
geneXtendeR

Bohdan B. Khomtchouk

April 30, 2018

Introduction

This vignette describes geneXtendeR (Khomtchouk et al. 2016), an R/Bioconductor
package for optimized annotation of genomic features (primarily peaks called
from a ChIP-seq experiment, but any coverage island regions would work) with
the nearest gene. “Extending" refers to performing gene-feature overlaps af-
ter adding to the gene-span a user-specified region upstream of the start of
the gene model and a fixed (500 bp) region downstream of the gene, resulting
in assigning to a gene the features that do not physically overlap with it but
are sufficiently close. Extending is an automated iterative procedure in geneX

tendeR, allowing the user to repeatedly align peaks to multiple gene transfer
format (GTF) files to assess what global gene-spans optimize the genomewide
alignment of peaks with their closest genes. This facilitates the process of de-
ciphering which differentially enriched peaks are dysregulating which specific
genes. This, in turn, aids experimental follow-up and validation in designing
primers for a set of prospective genes during qPCR (Barbier et al. 2016).

Rationale

With an abundance of Bioconductor software currently available for peak an-
notation to nearby features (e.g., ChIPpeakAnno (Zhu et al. 2010)) as well as
the existence of various command line tools (e.g., BEDTools closest function
(Quinlan and Hall, 2010), HOMER (Heinz et al. 2010)), what makes geneXten

deR different? The simple answer is: geneXtendeR is designed for assessing the
variability of peak overlap with cis-regulatory elements and proximal-promoter
regions. It is well-known that peak coordinates (peak start position, peak end
position) exhibit a considerable degree of variance depending on the peak caller
used (e.g., SICER (Zang et al. 2009), MACS2 (Zhang et al. 2008), etc.),

both in terms of length distribution of peaks as well as the total number of
peaks called, even when run at identical default parameter values (Koohy et
al. 2014; Thomas et al. 2017). Tuning algorithm-specific parameters produces
even greater variance amongst peak callers, thereby complicating the issue fur-
ther. This variance becomes a factor when annotating peak lists genome-wide
with their nearest genes as, depending on the peak caller, peaks can be either
shifted in genomic position (towards 5’ or 3’ end) or be of different lengths.
As such, geneXtendeR represents a first step towards tailoring (or customizing)
the functional annotation of a ChIP-seq peak dataset according to the details
of the peak coordinates (chromosome number, peak start position, peak end
position).

The primary focus of geneXtendeR is to optimize the process of functional
annotation of a ChIP-seq peak list whereby instead of just annotating peaks
with their nearest genomic features (as statically defined by a given genome
build’s coordinates), geneXtendeR investigates how peaks dynamically align to
various user-specified gene extensions (e.g., 500 bp upstream extensions, 2000
bp upstream extensions, etc. for all genes in the genome). This shows where
peaks localize across the genome with respect to their nearest gene, as well as
what gene ontologies (BP, CC, and MF) are impacted at these various extension
levels. This, in turn, informs the user what gene extensions ideally capture the
GO terms involved in the biology of their experiment. For example, if a user’s
study is investigating the role of epigenetic enzymes in alcohol addiction and
dependence, then functionally annotating a peak list using gene extensions that
maximize the number of brain-related ontologies (for both BP, CC, and MF
categories) makes sense.

With regards to histone modification ChIP-seq analysis, geneXtendeR computes
optimal gene extensions tailored to the broadness of the specific epigenetic mark
(e.g., H3K9me1, H3K27me3), as determined by a user-supplied ChIP-seq peak
input file. To accomplish this level of custom-tailored data analysis, geneXten
deR first optimally extends the boundaries of every gene in a genome by some
genomic distance (in DNA base pairs) for the purpose of flexibly incorporating
cis-regulatory elements, such as promoter regions, as well as downstream ele-
ments that are important to the function of the gene relative to an epigenetic
histone modification ChIP-seq dataset. This action effectively transforms genes
into “gene-spheres", a new term that we coin to emphasize the 3D-nature of
heterochromatin. A gene-sphere is composed of cis-regulatory elements (e.g.,
proximal promoters +/- ≈ 3 kb from TSS), distal regulatory elements (e.g.,
enhancers), transcription start/end sites (TSS/TES), exons, introns, and down-
stream elements of a gene. As such, geneXtendeR maximizes the signal-to-noise
ratio of locating genes closest to and directly under peaks. By performing a
computational expansion of this nature, ChIP-seq reads that would initially not
map strictly to a specific gene can now be optimally mapped to the regula-

2

tory regions of the gene, thereby implicating the gene as a potential candidate,
and thereby making the ChIP-seq analysis more successful. Such an approach
becomes particularly important when working with epigenetic histone modifica-
tions that have inherently broad peaks with a diffuse range of signal enrichment
(e.g., H3K9me1, H3K27me3).

Quick start

First, install the geneXtendeR package via:

> ## try http:// if https:// URLs are not supported

> source("https://bioconductor.org/biocLite.R")

> biocLite("geneXtendeR")

> library(geneXtendeR)

This automatically loads the rtracklayer R package, which contains the read

GFF() command used to retrieve GTF files of any model organism. As such,
load in a GTF file into your R environment, e.g.:

> rat <- readGFF("ftp://ftp.ensembl.org/pub/release-84/gtf/

+ rattus_norvegicus/Rattus_norvegicus.Rnor_6.0.84.chr.gtf.gz")

URLs may be obtained as direct links from: http://useast.ensembl.org/info/
data/ftp/index.html. Click on the “GTF" link under the “Gene sets" column
for a particular species and then right-click (or command-click on Mac OS X) the
name of the file containing the species name/version number and file extension
chr.gtf.gz (e.g., Homo_sapiens.GRCh38.84.chr.gtf.gz, Mus_musculus.GRCm38.84.chr.gtf.gz,
etc.), and copy the link address. Then, paste the link address into the read

GFF() as shown above. This will create an R dataframe object containing the
respective GTF file.

