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1 Introduction

deltaGseg aims to identify subpopulations within time series data, and here we have applied it to
molecular dynamic (MD) simulation free binding energies to provide a descriptive free energy landscape
where di�erent macrostates can coexist [1,2]. The theoretical and methodological considerations are
analytically discussed in the main paper [1]. Here, we will demonstrate how to perform macrostate
identi�cation analysis with deltaGseg.

2 Installing and loading the deltaGseg package

We recommend that users install the package via Bioconductor, since this will automatically de-
tect and install all required dependencies. The Bioconductor installation procedure is described at
http://www.bioconductor.org/docs/install/.To install deltaGseg, launch a new R session, and in a
command terminal either type or copy/paste:
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source("http://www.bioconductor.org/biocLite.R")

biocLite("deltaGseg")

3 Using deltaGseg

3.1 Loading the deltaGseg

To load the deltaGseg package, simply:-

library(deltaGseg)

This package also includes all the variables generated in this vignette, and they can be loaded by:

data(deltaGseg)

3.2 Step 1: Data loading, visualization and testing

deltaGseg takes in 2-column, space-separated �les of timepoints (column 1) and time-series measure-
ment (column 2). For our example, the binding energy of a system (e.g. between a protein and its
ligand) can be extracted from a MD trajectory as a time series measurement. Details on how to ex-
tract binding energies can be found at http://ambermd.org/tutorials/advanced/tutorial4/py_script.
Typically, replicates are carried out for a system by running multiple simulations with slightly di�er-
ent starting conditions (eg. initial con�guration or seed number). We will aim to identify di�erent
macrostates from this data using time series analysis, by estimating the signi�cance of existence of
multiple subpopulations.

We load three replicated series, i.e. the tab delimited 2-column data �les D_GBTOT1, D_GBTOT2,

D_GBTOT3 where the �rst column contains the time data t = 1, 2, ..., 5000 and the second column the
free binding energy values Bt. The variable path de�nes the directory where the �les reside, and in
this case, we will look in the directory where deltaGseg has been installed. The variable files de�nes
the �lenames to be read. If left blank, it will read the entire directory's content.

dir<-system.file("extdata",package="deltaGseg")

traj1<-parseTraj(path=dir, files=c("D_GBTOT1","D_GBTOT2","D_GBTOT3"))

Typing the name of the object (i.e. traj1) will give a brief description of its contents.

traj1

## class: Trajectories

## Source: /tmp/Rtmpeqd6RT/Rinst6d6648916ddc/deltaGseg/extdata/

## Names: D_GBTOT1 D_GBTOT2 D_GBTOT3

## Trajectories: 3

## Points per trajectory: 5000 5000 5000

## adf p-values: 0.01 0.01 0.07872805

##

## Available slots: path filenames trajlist avd

Here it shows that there were 3 �les loaded, each with 5000 time points. Next, we visualize the
series and test the weak-stationarity assumption. Formally, the null hypothesis "H0: the series is
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not weakly-stationary" is rejected if adf p-value ≤ 0.05 [3]. We notice that the adf p-value of the
D_GBTOT3 series is higher than 0.05 indicating that we do not have enough evidence to reject H0

of non-stationarity. An initial plot (Figure 1) can be made to view the time series. D_GBTOT3 exhibits
a signi�cant shift around the midpoint (approx t=12775) resulting in the high adf p-value.

plot(traj1,name='all')

Figure 1: The complete traj1 series

The transformSeries function identi�es which series is "inappropriate" (i.e. D_GBTOT3) and splits
it into two weakly-stationary subseries (the parameter specifying the number of splits is decided after
data visualization), which are segmented (and subsequently modeled) independently. We can see here
that D_GBTOT3 has now been split (D_GBTOT3_1, D_GBTOT3_2) and the resulting subseries has adf
pvalues ≤ 0.05. Plotting the transformed series will now indicate the new breakpoint.

