3K" "tau_PI3K"

[29] "EGF_n_Ras" "EGF_k_Ras" "tau_Ras" "Akt_n_Mek"

[33] "Akt_k_Mek" "Raf_n_Mek" "Raf_k_Mek" "tau_Mek"

[37] "Erk_n_Hsp27" "Erk_k_Hsp27" "p38_n_Hsp27" "p38_k_Hsp27"

[41] "tau_Hsp27" "TRAF6_n_NFkB" "TRAF6_k_NFkB" "tau_NFkB"

[45] "Mek_n_p90RSK" "Mek_k_p90RSK" "tau_p90RSK"

$parValues

[1] 3.0 0.5 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5

[17] 1.0 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 3.0 0.5 1.0 3.0 0.5 1.0 3.0

[33] 0.5 3.0 0.5 1.0 3.0 0.5 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 1.0

$index_opt_pars

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

[45] 45 46 47

$index_n

[1] 1 3 6 9 12 15 18 21 24 26 29 32 34 37 39 42 45

$index_k

[1] 2 4 7 10 13 16 19 22 25 27 30 33 35 38 40 43 46

$index_tau

[1] 5 8 11 14 17 20 23 28 31 36 41 44 47

$LB

[1] 1.00 0.10 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10

[14] 0.01 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10 1.00

[27] 0.10 0.01 1.00 0.10 0.01 1.00 0.10 1.00 0.10 0.01 1.00 0.10 1.00

[40] 0.10 0.01 1.00 0.10 0.01 1.00 0.10 0.01

$UB

[1] 5.0 0.9 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9

[14] 10.0 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9 5.0

[27] 0.9 10.0 5.0 0.9 10.0 5.0 0.9 5.0 0.9 10.0 5.0 0.9 5.0

[40] 0.9 10.0 5.0 0.9 10.0 5.0 0.9 10.0

4

Typically before running an optimization run you will want to choose which type of parameters you
want to optimize. The field index opt pars defines which parameters are meant to be optimized. In the
createLBodeContPars, if you choose opt tau as TRUE all τ parameters will be added to the index opt pars
array, the same idea is valid for n and k parameters.

It is also possible to choose default values for lower and upper bounds for the parameters of a given type,
e.g. τ (LB tau and UB tau), as well as a default initial value for such parameters.

Once we have the ODE parameters structure we are ready to run a simulation or optimization process.
To run a simulation we can use the getLBodeModel or getLBodeDataSim, depending on if we want to simulate
only the signals present in the CNOlist object or all the species in the model. Additionally plotLBodeDataSim
or plotLBodeModelSim will also return the values of a model simulation while plotting the same values. In
figure 2, we use plotLBodeModelSim to plot all the experiments sampled in 5 different instants (timeSignals).

modelSim=plotLBodeModelSim(cnolist, model, ode_parameters,

timeSignals=seq(0,2,0.5));