Next, the user must input their peak data from a peak caller (e.g., SICER,
MACS2, etc.). The peak data must contain only three tab-delimited columns
(chromosome number, peak start, and peak end) and a header containing:
“chr", “start", and “end". See ?samplepeaksinput for an example. Once the
peak input data (e.g., “somepeaksfile.txt") has been assembled properly (i.e.,
to contain only the three tab-delimited columns and header above), it must be
properly formatted prior to the execution of downstream analyses.

First, the user must set their working directory to point to the location of their
peak data file. Then type the following command:

3

http://useast.ensembl.org/info/data/ftp/index.html
http://useast.ensembl.org/info/data/ftp/index.html

1Similarly, users
can transform their
peaks file into a file
of merged peaks
(see peaksMerge())
and use the resul-
tant “peaks.txt"
file instead for the
subsequent analysis.
2This peaks dataset
comes from a ChIP-
seq investigation of
brain tissue (pre-
frontal cortex) in al-
cohol addiction and
dependence (Bar-
bier et al. 2016),
see References sec-
tion for details.

> peaksInput("somepeaksfile.txt")

This command properly formats the user’s peaks file in preparation for sub-
sequent analyses, producing a resultant “peaks.txt" file in the user’s working
directory1.

To see how the above command works using a built-in example, the geneXten

deR package provides a peak input dataset2 called “somepeaksfile.txt", which
can be loaded into memory like this:

> fpath <- system.file("extdata", "somepeaksfile.txt", package="geneXtendeR")

> peaksInput(fpath)

This creates a properly formatted (i.e., properly sorted) “peaks.txt" file in the
user’s working directory.

Now, we may use the R object that we created with readGFF() earlier to create
a bar chart visualization showing the number of peaks that are sitting directly on
top of genes across a series of upstream extensions (of each gene in a genome):

4

> barChart(rat, 0, 10000, 500)

0 1000 2500 4000 5500 7000 8500 10000

0
20

00
40

00
60

00
80

00
10

00
0

This command first generates 21 individual whole-genome files: 0, 500, 1000,
..., and 10000 bp upstream extension files for the rat (Rattus norvegicus)
genome, each having an automatic 500 bp downstream extension. In other
words, each gene in the rat genome is extended upstream and downstream by
some user-specified distance, thereby creating a “gene-sphere." As such, this
bar chart command visualizes the raw count of the number of peaks that are
sitting on top of genes at each individual upstream cutoff. Clearly, the wider the
gene-sphere, the more peaks-on-top-of-genes are found throughout the genome.
However, the law of diminishing returns begins to kick in at increasing upstream
extension levels (see linePlot() for a visual representation):

5

> linePlot(rat, 0, 10000, 500)

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

40
60

80
10

0
12

0

di
ffe

re
nc

es

0−
50

0
50

0−
10

00
10

00
−

15
00

15
00

−
20

00
20

00
−

25
00

25
00

−
30

00
30

00
−

35
00

35
00

−
40

00
40

00
−

45
00

45
00

−
50

00
50

00
−

55
00

55
00

−
60

00
60

00
−

65
00

65
00

−
70

00
70

00
−

75
00

75
00

−
80

00
80

00
−

85
00

85
00

−
90

00
90

00
−

95
00

95
00

−
10

00
0

Genomic region (bp)

In this line plot, there is a sharp rise in the number of peaks-on-top-of-genes
from a 0 bp upstream extension to a 1500 bp upstream extension, and from a
2000 bp upstream extension to a 3000 bp upstream extension. This steady rise
up until 3000 bp is followed by a steady decline at subsequent extension levels
followed by some noisy fluctuations. It may be interesting to investigate what
is going on in the interval from 2000 bp to 3000 bp:

6

> linePlot(rat, 2000, 3000, 100)

●

● ●

●

●

●

●

●

●

●

22
24

26
28

30

di
ffe

re
nc

es

20
00

−
21

00

21
00

−
22

00

22
00

−
23

00

23
00

−
24

00

24
00

−
25

00

25
00

−
26

00

26
00

−
27

00

27
00

−
28

00

28
00

−
29

00

29
00

−
30

00
Genomic region (bp)

Visually, there is a relative spike in the number of peaks-on-top-of-genes at the
2400 bp upstream extension (as compared to the 2300 bp extension). This
spike then drops back down at subsequent extension levels and fluctuates in a
noisy manner. However, a cumulative line plot shows that this “spike" is more
of a visual effect than anything else, since the graph is almost perfectly linear:

7

3Note that statis-
tical significance is
set apriori by the
user at the peak
calling stage (prior
to geneXtendeR) to
give the user the
freedom to choose
how to filter out
peak coordinates
that only pass spe-
cific p-value and
FDR cutoffs from
a peak caller. Peak
caller output (e.g.,
from SICER) gives
both p-value and
FDR measures for
each peak, thereby
making it easy to
extract only the
peak coordinates
that pass a specific
set of statistical
cutoff criteria.

