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Overview

In this document, we show how to conduct statistical analysis that models the performance of sequin
controls in next-generation-sequencing (NGS) experiment. We call the sequins RnaQuin for “RNA-Seq
sequins”, MetaQuin for “metagenomic sequins”, VarQuin for “genomics variant sequins”, and the statistical
framework Anaquin.

This vignette is written for R-usage. However, Anaquin is a framework covering the entire NGS workflow.
Consequently, the R-package (and it’s documentation) is a subset of the overall Anaquin framework. We also
distribute a detailed workflow guide on our website.

It is important to note Anaquin is both command-line tool and R-package. Our workflow guide has the
details on how the command-line tool can be used with the R-package.

Sequins

Next-generation sequencing (NGS) enables rapid, cheap and high-throughput determination of sequences
within a user’s sample. NGS methods have been applied widely, and have fuelled major advances in the life
sciences and clinical health care over the past decade. However, NGS typically generates a large amount of
sequencing data that must be first analyzed and interpreted with bioinformatics tools. There is no standard
way to perform an analysis of NGS data; different tools provide different advantages in different situations.
The complexity and variation of sequences further compound this problem, and there is little reference by
which compare next-generation sequencing and analysis.

To address this problem, we have developed a suite of synthetic nucleic-acid sequins (sequencing spike-ins).
Sequins are fractionally added to the extracted nucleic-acid sample prior to library preparation, so they
are sequenced along with your sample of interest. We can use the sequins as an internal quantitative and
qualitative control to assess any stage of the next-generation sequencing workflow.

1

mailto:t.wong@garvan.org.au
www.sequin.xyz


Figure 1: NGS Workflow for sequins

Mixture

Sequins are combined together across a range of concentrations to formulate a mixture. Mixture file (CSV) is
a text file that specifies the concentration of each sequin within a mixture. Mixture files are often required as
input to enable Anaquin to perform quantitative analysis. Mixture file can be downloaded from our website.

Let’s demonstrate RnaQuin mixture A with a simple example. Load the mixture file (you can also download
the file directly from our website):
library('Anaquin')

## Loading required package: ggplot2
data("RnaQuinIsoformMixture")
head(RnaQuinIsoformMixture)

## Name Length MixA MixB
## 1 R1_101_1 719 11.329650 0.472075
## 2 R1_101_2 430 3.776550 1.416225
## 3 R1_102_1 1490 13.217925 7.553100
## 4 R1_102_2 1362 1.888275 52.871700
## 5 R1_103_1 1754 60.424806 453.186000
## 6 R1_103_2 1856 906.372094 30.212400

Each row represents a sequin. Name gives the sequin names, Length is the length of the sequins in nucleotide
bases, MixA gives the concentration level in attoml/ul for Mixture A.

Imagine we have two RNA-Seq experiments; a well-designed experiment and a poorly-designed experiment.
We would like to quantify their isoform expression.

Let’s simulate the experiments:
set.seed(1234)
sim1 <- 1.0 + 1.2*log2(RnaQuinIsoformMixture$MixA) + rnorm(nrow(RnaQuinIsoformMixture),0,1)
sim2 <- c(1.0 + rnorm(100,1,3), 1.0 +

1.2*log2(tail(RnaQuinIsoformMixture,64)$MixA) +
rnorm(64,0,1))

In the first experiment, sequins are expected to correlate linearly with the measured FPKM. Indeed, the
variables are strongly correlated:
names <- row.names(RnaQuinIsoformMixture)
input <- log2(RnaQuinIsoformMixture$MixA)

title <- 'Isoform expression (Good)'
xlab <- 'Input concentration (log2)'
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ylab <- 'Measured FPKM (log2)'

plotLinear(names, input, sim1, title=title, xlab=xlab, ylab=ylab)

y = c(0.88) + c(1.2)x,  r2 = 0.971
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In our second experiment, the weakly expressed isoforms exhibit stochastic behavior and are clearly not linear
with the input concentration. Furthermore, there is a limit of quantification (LOQ); below which accuracy of
the experiment becomes questionable.
names <- row.names(RnaQuinIsoformMixture)
input <- log2(RnaQuinIsoformMixture$MixA)

title <- 'Isoform expression (Bad)'
xlab <- 'Input concentration (log2)'
ylab <- 'Measured FPKM (log2)'

plotLinear(names, input, sim2, title=title, xlab=xlab, ylab=ylab)
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Overall : y = c(2.3) + c(0.45)x,  r2 = 0.218

