
Combining SNP P-Values in Gene Sets:
the cpvSNP Package

Caitlin McHugh1,2∗, Jason Hackney1, and Jessica
L. Larson1

[1em] 1 Department of Bioinformatics and Computational Biology, Genentech, Inc.
2 Department of Biostatistics, University of Washington
∗mchughc (at) uw.edu

October 30, 2018

Contents

1 Introduction . 2

2 Example workflow for cpvSNP 2

2.1 Preparing a dataset for analysis 2

2.2 Running GLOSSI . 5

2.3 Running VEGAS . 7

2.4 Visualizing Results . 8

3 Methods in brief. 10

3.1 GLOSSI methods . 10

3.2 VEGAS methods . 11

4 Session Info . 12

5 References . 13

Combining SNP P-Values in Gene Sets: the cpvSNP Package

1 Introduction

Genome-wide association studies (GWAS) have lead to the discovery of many
disease-associated single nucleotide polymorphisms (SNPs). Researchers are
often interested in extending these studies to determine the genetic associa-
tion of a given pathway (i.e., a gene set) with a certain phenotype. Gene set
methods allow users to combine SNP-level association p-values across multiple
biologically related genes.
The cpvSNP package provides code for two gene set analysis methods [1-2] and
accurately corrects for the correlation structure among observed SNPs. Both
of the implemented methods translate a set of gene ids to their corresponding
SNPs, and combine the p-values for those SNPs. Calculated statistics, degrees
of freedom, and corresponding p-values are stored for each gene set.
This vignette describes a typical analysis workflow and includes some details
regarding the statistical theory behind cpvSNP. For more technical details, please
see references [1] and [2].

2 Example workflow for cpvSNP

2.1 Preparing a dataset for analysis

For our example, we will use a set of simulated data, the geneSetAnalysis

dataset from the cpvSNP package. We begin by loading relevant libraries, sub-
setting the data, and running createArrayData on this data set.

> library(cpvSNP)

> data(geneSetAnalysis)

> names(geneSetAnalysis)

[1] "arrayData" "geneSets" "ldMat" "indepSNPs"

The geneSetAnalysis list holds four elements, each of which we will need for
this vignette. The first object, arrayData, is a data.frame containing the p-
values, SNP ids, genomic position, and chromosome of all the probes in our hy-
pothetical GWAS. Our first step is to use the cpvSNP function createArrayData

to convert this data.frame to a GRanges object.
> arrayDataGR <- createArrayData(geneSetAnalysis[["arrayData"]],

+ positionName="Position")

> class(arrayDataGR)

2

Combining SNP P-Values in Gene Sets: the cpvSNP Package

[1] "GRanges"

attr(,"package")

[1] "GenomicRanges"

The geneSetAnalysis list also contains a GeneSetCollection with two sets
of interest. We can find the Entrez ids by accessing the geneIds slot of the
GeneSetCollection.

> geneSets <- geneSetAnalysis[["geneSets"]]

> geneSets

GeneSetCollection

names: set1, set2 (2 total)

unique identifiers: 100505495, 11128, ..., 80243 (250 total)

types in collection:

geneIdType: NullIdentifier (1 total)

collectionType: NullCollection (1 total)

> length(geneSets)

[1] 2

> head(geneIds(geneSets[[1]]))

[1] "100505495" "11128" "2857" "2002" "84466" "100506696"

> details(geneSets[[1]])

setName: set1

geneIds: 100505495, 11128, ..., 6857 (total: 200)

geneIdType: Null

collectionType: Null

setIdentifier: rescomp216:19144:2014-08-28 13:23:17:1192854957

description: Randomly sampled gene set 1

organism:

pubMedIds:

urls:

contributor:

setVersion: 0.0.1

creationDate: Fri Aug 8 13:47:58 2014

> head(geneIds(geneSets[[2]]))

[1] "9447" "6741" "647979" "7846" "55350" "285987"

Our next data formatting step is to convert the ids in our GeneSetCollection
from Entrez gene ids to their corresponding SNP ids. In this example, our SNP
positions are coded in the hg19 genome build. Please be careful when convert-
ing gene ids to SNPs, as mappings change between genome build updates. The

3

Combining SNP P-Values in Gene Sets: the cpvSNP Package

geneToSNPList function requires gene transcripts stored as a GRanges object,
along with the GRanges object specific to our study. For this example, we will use
the gene transcripts stored in the database TxDb.Hsapiens.UCSC.hg19.knownGene.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> genesHg19 <- genes(txdb)

> snpsGSC <- geneToSNPList(geneSets, arrayDataGR, genesHg19)

> class(snpsGSC)

[1] "GeneSetCollection"

attr(,"package")

[1] "GSEABase"

Note that the geneToSNPList function has a quiet option defaulted to TRUE,
which suppresses all warnings that may arise when finding overlaps between the
genes in our collection and our study SNPs. The default is set to TRUE because
there are often warnings that are usually not an issue. However, please be aware
that valid warnings may also be suppressed if the quiet option is set to TRUE.
We now have the two input files required to run GLOSSI [1] and VEGAS [2]:
a GRanges object for the SNPs in our GWAS, and a GeneSetCollection with
SNP ids for each gene in each set.