> cumlinePlot(rat, 2000, 3000, 100)

●

●

●

●

●

●

●

●

●

●

50
10

0
15

0
20

0
25

0

cu
m

ul
at

iv
e

di
ffe

re
nc

es

20
00

−
21

00

21
00

−
22

00

22
00

−
23

00

23
00

−
24

00

24
00

−
25

00

25
00

−
26

00

26
00

−
27

00

27
00

−
28

00

28
00

−
29

00

29
00

−
30

00
Genomic region (bp)

Hence, one very useful function in geneXtendeR is called hotspotPlot(), which
allows users to examine the ratio of statistically significant peaks3 to the total
number of peaks at each genomic interval (e.g., 0-500 bp upstream of every
gene in the genome, 500-1000 bp upstream of every gene in the genome, etc.).

8

4One can either
observe the global
distribution of peak
lengths within spe-
cific genomic in-
tervals (see ?peak

LengthBoxplot()),
or observe the
global distribu-
tion of peak lengths
across all inter-
vals (see ?allPeak

Lengths()).

> allpeaks <- system.file("extdata", "totalpeaksfile.txt", package="geneXtendeR")

> sigpeaks <- system.file("extdata", "significantpeaksfile.txt", package="geneXtendeR")

> hotspotPlot(allpeaks, sigpeaks, rat, 0, 10000, 500)

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

S
ig

ni
fic

an
t P

ea
ks

 /T
ot

al
 P

ea
ks

 (
 ψ

)

0−
50

0
50

0−
10

00
10

00
−

15
00

15
00

−
20

00
20

00
−

25
00

25
00

−
30

00
30

00
−

35
00

35
00

−
40

00
40

00
−

45
00

45
00

−
50

00
50

00
−

55
00

55
00

−
60

00
60

00
−

65
00

65
00

−
70

00
70

00
−

75
00

75
00

−
80

00
80

00
−

85
00

85
00

−
90

00
90

00
−

95
00

95
00

−
10

00
0

Genomic region (bp)

This line plot shows that the concentration of significant peaks in this dataset
(Barbier et al. 2016) is highest between 0 and 1000 bp upstream of a gene, with
over 90% of peaks in these regions being statistically significant. In contrast,
between 1000 bp and 2500 bp, only about half of the total peaks contained in
these intervals are significant. Statistical significance then fluctuates noisly at
further upstream genomic intervals, but with at least a quarter (25%) of the
total peaks in these further upstream regions being statistically significant. As
such, the take-home message is that genomic regions within the first 1000 bp
upstream of their respective genes are most likely to contain significant peaks
(relative to the total peak count in these regions) and are therefore hotspots,
but regions beyond this also contain a fair share of statistically significant peaks.

One interesting area to investigate is the variance in the broadness of significant
(or total) peaks across different genomic intervals4. In other words, asking
questions like “are statistically significant peaks that are located very close to

9

their nearest gene (e.g., 0-500 bp away) wider or narrower than peaks located
500-1000 bp away from their nearest gene?". To answer this question we can
do:

> sigpeaks <- system.file("extdata", "significantpeaksfile.txt", package="geneXtendeR")

> peaksInput(sigpeaks)

> meanPeakLengthPlot(rat, 0, 10000, 500)

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

18
00

20
00

22
00

24
00

m
ea

n
pe

ak
 le

ng
th

 (
bp

)

0−
50

0
50

0−
10

00
10

00
−

15
00

15
00

−
20

00
20

00
−

25
00

25
00

−
30

00
30

00
−

35
00

35
00

−
40

00
40

00
−

45
00

45
00

−
50

00
50

00
−

55
00

55
00

−
60

00
60

00
−

65
00

65
00

−
70

00
70

00
−

75
00

75
00

−
80

00
80

00
−

85
00

85
00

−
90

00
90

00
−

95
00

95
00

−
10

00
0

Genomic region (bp)

This line plot displays the mean (average) length of all significant peaks found
within each genomic interval. Clearly, the “average peak" is slightly narrower in
0-500 bp intervals than in 500-1000 bp intervals yet, overall, peak lengths tend
to fluctuate more or less stochastically at various intervals. To get the exact
peak length, we can do:

> sigpeaks <- system.file("extdata", "significantpeaksfile.txt", package="geneXtendeR")

> peaksInput(sigpeaks)

> meanPeakLength(rat, 0, 500)

[1] 1957.621

10

So the mean peak length in the interval 0-500 bp is approximately 1958 bp.
Although we see that there is no specific interval with peaks of extraordinary
average lengths, it is still possible to see peak length outliers in certain cases
(especially when looking at total peak sets):

> allpeaks <- system.file("extdata", "totalpeaksfile.txt", package="geneXtendeR")

> peaksInput(allpeaks)

> meanPeakLengthPlot(rat, 0, 10000, 500)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

30
00

35
00

40
00

m
ea

n
pe

ak
 le

ng
th

 (
bp

)

0−
50

0
50

0−
10

00
10

00
−

15
00

15
00

−
20

00
20

00
−

25
00

25
00

−
30

00
30

00
−

35
00

35
00

−
40

00
40

00
−

45
00

45
00

−
50

00
50

00
−

55
00

55
00

−
60

00
60

00
−

65
00

65
00

−
70

00
70

00
−

75
00

75
00

−
80

00
80

00
−

85
00

85
00

−
90

00
90

00
−

95
00

95
00

−
10

00
0

Genomic region (bp)