● ● ● ● ●

Jnk

● ● ● ● ●

Erk

● ● ● ● ●

cJun

● ● ● ● ●

p38

● ● ● ● ●

TRAF6

● ● ● ● ●

Akt

● ● ● ● ●

Raf

● ● ● ● ●

PI3K

● ● ● ● ●

Ras

● ● ● ● ●

Mek

● ● ● ● ●

Hsp27

● ● ● ● ●

NFkB

● ● ● ● ●

p90RSK

● ● ● ● ●

Cues

● ● ● ● ●0.
0

0.
5

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
6

●
●

●

●
●

0.
0

0.
5

● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ● ● ● ●
●

●

●

●
●

● ● ● ● ●
● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

● ● ● ● ●

0.
0

0.
6

●
●

●

●
●

0.
0

0.
5

● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●
● ●

● ●
●

●

●

●
●

●

●

●

● ● ● ● ●

0.
0

0.
6

● ● ● ● ●0.
0

0.
5

● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

●

●

●
●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
6

●
●

●

●
●

0.
0

0.
5

● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ● ● ● ● ●

●

●

●
●

● ● ● ● ●
● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

● ● ● ● ●

0.
0

0.
6

●
●

●

●
●

0.
0

0.
5

● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ● ● ● ● ●

●

●

●
●

●

●

●

●
●

● ● ● ● ● ● ●
●

●

●

●
●

●

●

●

● ● ● ● ●

0.
0

0.
6

● ● ● ● ●0.
0

0.
5

● ● ● ●

●

● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

● ● ● ● ● ●

●

●

●
●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

0.
0

0.
6

●
●

●

●
●

0.
0

0.
5

● ● ● ● ● ● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

● ● ● ● ●

0.
0

0.
6

●
●

●

●
●

0.0 1.5

0.
0

0.
5

● ● ● ●

●

0.0 1.5

● ● ●

●

●

0.0 1.5

●
●

●

●

●

0.0 1.5

●

●

●

●
●

0.0 1.5

● ● ● ● ●

0.0 1.5

●
●

●

●

●

0.0 1.5

● ● ● ● ●

0.0 1.5

●

●

●

●
●

0.0 1.5

● ● ●

●

●

0.0 1.5

● ●
●

●

●

0.0 1.5

●
●

●

●

●

0.0 1.5

● ● ● ●

●

0.0 1.5

E
G

F
T

N
Fa

R
af

−
i

P
I3

K
−

i

0.
0

0.
6

Figure 2: A model simulation plotted with plotLBodeModelSim ..

5

As previously mentioned, we provide two optimization algorithms that allow parameter estimation Both
of these algorithms have specific parameters that can be tunned on each specific problem (please check
CNORode manual for detailed information). For instance, in order to run the genetic algorithm for 10
iterations and a population of size of 10, we can use the following code:

initial_pars=createLBodeContPars(model, LB_n = 1, LB_k = 0.1,

LB_tau = 0.01, UB_n = 5, UB_k = 0.9, UB_tau = 10, random = TRUE)

#Visualize initial solution

simulatedData=plotLBodeFitness(cnolist, model,initial_pars)

paramsGA = defaultParametersGA()

paramsGA$maxStepSize = 1

paramsGA$popSize = 50

paramsGA$iter = 100

paramsGA$transfer_function = 2

opt_pars=parEstimationLBode(cnolist,model,ode_parameters=initial_pars,

paramsGA=paramsGA)

#Visualize fitted solution

simulatedData=plotLBodeFitness(cnolist, model,ode_parameters=opt_pars)

6

simulatedData=plotLBodeFitness(cnolist, model,initial_pars)

● ●

Akt

● ●

Hsp27

● ●

NFkB

● ●

Erk

● ●

p90RSK

● ●

Jnk

● ●

cJun

● ●

Stim Inh

●

●

0.5

●

●

0.5

●

●

0.5

●

●

0.5

●

●

0.5

●

●

0.5

● ●

0.5

● ●

0.5

● ●● ●

0 10

0.5

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

0 10

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0 10

●

●

● ●

●

●

● ●

● ●

● ●

●

●

● ●

●

●

●

●

0 10

●

●

● ●

●

●

● ●

● ●

● ●

●

●

● ●

●

●

●

●

0 10

● ●

●
●

●
●

● ●

●
●

●
●

● ●

●
●

●
●

●

●

0 10

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

0 10

E
G

F

T
N

F
a

R
af

−
i

P
I3

K
−

i

● ●

Error

1

0.5

0

Figure 3: The initial solution before optimization. Each row corresponds to an experiment with a particular
combination of stimuli and inhibitors. The columns correspond to the measured values (triangles) and the
simulated values (dashed blue lines) from a given signal. The background color gives an indication of squared
difference where red means high error and white low error.

7

simulatedData=plotLBodeFitness(cnolist, model,ode_parameters=opt_pars)

● ●

Akt

● ●

Hsp27

● ●

NFkB

● ●

Erk

● ●

p90RSK

● ●

Jnk

● ●

cJun

● ●

Stim Inh

●

●

●

●

0.5

●

●

●

●

0.5

●

●

●

●

0.5

●

●

0.5

●

●

●

●

0.5

●

●

●

●

0.5

● ●● ●

0.5

● ●● ●

0.5

● ●● ●

0 10

0.5

● ●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

0 10

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

0 10

●

●

● ●

● ●● ●

●

●

● ●

● ●

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

●

●

●

●

0 10

●

●

● ●

● ●● ●

●

●

● ●

● ●

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

●

●

●

●

0 10

● ●● ●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

● ●● ●

●
●

●
●

●
●

●
●

0 10

● ●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

0 10

E
G

F

T
N

F
a

R
af

−
i

P
I3

K
−

i

● ●

Error

1

0.5

0

Figure 4: A solution obtained by optimization with a genetic algorithm.Each row corresponds to an exper-
iment with a particular combination of stimuli and inhibitors. The columns correspond to the measured
values (triangles) and the simulated values (dashed blue lines) from a given signal. The background color
gives an indication of squared difference where red means high error and white low error.