> arrayDataGR

GRanges object with 1478 ranges and 6 metadata columns:

seqnames ranges strand | P SNP Position

<Rle> <IRanges> <Rle> | <numeric> <character> <integer>

[1] chr1 12686368 * | 0.438553040847182 rs10779772 12686368

[2] chr1 12686476 * | 0.967386244097725 rs3010868 12686476

[3] chr1 12687753 * | 0.803473654901609 rs4568844 12687753

[4] chr1 12691826 * | 0.76892595179379 rs3010872 12691826

[5] chr1 12692907 * | 0.602467419346794 rs3000873 12692907

...

[1474] chr1 223543792 * | 0.599404839565977 rs6681438 223543792

[1475] chr1 223544114 * | 0.211034214356914 rs12024361 223544114

[1476] chr1 223544169 * | 0.846048331353813 rs12042076 223544169

[1477] chr1 223544430 * | 0.299469595309347 rs2036497 223544430

[1478] chr1 223551121 * | 0.145220536971465 rs596166 223551121

chromosome Start End

<factor> <numeric> <numeric>

[1] chr1 12686368 12686368

[2] chr1 12686476 12686476

[3] chr1 12687753 12687753

[4] chr1 12691826 12691826

4

Combining SNP P-Values in Gene Sets: the cpvSNP Package

[5] chr1 12692907 12692907

...

[1474] chr1 223543792 223543792

[1475] chr1 223544114 223544114

[1476] chr1 223544169 223544169

[1477] chr1 223544430 223544430

[1478] chr1 223551121 223551121

seqinfo: 27 sequences from an unspecified genome; no seqlengths

> snpsGSC

GeneSetCollection

names: set1, set2 (2 total)

unique identifiers: rs3789052, rs3789051, ..., rs3766392 (1478 total)

types in collection:

geneIdType: AnnotationIdentifier (1 total)

collectionType: NullCollection (1 total)

2.2 Running GLOSSI

An assumption of GLOSSI [1] is that our SNPs (and thus p-values) are inde-
pendent. In order to run glossi, we must subset our arrayDataGR p-values to
those from independent SNPs.
In the geneSetAnalysis list, we have included a vector of independent SNPs
from our GWAS experiment. This list was created using a standard ‘LD-pruning’
method from the PLINK software [3].

> indep <- geneSetAnalysis[["indepSNPs"]]

> head(indep)

V1

1 rs2649588

2 rs3107157

3 rs1456465

4 rs7528494

5 rs12046130

6 rs11590026

> dim(indep)

[1] 302 1

5

Combining SNP P-Values in Gene Sets: the cpvSNP Package

We now subset arrayDataGR to contain only independent SNPs, and create a
new vector of p-values with names corresponding to these independent SNPs.

> pvals <- arrayDataGR$P[is.element(arrayDataGR$SNP, indep$V1)]

> names(pvals) <- arrayDataGR$SNP[is.element(arrayDataGR$SNP, indep$V1)]

> head(pvals)

rs2172285 rs2430130 rs1572750

0.7191158 0.3508501 0.8763177

We now have the proper input to call glossi. We can consider all gene sets
in our GeneSetCollection, or call glossi on a just some of the sets. Accessor
functions for the resulting GLOSSIResultCollection allow us to view the results.

> gRes <- glossi(pvals, snpsGSC)

> gRes

An object of class "GLOSSIResultCollection"

[[1]]

GLOSSI results for set1

p-value = 0.876

observed statistic = 0.132

degrees of freedom = 1

[[2]]

GLOSSI results for set2

p-value = 0.6

observed statistic = 1.38

degrees of freedom = 2

> gRes2 <- glossi(pvals, snpsGSC[[1]])

> gRes2

GLOSSI results for set1

p-value = 0.876

observed statistic = 0.132

degrees of freedom = 1

> pValue(gRes)

$set1

[1] 0.8763177

$set2

[1] 0.5997541

> degreesOfFreedom(gRes)

6

Combining SNP P-Values in Gene Sets: the cpvSNP Package

$set1

[1] 1

$set2

[1] 2

> statistic(gRes)

$set1

[1] 0.1320265

$set2

[1] 1.377129

Using the ReportingTools package, we can publish these results to a HTML
page for exploration. We first adjust for multiple testing.