We see that the 4000-4500 bp and 8500-9000 bp intervals both look quite
different in terms of their mean peak lengths relative to the other intervals. To
see if the mean might be influenced by a strong outlier(s), we can do:

11

> allpeaks <- system.file("extdata", "totalpeaksfile.txt", package="geneXtendeR")

> peaksInput(allpeaks)

> peak_lengths <- peakLengthBoxplot(rat, 4000, 4500)

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

pe
ak

 le
ng

th
 (

bp
)

This box-and-whisker plot shows a clear outlier, which is an example of a very
broad peak. We can find the exact length of this outlier peak using:

> peak_lengths <- peakLengthBoxplot(rat, 4000, 4500)

> max(peak_lengths)

[1] 114999

So this outlier peak measures 114999 bp in total length, therefore making it
an extremely broad peak. To see what nearest gene it resides to, we can first
extract the peak’s index by:

> peak_lengths <- peakLengthBoxplot(rat, 4000, 4500)

> match(114999, peak_lengths)

12

5This peak may
not be statistically
significant, but
how could it be if
it’s so huge? In
situations like this,
it may be a good
idea to check what
is known about the
gene already: http:
//panthertest2.
usc.edu/genes/
gene.do?acc=
RAT%7CEnsembl=
ENSRNOG00000028578%
7CUniProtKB=
A0A0G2K0W2.
Clearly, not much is
known yet.

[1] 126

which returns the index of where this peak length is found. Then the following
command finds all unique peaks that reside between 4000 and 4500 bp upstream
of their nearest gene:

> distinct(rat, 4000, 4500)

V1 V2 V3 V4 V5 V6 V7

1: 1 19526200 19526799 1 19520708 19526671 ENSRNOG00000030796

2: 1 61630800 61631999 1 61624941 61630954 ENSRNOG00000025949

3: 1 71346800 71347999 1 71334629 71347133 ENSRNOG00000049014

4: 1 98385400 98394199 1 98394160 98403468 ENSRNOG00000037331

5: 1 101099600 101101399 1 101086377 101100094 ENSRNOG00000020583

124: 18 60006800 60007199 18 59985860 60007069 ENSRNOG00000017852

125: 19 45499400 45499799 19 45499420 45507827 ENSRNOG00000053551

126: 19 54877400 54992399 19 54871853 54877469 ENSRNOG00000028578

127: 20 30610800 30620799 20 30606026 30611101 ENSRNOG00000049167

128: 100 73017400 73018799 100 73018667 73024598 ENSRNOG00000027980

V8 V9

1: AABR07000595.1 0

2: Vom1r22 0

3: LOC100912263 0

4: Cd33 0

5: Fcgrt 0

124: Nars 0

125: AABR07043877.1 0

126: AABR07044065.1 0

127: AABR07044988.1 0

128: AABR07039245.1 0

where we see that index 126 belongs to gene AABR07044065.15. Checking
the arithmetic difference between column 3 and column 2 for this specific row
verifies 114999, as these two columns represent the peak start position and peak
end positions. Now let’s identify what the other columns represent by running
the distinct() function again (but this time on a smaller interval to have less
output printed to the screen):

> fpath <- system.file("extdata", "somepeaksfile.txt", package="geneXtendeR")

> peaksInput(fpath)

> distinct(rat, 2300, 2400)

13

http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2
http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2
http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2
http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2
http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2
http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2
http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2
http://panthertest2.usc.edu/genes/gene.do?acc=RAT%7CEnsembl=ENSRNOG00000028578%7CUniProtKB=A0A0G2K0W2