8

In addition to eSSR and genalg its is fairly easy to use any other continuous optimization algorithm. In
the following example we show how to generate and use an the objective function in order to use it with a
variant of eSSR(part of MEIGOR package) that uses multiple cpus:

library(MEIGOR)

f_hepato<-getLBodeContObjFunction(cnolist, model, initial_pars, indices=NULL,

time = 1, verbose = 0, transfer_function = 2, reltol = 1e-05, atol = 1e-03,

maxStepSize = Inf, maxNumSteps = 1e4, maxErrTestsFails = 50, nan_fac = 1)

n_pars=length(initial_pars$LB);

problem<-list(f=f_hepato, x_L=initial_pars$LB[initial_pars$index_opt_pars],

x_U=initial_pars$UB[initial_pars$index_opt_pars]);

#Source a function containing the options used in the CeSSR publication

source(system.file("benchmarks","get_paper_settings.R",package="MEIGOR"))

#Set max time as 20 seconds per iteration

opts<-get_paper_settings(20);

Results<-CeSSR(problem,opts,Inf,Inf,3,TRUE,global_save_list=c('cnolist','model',

'initial_pars'))

References

[1] C. Terfve. CellNOptR: R version of CellNOpt, boolean features only. R package version 1.2.0, (2012)
http://www.bioconductor.org/packages/release/bioc/html/CellNOptR.html

[2] L.G. Alexopoulos, J. Saez-Rodriguez, B.D. Cosgrove, D.A. Lauffenburger, P.K Sorger.: Networks inferred
from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between
normal and transformed hepatocytes. Molecular & Cellular Proteomics: MCP 9(9), 1849–1865 (2010).

[3] M.K. Morris, I. Melas, J. Saez-Rodriguez. Construction of cell type-specific logic models of signalling net-
works using CellNetOptimizer. Methods in Molecular Biology: Computational Toxicology, Ed. B. Reisfeld
and A. Mayeno, Humana Press.

[4] M.K. Morris, J. Saez-Rodriguez, D.C. Clarke, P.K. Sorger, D.A. Lauffenburger. Training Signaling
Pathway Maps to Biochemical Data with Constrain ed Fuzzy Logic: Quantitative Analysis of Liver Cell
Responses to Inflammatory Stimuli. PLoS Comput Biol. 7(3) (2011) : e1001099.

[5] J. Saez-Rodriguez, L. Alexopoulos, J. Epperlein, R. Samaga, D. Lauffenburger, S. Klamt and P.K. Sorger.
Discrete logic modelling as a means to link protein signalling networks with functional analysis of mam-
malian signal transduction. Molecular Systems Biology, 5:331, 2009.

[6] Dominik Wittmann, Jan Krumsiek, Julio S. Rodriguez, Douglas Lauffenburger, Steffen Klamt, and Fabian
Theis. Transforming boolean models to continuous models: methodology and application to t-cell receptor
signaling. BMC Systems Biology, 3(1):98+, September 2009.

[7] Egea, J.A., Maria, R., Banga, J.R. (2010) An evolutionary method for complex-process optimization.
Computers & Operations Research 37(2):315324.

[8] Egea, J.A., Balsa-Canto, E., Garcia, M.S.G., Banga, J.R. (2009) Dynamic optimization of nonlinear
processes with an enhanced scatter search method. Industrial & Engineering Chemistry Research 49(9):
43884401.

[9] Jan Krumsiek, Sebastian Polsterl, Dominik Wittmann, and Fabian Theis. Odefy - from discrete to
continuous models. BMC Bioinformatics, 11(1):233+, 2010.

9

[10] R. Serban and A. C. Hindmarsh ”CVODES: the SensitivityEnabled ODE Solver in SUNDIALS,” Pro-
ceedings of IDETC/CIE 2005, Sept. 2005, Long Beach, CA. Also available as LLNL technical report
UCRLJP200039.

10

	Introduction
	Installation
	Quick Start