Above LOQ : y = c(1.8) + c(0.59)x,  r2 = 0.32
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The primary observation is that the artificial scale imposed by sequins allow us to quantify our experiments.

Quantifying transcriptome assembly

To quantify RNA-Seq transcriptome assembly, we need to run a transcriptome assember; a software that can
assemble transcripts and estimates their abundances. Our workflow guide has the details.

Here, we use a data set generated by Cufflinks, described in Section 5.4.5.1 in the user guide:
data(UserGuideData_5.4.5.1)
head(UserGuideData_5.4.5.1)

## Input Sn
## R1_101_1 10.0708 0.990264
## R1_101_2 5.0354 0.393023
## R1_102_1 0.8886 0.519463
## R1_102_2 14.2176 0.902349
## R1_103_1 107.4220 0.995439
## R1_103_2 859.3750 0.904095

The first column gives the input concentration for each sequin in attomol/ul. The second column is the
measured sensitivity. Run the following R-code to generate a sensitivity plot.
title <- 'Assembly Plot'
xlab <- 'Input Concentration (log2)'
ylab <- 'Sensitivity'
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# Sequin names
names <- row.names(UserGuideData_5.4.5.1)

# Input concentration
x <- log2(UserGuideData_5.4.5.1$Input)

# Measured sensitivity
y <- UserGuideData_5.4.5.1$Sn

plotLogistic(names, x, y, title=title, xlab=xlab, ylab=ylab, showLOA=TRUE)
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The fitted logistic curve reveals clear relationship between input concentration and sensitivity. Unsurprisingly,
the assembler has higher sensitivity with highly expressed isoforms. The limit-of-assembly (LOA) is defined
as the intersection of the curve to sensitivity of 0.70.

Quantifying gene expression

Quantifying gene/isoform expression involves building a linear model between input concentration and
measured FPKM. In this section, we consider a dataset generated by Cufflinks, described in Section 5.4.5.1
of the user guide.

Load the data set:
data(UserGuideData_5.4.6.3)
head(UserGuideData_5.4.6.3)
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## Input Observed1 Observed2 Observed3
## R1_101 15.1062 0.958838 1.456650 0.960190
## R1_102 15.1062 0.806596 0.604539 0.652783
## R1_103 966.7970 2.650470 2.890570 3.211090
## R1_11 241.6990 3.876010 3.919950 4.246390
## R1_12 30.2124 0.779118 0.898644 0.733175
## R1_13 7734.3800 1305.710000 1328.950000 1358.970000

The first column gives input concentration for each sequin in attomol/ul. The other columns are the FPKM
values for each replicate (three replicates in total). The following code will quantify the first replicate:
title <- 'Gene Expression'
xlab <- 'Input Concentration (log2)'
ylab <- 'FPKM (log2)'

# Sequin names
names <- row.names(UserGuideData_5.4.6.3)

# Input concentration
x <- log2(UserGuideData_5.4.6.3$Input)

# Measured FPKM
y <- log2(UserGuideData_5.4.6.3$Observed1)

plotLinear(names, x, y, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)

LOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ulLOQ: 0.236 attomol/ul

Overall : y = c(−3.3) + c(0.96)x,  r2 = 0.931

Above LOQ : y = c(−3.6) + c(1)x,  r2 = 0.954
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Coefficient of determination is over 0.90; over 90% of the variation (e.g. technical bias) can be explained by
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the model. LOQ is 3.78 attomol/ul, this is the estimated emphirical detection limit.