V1 V2 V3 V4 V5 V6 V7

1: 1 79718600 79725199 1 79725197 79728613 ENSRNOG00000026891

2: 1 188715600 188716999 1 188688243 188715680 ENSRNOG00000016013

3: 1 214368800 214373199 1 214373115 214386385 ENSRNOG00000018367

4: 1 221669800 221671199 1 221671190 221694018 ENSRNOG00000027456

5: 1 236532800 236534799 1 236529431 236532885 ENSRNOG00000022308

6: 3 82239000 82242199 3 82096568 82239064 ENSRNOG00000008758

7: 3 82780200 82784599 3 82762362 82780214 ENSRNOG00000042533

8: 3 146409600 146412399 3 146376328 146409652 ENSRNOG00000006795

9: 3 165702800 165706799 3 165678807 165702889 ENSRNOG00000042101

10: 4 84850400 84851999 4 84851986 84872257 ENSRNOG00000010205

11: 4 118157000 118157799 4 118157747 118166562 ENSRNOG00000016273

12: 4 171955800 171956999 4 171956961 171961084 ENSRNOG00000057540

13: 4 180237200 180239199 4 180231882 180237204 ENSRNOG00000048961

14: 5 36437600 36438199 5 36433358 36437694 ENSRNOG00000055329

15: 5 69038200 69039399 5 69035218 69038218 ENSRNOG00000060997

16: 5 121456000 121457199 5 121451803 121456072 ENSRNOG00000045614

17: 5 153628200 153630199 5 153568245 153628269 ENSRNOG00000018109

18: 7 14586000 14587199 7 14587120 14615369 ENSRNOG00000048450

19: 7 75225000 75225799 7 75225775 75249569 ENSRNOG00000061463

20: 8 133130600 133133199 8 133126720 133130690 ENSRNOG00000006730

21: 10 1830200 1832199 10 1832118 1841132 ENSRNOG00000040121

22: 11 80315400 80316799 11 80316777 80332099 ENSRNOG00000022160

23: 14 76654000 76654999 14 76654911 76833661 ENSRNOG00000051169

24: 14 103716400 103719199 14 103711769 103716440 ENSRNOG00000054704

25: 16 631200 642399 16 517332 631224 ENSRNOG00000061982

26: 16 9020200 9020999 16 9020987 9055164 ENSRNOG00000042628

27: 16 75363800 75364599 16 75364529 75368406 ENSRNOG00000029462

28: 20 1747000 1747399 20 1747316 1751142 ENSRNOG00000050043

29: 20 22423400 22426199 20 22420251 22423425 ENSRNOG00000057124

V1 V2 V3 V4 V5 V6 V7

V8 V9

1: AC093995.1 0

2: Gprc5b 0

3: Taldo1 0

4: Cdc42bpg 0

5: LOC103691298 0

6: Tspan18 0

7: Accsl 0

8: Apmap 0

9: Zfp93 0

10: Mturn 0

14

11: Fam136a 0

12: AABR07062363.1 0

13: Bhlhe41 0

14: AABR07047528.1 0

15: U6 0

16: LOC102552337 0

17: Clic4 0

18: Cyp4f37 0

19: AABR07057510.3 0

20: Ccr1l1 0

21: RGD1565158 0

22: Rtp2 0

23: Clnk 0

24: AABR07016558.1 0

25: AABR07024473.2 0

26: RGD1561145 0

27: Defal1 0

28: Olr1735 0

29: AABR07044824.1 0

V8 V9

This data table shows 29 separate entries sorted by chromosome and start
position. V1-V3 denote the chromosome/start/end positions of the peaks, V4-
V6 denote the respective values for the genes, V7 is the gene ID (e.g., Ensembl
ID), V8 is the gene name, and V9 is the distance of each respective peak to
its nearest gene. It should be noted that the X chromosome is designated by
the integer 100, the Y chromosome by the integer 200, and the mitochondrial
chromosome by the integer 300. This is done for sorting purposes (see ?peaksIn
put for details). In short, the distinct() command finds what peaks-on-top-
of-genes would be missed if a 2300 bp upstream extension is used instead of a
2400 bp extension. In other words, these 29 genes all reside between 2300-2400
bp upstream of their nearest gene.

It may be of interest to note the differential gene ontologies between these two
upstream extensions:

> library(org.Rn.eg.db)

> library(GO.db)

> x <- diffGO(rat, 2300, 2400, BP, org.Rn.eg.db)

> head(x, 20)

gene$SYMBOL GOID

1 Gprc5b GO:0001934

15

2 Gprc5b GO:0007186

3 Gprc5b GO:0007626

4 Gprc5b GO:0010976

5 Gprc5b GO:0032147

6 Gprc5b GO:0042593

7 Gprc5b GO:0043123

8 Gprc5b GO:0045666

9 Gprc5b GO:0045860

10 Gprc5b GO:0050729

11 Gprc5b GO:0060907

12 Gprc5b GO:0061098

13 Gprc5b GO:0090263

14 Taldo1 GO:0005975

15 Taldo1 GO:0006002

16 Taldo1 GO:0006098

17 Taldo1 GO:0009052

18 Taldo1 GO:0019682

19 Cdc42bpg GO:0006468

20 Cdc42bpg GO:0031532

TERM

1 positive regulation of protein phosphorylation

2 G-protein coupled receptor signaling pathway

3 locomotory behavior

4 positive regulation of neuron projection development

5 activation of protein kinase activity

6 glucose homeostasis

7 positive regulation of I-kappaB kinase/NF-kappaB signaling

8 positive regulation of neuron differentiation

9 positive regulation of protein kinase activity

10 positive regulation of inflammatory response

11 positive regulation of macrophage cytokine production

12 positive regulation of protein tyrosine kinase activity

13 positive regulation of canonical Wnt signaling pathway

14 carbohydrate metabolic process

15 fructose 6-phosphate metabolic process

16 pentose-phosphate shunt

17 pentose-phosphate shunt, non-oxidative branch

18 glyceraldehyde-3-phosphate metabolic process

19 protein phosphorylation

20 actin cytoskeleton reorganization

16

This dataframe shows the first 20 unique gene ontology terms, their IDs, and
respective gene symbols. Clearly, gene name Gprc5b has several BP ontologies
related explicitly to the brain, while Taldo1 does not. Considering that the ChIP-
seq peaks dataset used as input into geneXtendeR comes from a ChIP-seq study
investigating the prefrontal cortex, this suggests that a 2400 bp extension may
be more suitable for this brain dataset. However, such decisions are left entirely
to the discretion and judgment of the user in deciding the relative importance
of specific genes and their respective GO terms (BP, CC, or MF) to the goals
of the computational analysis (as well as plans for experimental follow-up and
validation). See Discussion section for details.

It is also critical to note that the diffGO() function returns ALL known gene
ontologies, NOT a gene ontology enrichment analysis (more about this in Dis-
cussion section). The goal is to provide users with knowledge regarding all pos-
sible known roles of any given gene. For example, by knowing that a potential
gene candidate has previously been linked with known brain-related ontologies,
a user may be prompted to look more closely into the relevant literature behind
this gene and its implications to the biological question under study (before
embarking on making a decision about its potential impact and suitability as a
good candidate for experimental validation).