> pvals <- p.adjust(unlist(pValue(gRes)), method= "BH")

> library(ReportingTools)

> report <- HTMLReport (shortName = "cpvSNP_glossiResult",

+ title = "GLOSSI Results", reportDirectory = "./reports")

> publish(geneSets, report, annotation.db = "org.Hs.eg",

+ setStats = unlist(statistic (gRes)),

+ setPValues = pvals)

> finish(report)

2.3 Running VEGAS

Unlike GLOSSI, which requires SNPs and p-values to be independent, VEGAS
[2] accounts for correlation among SNPs and corresponding p-values. We thus
need a matrix of correlation values for each SNP in our GWAS. Most com-
monly, this correlation matrix holds linkage disequilibrium (LD) values. Many
R packages and online tools exist to calculate an LD matrix for observed raw
data.
Here, we briefly show how to calculate an LD matrix for chromosome 1 using
the publicly available HapMap data, the R package snpStats, and the PLINK
software package [3]. This requires downloading PLINK file formatted data,
extracting the probes on chromosome 1, and then calculating LD among SNPs
in the snpsGSC elements.

> download.file(

+ url="http://hapmap.ncbi.nlm.nih.gov/genotypes/hapmap3_r3/plink_format/hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz",

+ destfile="hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz")

7

Combining SNP P-Values in Gene Sets: the cpvSNP Package

> download.file(

+ url="http://hapmap.ncbi.nlm.nih.gov/genotypes/hapmap3_r3/plink_format/hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz",

+ destfile="hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz")

> system("gunzip hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz")

> system("gunzip hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz")

> system("plink --file hapmap3_r3_b36_fwd.consensus.qc.poly --make-bed --chr 1")

> genos <- read.plink(bed, bim, fam)

> genos$genotypes

> head(genos$map)

> x <- genos[,is.element(genosmapsnp.name,c(geneIds(snpsGSC[[2]])))]

> ldMat <- ld(x,y=x,stats="R.squared")

We have performed these steps already, and can simply use the LD matrix
included in our geneSetAnalysis list, ldMat to call vegas. Note that the
vegas method calculates simulated statistics (see Methods section below for
more details).

> ldMat <- geneSetAnalysis[["ldMat"]]

> vRes <- vegas(snpsGSC[1], arrayDataGR, ldMat)

> vRes

> summary(unlist(simulatedStats(vRes)))

> pValue(vRes)

> degreesOfFreedom(vRes)

> statistic(vRes)

2.4 Visualizing Results

There are two plotting functions available in cpvSNP to visualize the results from
the GLOSSI and VEGAS methods.
The plotPvals function plots the calculated p-values against the number of
SNPs in each gene set, for each set in the original GeneSetCollectionand
GLOSSIResultCollection. In this vignette we have only analyzed two gene sets,
so this plot is not very informative. The plot is included simply to demonstrate
the plotting functions available in the cpvSNP package.

> plotPvals(gRes, main="GLOSSI P-values")

The assocPvalBySetPlot function plots the GWAS p-values for each SNP in
the original association study, as well as those for SNPs in a particular gene set.
This visualization enables an easy comparison of the p-values within a particular
gene set to all p-values from our GWAS. Gene sets that are highly associated
with the phenotype of interest will have a different distribution than all SNPs
in our study.

8

Combining SNP P-Values in Gene Sets: the cpvSNP Package

Figure 1: The number of SNPs per gene set versus the p-value, for the GLOSSI
methods

> pvals <- arrayDataGR$P

> names(pvals) <- arrayDataGR$SNP

> assocPvalBySetPlot(pvals, snpsGSC[[2]])

9

Combining SNP P-Values in Gene Sets: the cpvSNP Package

Figure 2: Density plots of all p-values, overlaid in red with p-values from the
second gene set

3 Methods in brief

3.1 GLOSSI methods

The GLOSSI [1] method assumes that our p-values are independently dis-
tributed. Define J to be the total number of independent SNPs for which
we have association p-values, such that each locus j has a corresponding p-
value, pj, j ∈ {1, . . . , J}. For this vignette, J = 302. Let K be the total
number of loci sets in which we are interested. For the example used in this
vignette, K = 2.

10

Combining SNP P-Values in Gene Sets: the cpvSNP Package

We begin by defining an indicator variable g for each loci set k and for each
locus j, such that

gjk =

{
1, if jth locus is in kth set
0, otherwise

Note the sum of gjk is the size of loci-set k

nk =
J∑

j=1

gjk

Our statistic for each loci-set k is defined as

Skobs = −2
J∑

j=1

gjklog(pj)

We know from Fisher’s transformation that if the pj iid∼ Unif(0, 1) then Skobs ∼
χ2
2nk

. Thus, to calculate the corresponding p-value for loci-set k, we simply use
the corresponding χ2 distribution for each set. Note the degrees of freedom in
the null distribution takes into account the size of the loci-set, nk.