We can also quantify multiple replicates:
title <- 'Gene Expression'
xlab <- 'Input Concentration (log2)'
ylab <- 'FPKM (log2)'

# Sequin names
names <- row.names(UserGuideData_5.4.6.3)

# Input concentration
x <- log2(UserGuideData_5.4.6.3$Input)

# Measured FPKM
y <- log2(UserGuideData_5.4.6.3[,2:4])

plotLinear(names, x, y, title=title, xlab=xlab, ylab=ylab, showLOQ=TRUE)

y = c(−3.4) + c(0.97)x,  r2 = 0.934
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Differential analysis

In this section, we show how to quantify differential expression analysis between expected fold-change and
measured fold-change. We apply our method to a data set described in Section 5.6.3 of the user guide.
data(UserGuideData_5.6.3)
head(UserGuideData_5.6.3)
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## ExpLFC ObsLFC SD Pval Qval Mean
## R1_101 -3 -1.890122 0.701723 7.069675e-03 2.056337e-02 9.953556
## R1_102 -4 -2.051777 0.546374 1.731616e-04 7.646243e-04 17.285262
## R1_103 -1 3.837784 0.377602 2.883289e-24 6.534028e-23 1221.301532
## R1_11 -4 -2.431582 0.591352 3.924117e-05 1.974336e-04 47.174250
## R1_12 1 1.542757 0.425562 2.887104e-04 1.214989e-03 73.008720
## R1_13 0 0.717701 0.242493 3.079564e-03 1.000416e-02 44053.259914
## Label
## R1_101 TP
## R1_102 TP
## R1_103 TP
## R1_11 TP
## R1_12 TP
## R1_13 FP

For each of the sequin gene, we have expected log-fold change, measured log-fold change, standard deviation,
p-value, q-value and mean. The estimation was done by DESeq2.

Run the following code to construct a folding plot:
title <- 'Gene Fold Change'
xlab <- 'Expected fold change (log2)'
ylab <- 'Measured fold change (log2)'

# Sequin names
names <- row.names(UserGuideData_5.6.3)

# Expected log-fold
x <- UserGuideData_5.6.3$ExpLFC

# Measured log-fold
y <- UserGuideData_5.6.3$ObsLFC

plotLinear(names, x, y, title=title, xlab=xlab, ylab=ylab, showAxis=TRUE,
showLOQ=FALSE)
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y = c(0.5) + c(0.95)x,  r2 = 0.781
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Outliers are obvious throughout the reference scale. Overall, DESeq2 is able to account for 78% of the
variation.

We can also construct a ROC plot. [1] has details on how the true-positives and false-positives are defined.
title <- 'ROC Plot'

# Sequin names
seqs <- row.names(UserGuideData_5.6.3)

# Expected ratio
ratio <- UserGuideData_5.6.3$ExpLFC

# How the ROC points are ranked (scoring function)
score <- 1-UserGuideData_5.6.3$Pval

# Classified labels (TP/FP)
label <- UserGuideData_5.6.3$Label

plotROC(seqs, score, ratio, label, title=title, refGroup=0)

9



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

−4

−3

−2

−1

1

2

3

4

ROC Plot

AUC statistics for LFC 3 and 4 are higher than LFC 1 and 2. Overall, all LFC ratios can be correctly
classified relative to LFC 0.

Furthermore, we can construct limit of detection ratio (LOD) curves:
xlab <- 'Average Counts'
ylab <- 'P-value'
title <- 'LOD Curves'

# Measured mean
mean <- UserGuideData_5.6.3$Mean

# Expected log-fold
ratio <- UserGuideData_5.6.3$ExpLFC

# P-value
pval <- UserGuideData_5.6.3$Pval

qval <- UserGuideData_5.6.3$Qval

plotLOD(mean, pval, abs(ratio), qval=qval, xlab=xlab, ylab=ylab, title=title, FDR=0.05)
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Unsurprisingly, p-value is inverse quadratically related with average counts. All the LFC ratios systematically
outperform LFC 0. The function also estimates the empirical detection limits, [1] has the details.
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