Furthermore, a user may plot the differential gene ontology results as an inter-
active network:

> library(networkD3)

> library(org.Rn.eg.db)

> library(dplyr)

> makeNetwork(rat, 2300, 2400, BP, org.Rn.eg.db)

17

Figure 1: Orange color denotes gene names, purple color denotes GO terms
A user can hover the mouse cursor over any given node to display its respective label di-
rectly within R Studio. Likewise, users can dynamically drag and reorganize the spatial
orientation of nodes, as well as zoom in and out of them for visual effect.

18

Figure 2: Orange color denotes gene names, purple color denotes GO terms
A user can hover the mouse cursor over any given node to display its respective label di-
rectly within R Studio. Likewise, users can dynamically drag and reorganize the spatial
orientation of nodes, as well as zoom in and out of them for visual effect.

In addition, users can generate word clouds comprised from words present in
their GO terms:

> library(tm)

> library(SnowballC)

> library(wordcloud)

> library(RColorBrewer)

> makeWordCloud(rat, 2300, 2400, BP, org.Rn.eg.db)

19

Figure 3: Word cloud generated from words comprising gene ontology terms of
category BP
This word cloud shows the words that are used within BP gene ontology terms of peaks
found to be present between 2300 and 2400 bp upstream of their nearest genes.

It may also be of interest to visually examine the most frequently used words
found within GO terms:

> library(tm)

> library(SnowballC)

> library(wordcloud)

> library(RColorBrewer)

> plotWordFreq(rat, 2300, 2400, BP, org.Rn.eg.db, 10)

20

Figure 4: This barplot shows the top 10 words used within gene ontology terms
(specific to BP) of peaks found to be present between 2300 and 2400 bp up-
stream of their nearest genes

Once the user has chosen the specific upstream extension to be used, the peak
file is ready to be fully annotated:

> annotate(rat, 2400)

which generates a fully annotated peaks outfile (in the user’s working directory)
containing various genomic features and labeled headers.

Discussion

Even though geneXtendeR is designed to compute (and analyze/display) op-
timal gene extensions tailored to the characteristics of a specific peak input
file, geneXtendeR will not explicitly impose on the user the optimal extension
to select, since this information is highly study-dependent and, as such, is ul-
timately reserved to the user’s discretion. For example, a user may choose a
conservatively lower upstream extension (e.g., for studies investigating narrow
peaks such as H3K4me3 or H3K9ac that exhibit a compact and localized en-
richment pattern, where high upstream extensions may begin to lose biological

21

relevance). An example of such a user-driven decision would be the selection of
a 1500 bp upstream extension instead of a 3500 bp extension in situations like
this:

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

40
60

80
10

0
12

0

di
ffe

re
nc

es

0−
50

0
50

0−
10

00
10

00
−

15
00

15
00

−
20

00
20

00
−

25
00

25
00

−
30

00
30

00
−

35
00

35
00

−
40

00
40

00
−

45
00

45
00

−
50

00
50

00
−

55
00

55
00

−
60

00
60

00
−

65
00

65
00

−
70

00
70

00
−

75
00

75
00

−
80

00
80

00
−

85
00

85
00

−
90

00
90

00
−

95
00

95
00

−
10

00
0

Genomic region (bp)

This line plot is derived from the input peak dataset used from the H3K9me1
study examined earlier (Barbier et al. 2016). If the study had examined a nar-
rower chromatin mark (e.g., H3K4me3) then the decision process for choosing
an optimal extension may have been different.

In certain cases, additional extensions are unlikely to add significant value to
the annotation of the peak file. Taking the example of the 0-10000 bp line
plot, an upstream extension beyond 3500 bp globally across every gene in a
genome would most likely not accurately reflect the biology of the peak input
file (since such large global upstream extensions are likely to reach consider-
ably beyond known proximal promoter elements, especially for relatively narrow
histone marks or transcription factors). Such assumptions may be validated di-
rectly by the user by investigating the p-value and FDR of specific peaks using

22

a combination of HT-seq (to count the reads) and edgeR/DESeq2 (to assess
statistical significance). As such, geneXtendeR is designed to be used as part
of a biological workflow involving subsequent statistical analysis:

FastQC

Bowtie2/BWA

SAMtools

SICER/MACS2

Peak coordinate
extraction

geneXtendeR edgeR/DESeq2

GO analysis Network analysis

Alignment

Peak calling and post-processing

optimization

Figure 5: Sample biological workflow using geneXtendeR in combination with ex-
isting statistical software to analyze peak significance
Subsequent gene ontology enrichment or network analysis may be conducted on genes
associated with statistically significant peaks.

It is entirely possible (and probable) for significant peaks to be present at rel-
atively high upstream extension levels (i.e., large gene-spheres), albeit these
significant peaks may be associated with biology not directly relevant to the
study at-hand, due mainly to the sheer magnitude of the distance of the peak
from traditional gene boundaries (where traditional gene boundaries may be
loosely defined as +/- ≈ 3 kb from TSS and +/- ≈ 0.5kb from TES). Conse-
quently, it is likely for peaks-on-top-of-genes to exhibit higher levels of noise at
higher upstream extension levels. Nevertheless, this does not mean that poten-
tial enhancer activity should be discounted. For instance, it is not uncommon
to see a steady rise or even a surge in the number of peaks-on-top-of-genes at
higher upstream extension levels:

23

> linePlot(rat, 7000, 8500, 100)