3.2 VEGAS methods

The VEGAS [2] method does not require independent SNPs, but rather a matrix
of correlation values among the SNPs being considered. These correlation values
can be correlation coefficients, a composite LD measure, or similar. We denote
the correlation matrix for a particular loci-set k as Σk, where each row and
column corresponds to a SNP in k. This matrix must be square, symmetric,
and have values of 1 on the diagonal.
To calculate a p-value for loci-set k that takes into account the correlation
structure, we begin by simulating a vector z ∼ N(0, 1) with length nk. We
take the Cholesky decomposition of Σk and multiply this by z to define a
Multivariate Normal random variable z′ ∼ MVN(0,Σk). To define a statistic
from this null distribution that now has the same correlation structure as our
observed data, we calculate

Sk =

nk∑
i=1

[zichol(Σk)]2

We simulate the vector z a total of nsims times. We calculate the observed
p-value as

#(Sk > Skobs) + 1

(nsims + 1)
.

11

Combining SNP P-Values in Gene Sets: the cpvSNP Package

4 Session Info

• R version 3.5.1 Patched (2018-07-12 r74967),
x86_64-apple-darwin15.6.0

• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
• Running under: OS X El Capitan 10.11.6

• Matrix products: default
• BLAS:

/Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

• Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, stats4, utils

• Other packages: AnnotationDbi 1.44.0, Biobase 2.42.0,
BiocGenerics 0.28.0, GSEABase 1.44.0, GenomeInfoDb 1.18.0,
GenomicFeatures 1.34.0, GenomicRanges 1.34.0, IRanges 2.16.0,
S4Vectors 0.20.0, TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2,
XML 3.98-1.16, annotate 1.60.0, cpvSNP 1.14.0, graph 1.60.0

• Loaded via a namespace (and not attached): BiocManager 1.30.3,
BiocParallel 1.16.0, BiocStyle 2.10.0, Biostrings 2.50.0, DBI 1.0.0,
DelayedArray 0.8.0, GenomeInfoDbData 1.2.0,
GenomicAlignments 1.18.0, Matrix 1.2-14, R6 2.3.0, RCurl 1.95-4.11,
RSQLite 2.1.1, Rcpp 0.12.19, Rsamtools 1.34.0,
SummarizedExperiment 1.12.0, XVector 0.22.0, assertthat 0.2.0,
backports 1.1.2, bindr 0.1.1, bindrcpp 0.2.2, biomaRt 2.38.0, bit 1.1-14,
bit64 0.9-7, bitops 1.0-6, blob 1.1.1, colorspace 1.3-2, compiler 3.5.1,
corpcor 1.6.9, crayon 1.3.4, digest 0.6.18, dplyr 0.7.7, evaluate 0.12,
ggplot2 3.1.0, glue 1.3.0, grid 3.5.1, gtable 0.2.0, hms 0.4.2,
htmltools 0.3.6, httr 1.3.1, knitr 1.20, labeling 0.3, lattice 0.20-35,
lazyeval 0.2.1, magrittr 1.5, matrixStats 0.54.0, memoise 1.1.0,
munsell 0.5.0, pillar 1.3.0, pkgconfig 2.0.2, plyr 1.8.4, prettyunits 1.0.2,
progress 1.2.0, purrr 0.2.5, rlang 0.3.0.1, rmarkdown 1.10,
rprojroot 1.3-2, rtracklayer 1.42.0, scales 1.0.0, stringi 1.2.4,
stringr 1.3.1, tibble 1.4.2, tidyselect 0.2.5, tools 3.5.1, xtable 1.8-3,
yaml 2.2.0, zlibbioc 1.28.0

12

Combining SNP P-Values in Gene Sets: the cpvSNP Package

5 References

1. Chai, High-Seng and Sicotte, Hughes et al. GLOSSI: a method to assess
the association of genetic loci-sets with complex diseases. BMC Bioinformatics,
2009.
2. Liu, Jimmy Z. and Mcrae, Allan F. et al. A Versatile Gene-Based Test for
Genome-Wide Association Studies. The American Journal of Human Genetics,
2010.
3. Purcell S., Neale B., and Sham P.C. et al. PLINK: a toolset for whole-
genome association and population-based linkage analysis. American Journal
of Human Genetics, 2007.

13

	1 Introduction
	2 Example workflow for cpvSNP
	2.1 Preparing a dataset for analysis
	2.2 Running GLOSSI
	2.3 Running VEGAS
	2.4 Visualizing Results

	3 Methods in brief
	3.1 GLOSSI methods
	3.2 VEGAS methods

	4 Session Info
	5 References