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

15
20

25
30

di
ffe

re
nc

es

70
00

−
71

00

71
00

−
72

00

72
00

−
73

00

73
00

−
74

00

74
00

−
75

00

75
00

−
76

00

76
00

−
77

00

77
00

−
78

00

78
00

−
79

00

79
00

−
80

00

80
00

−
81

00

81
00

−
82

00

82
00

−
83

00

83
00

−
84

00

84
00

−
85

00
Genomic region (bp)

This line plot shows that there are over 30 peaks in this dataset (across the rat
genome) that reside between 8100 and 8200 bp upstream of their nearest gene.
In far-out cases like this, it is particularly recommended to examine the statisti-
cal significance of peaks to get a sense for the possibility of potential enhancer
activity/regulation. Of course, such computational findings would require ex-
perimental follow-up and/or database mining for known motifs. Assessment
of such statistical significance values is beyond the scope of geneXtendeR, in
order to allow the user freedom to choose the most appropriate statistical pack-
age/technique for their analysis. As before, first use the distinct() function to
create a table of unique genes located under peaks between the two upstream
extension levels:

> distinct(rat, 8100, 8200)

24

Then, assess the statistical significance of these peaks using a combination of
HT-seq (Anders et al. 2015) and edgeR (Robinson et al. 2010), or HT-seq and
DESeq2 (Love et al. 2014), or some other appropriate combination of existing
software tools. Genes associated with the resultant statistically significant peaks
may then be further assessed with gene ontology enrichment analysis to help
answer a variety of interesting research questions. It should once again be
noted that the diffGO() function does NOT perform gene ontology enrichment
analysis. Instead, it returns all known gene ontologies for each gene. The
purpose and utility of this is described in the previous section.

Moreover, DNA sequences under peaks may be checked for the presence of
known regulatory motifs (e.g., using TRANSFAC (Matys et al. 2006) or MEME/JAS
PAR (Sandelin et al. 2004, Bailey et al. 2009)), or for the presence of biological
repeats (e.g., using RepeatMasker (Smit et al. 2015)). Pending a prospective
GO enrichment and network analysis, functional validation may be followed up
in the lab to test any potential regulatory sites or prospective enhancer elements,
thereby bringing the computational analysis pipeline back to the bench.

In addition to the computational workflows discussed above, geneXtendeR’s
wide array of functions makes it possible to conduct some rather interesting
and creative combinations of genomic analysis. Let’s say, for example, that a
user wants to explore all known ontological differences across specific disparate
sectors of the genome (e.g., 0-500 bp vs. 2000-3000 bp, but removing 501-
1999 bp from consideration). In other words, look at all peaks (across the
entire genome) that reside between 0-500 bp upstream of their nearest gene
(and 2000-3000 bp upstream of their nearest gene), and extract unique gene
ontologies that differ between these two variable-length sectors (where one is
500 bp long and the other is 1000 bp in length). This can be accomplished
rather conveniently using dplyr:

> library(dplyr)

> library(org.Rn.eg.db)

> library(GO.db)

> a <- diffGO(rat, 0, 500, BP, org.Rn.eg.db)

> b <- diffGO(rat, 2000, 3000, BP, org.Rn.eg.db)

> dplyr::filter(b, TERM %in% a$TERM)

gene$SYMBOL GOID TERM

1 Sod2 GO:0001889 liver development

2 Sod2 GO:0007507 heart development

3 Sod2 GO:0008285 negative regulation of cell proliferation

4 Sod2 GO:0042311 vasodilation

5 Sod2 GO:0042493 response to drug

6 Sod2 GO:0043066 negative regulation of apoptotic process

25

7 Dll1 GO:0001757 somite specification

8 Dll1 GO:0008284 positive regulation of cell proliferation

9 Dll1 GO:0008285 negative regulation of cell proliferation

10 Dll1 GO:0045596 negative regulation of cell differentiation

11 Olr40 GO:0007186 G-protein coupled receptor signaling pathway

12 Olr139 GO:0007186 G-protein coupled receptor signaling pathway

13 Olr282 GO:0007186 G-protein coupled receptor signaling pathway

14 Gprc5b GO:0007186 G-protein coupled receptor signaling pathway

15 Aqp8 GO:0055085 transmembrane transport

16 Aqp8 GO:0071320 cellular response to cAMP

17 Cdc42bpg GO:0006468 protein phosphorylation

18 Dusp5 GO:0045892 negative regulation of transcription, DNA-templated

19 Adgrl2 GO:0007166 cell surface receptor signaling pathway

20 Adgrl2 GO:0007186 G-protein coupled receptor signaling pathway

21 Nfe2l2 GO:0016567 protein ubiquitination

22 Nfe2l2 GO:0071456 cellular response to hypoxia

23 Olr559 GO:0007186 G-protein coupled receptor signaling pathway

24 Tspan18 GO:0007166 cell surface receptor signaling pathway

25 Kcnq2 GO:0060081 membrane hyperpolarization

26 Reg3b GO:0008284 positive regulation of cell proliferation

27 Reg3b GO:0043066 negative regulation of apoptotic process

28 Olr828 GO:0007186 G-protein coupled receptor signaling pathway

29 Tspan9 GO:0007166 cell surface receptor signaling pathway

30 Bhlhe41 GO:0045892 negative regulation of transcription, DNA-templated

31 Aptx GO:0006974 cellular response to DNA damage stimulus

32 Ccl21 GO:0007186 G-protein coupled receptor signaling pathway

33 Aldob GO:0001889 liver development

34 Aldob GO:0042493 response to drug

35 Clic4 GO:1902476 chloride transmembrane transport

36 Htr1d GO:0042310 vasoconstriction

37 Nlrc4 GO:0016567 protein ubiquitination

38 Nlrc4 GO:0090307 mitotic spindle assembly

39 Alk GO:0043066 negative regulation of apoptotic process

40 Esyt1 GO:0006869 lipid transport

41 Sbno2 GO:0045892 negative regulation of transcription, DNA-templated

42 Olr1085 GO:0007186 G-protein coupled receptor signaling pathway

43 Fbxo7 GO:0016567 protein ubiquitination

44 Dnmt1 GO:0042493 response to drug

45 Dnmt1 GO:0045892 negative regulation of transcription, DNA-templated

46 Xcr1 GO:0007186 G-protein coupled receptor signaling pathway

47 Ccr1l1 GO:0007186 G-protein coupled receptor signaling pathway

48 Clcn7 GO:1902476 chloride transmembrane transport

26

49 LOC684471 GO:0007186 G-protein coupled receptor signaling pathway

50 Il3 GO:0008284 positive regulation of cell proliferation

51 Il3 GO:0043066 negative regulation of apoptotic process

52 Olr1501 GO:0007186 G-protein coupled receptor signaling pathway

53 Socs3 GO:0016567 protein ubiquitination

54 Socs3 GO:0042493 response to drug

55 Socs3 GO:0043066 negative regulation of apoptotic process

56 Fbxw8 GO:0016567 protein ubiquitination

57 Fcgr2b GO:0007166 cell surface receptor signaling pathway

58 Arhgef10 GO:0090307 mitotic spindle assembly

59 Eef1e1 GO:0008285 negative regulation of cell proliferation

60 F13a1 GO:0007596 blood coagulation

61 Tubb6 GO:0007010 cytoskeleton organization

62 Csnk2a2 GO:0006468 protein phosphorylation

63 Csnk2a2 GO:0051726 regulation of cell cycle

64 Olr1735 GO:0007186 G-protein coupled receptor signaling pathway

>

This displays all biological process (BP) ontologies present in b that are not
present in a. Similarly, one can look at all BP, CC, or MF ontologies present in
a that are not present in b.

Concluding remarks

geneXtendeR is continually evolving, so any suggestions or new feature re-
quests are always appreciated. Likewise, any bug reports may be posted to
https://github.com/Bohdan-Khomtchouk/geneXtendeR/issues or emailed to
the package maintainer directly.

References

[1] Anders S, Pyl PT, Huber W: HTSeq–a Python framework to work with
high-throughput sequencing data. Bioinformatics. 2015, 31(2): 166–169.

[2] Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J,
Li WW, Noble WS: MEME SUITE: tools for motif discovery and
searching. Nucleic Acids Research. 2009, 37 (2): W202–W208.

27

https://github.com/Bohdan-Khomtchouk/geneXtendeR/issues

[3] Barbier E, Johnstone AL, Khomtchouk BB, Tapocik JD, Pitcairn C,
Rehman F, Augier E, Borich A, Schank JR, Rienas CA, Van Booven DJ,
Sun H, Nätt D, Wahlestedt C, Heilig M: Dependence-induced increase of
alcohol self-administration and compulsive drinking mediated by the
histone methyltransferase PRDM2. Molecular Psychiatry. 2016, Nature
Publishing Group. doi: 10.1038/mp.2016.131.

[4] Heinz S, Benner C, Spann N, Bertolino E et al.: Simple Combinations of
Lineage-Determining Transcription Factors Prime cis-Regulatory
Elements Required for Macrophage and B Cell Identities. Mol Cell 2010,
38(4): 576–589.

[5] Khomtchouk BB, Van Booven DJ, Wahlestedt C: geneXtendeR:
R/Bioconductor package for functional annotation of histone
modification ChIP-seq data in a 3D genome world. bioRxiv. 2016, 1–15.

[6] Koohy H, Down TA, Spivakov M, Hubbard T: A Comparison of Peak
Callers Used for DNase-Seq Data. PLoS One. 2014, 9(8): e105136.

[7] Love MI, Huber W, Anders S: Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology. 2014,
15:550.

[8] Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A,
Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P,
Lewicki-Potapov B, Saxel H, Kel AE, Wingender E: TRANSFAC and its
module TRANSCompel: transcriptional gene regulation in eukaryotes.
2006. Nucleic Acids Research. 34 (Database issue): D108–110.

[9] Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010, 26(6): 841–842.

[10] Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics. 2010, 26: 139–140.

[11] Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B:
JASPAR: an open-access database for eukaryotic transcription factor
binding profiles. Nucleic Acids Research. 2004, 32 (Database issue):
D91–D94.

[12] Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015
<http://www.repeatmasker.org>.

[13] Thomas R, Thomas S, Holloway AK, Pollard KS: Features that define
the best ChIP-seq peak calling algorithms. Briefings in Bioinformatics.
2017, 18(3): 441–450.

28

<http://www.repeatmasker.org>

[14] Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W: A clustering
approach for identification of enriched domains from histone modification
ChIP-Seq data. Bioinformatics. 2009, 25(15): 1952–1958.

[15] Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE,
Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis
of ChIP-Seq (MACS). Genome Biology. 2008, 9(9): R137.

[16] Zhu L, Gazin C, Lawson N, Pages H, Lin S, Lapointe D, Green M:
ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and
ChIP-chip data. BMC Bioinformatics. 2010, 11(1), pp. 237.

29