traj1.tr <- transformSeries(object = traj1, method = "splitting", breakpoints = 1)

traj1.tr

## class: TransTrajectories

## Method: splitting

## Names: D_GBTOT1 D_GBTOT2 D_GBTOT3_1 D_GBTOT3_2

## Trajectories: 4

## Points per trajectory: 5000 5000 2775 2225

## adf p-values: 0.01 0.01 0.01 0.01

## Segment splits per trajectory: 1

##

## class: Trajectories

## Source: /tmp/Rtmpeqd6RT/Rinst6d6648916ddc/deltaGseg/extdata/

## Names: D_GBTOT1 D_GBTOT2 D_GBTOT3

## Trajectories: 3

## Points per trajectory: 5000 5000 5000
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## adf p-values: 0.01 0.01 0.07872805

##

## Available slots: tmethod breakpoints tavd ttrajlist tfilenames difftraj path filenames trajlist avd

plot(traj1.tr)

Figure 2: The transformed series, with newly de�ned breakpoint.

Another way to derive weakly stationary (sub)series is by data di�erentiation Bt-Bt−1. This tech-
nique is suitable for series with a signi�cant trend-like behavior, causing the weak stationarity as-
sumption to fail. Di�erentiation removes the trend and returns a transformed series that can be safely
segmented. We show such an example in the Appendix.

3.2.1 Other possible reasons for splitting a time-series

Long series of e.g. more than 50000 time points could also be split into smaller subseries to take
advantage of R's computation time. splitTraj identi�es appropriate breakpoints:

all_breakpoints <- splitTraj(traj1, segsplits = c(5, 5, 5))

all_breakpoints

## $D_GBTOT1

## [1] 1124 1353 1573 3912 4429 5000

##

## $D_GBTOT2

## [1] 584 1095 1570 2166 3618 5000

##

## $D_GBTOT3

## [1] 496 2603 2775 2812 4516 5000
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Here, splitTraj has identi�ed 5 possible breakpoints (number depends on user input). The original
series can now be plot with all determined breakpoints.

plot(traj1,breakpoints=all_breakpoints)

Figure 3: Trajectories with breakpoints

Often, there is little use in taking all de�ned breakpoints, so here we elect to pick 3 breakpoints (for
each series). chooseBreaks selects evenly-spaced breakpoints (this is optional, and users can choose
the split points manually, as a list of lists).

mybreaks <- chooseBreaks(all_breakpoints, numbreaks = 3)

mybreaks

## $D_GBTOT1

## [1] 1124 1573 4429

##

## $D_GBTOT2

## [1] 584 1570 3618

##

## $D_GBTOT3

## [1] 496 2775 4516

transformSeries (together with method="override_splitting") generates the new subseries.

traj1.sp.tr <- transformSeries(object = traj1, method = "override_splitting",

breakpoints = mybreaks)

traj1.sp.tr

## class: TransTrajectories

## Method: override_splitting
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## Names: D_GBTOT1_1 D_GBTOT1_2 D_GBTOT1_3 D_GBTOT1_4 D_GBTOT2_1 D_GBTOT2_2 D_GBTOT2_3 D_GBTOT2_4 D_GBTOT3_1 D_GBTOT3_2 D_GBTOT3_3 D_GBTOT3_4

## Trajectories: 12

## Points per trajectory: 1124 449 2856 571 584 986 2048 1382 496 2279 1741 484

## adf p-values: 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

## Segment splits per trajectory: 3 3 3

##

## class: Trajectories

## Source: /tmp/Rtmpeqd6RT/Rinst6d6648916ddc/deltaGseg/extdata/

## Names: D_GBTOT1 D_GBTOT2 D_GBTOT3

## Trajectories: 3

## Points per trajectory: 5000 5000 5000

## adf p-values: 0.01 0.01 0.07872805

##

## Available slots: tmethod breakpoints tavd ttrajlist tfilenames difftraj path filenames trajlist avd

Another useful application of method="override_splitting" is the manual split of the series.
For example, if the user is not satis�ed with the automatic split that method="splitting" o�ers, he
can override it by setting the breakpoints parameter the desired splits. In the above example, the
transformation of traj1 with 9 chosen breakpoints resulted in traj1.sp.tr, that has 12 trajectories
(subseries). Note that calling the transformed object will always report the original object as well, for
tracking purposes.

3.3 Step 2: Segmentation and denoising

In this step, each series (or subseries if transformSeries was performed) is segmented by the Seg-
ment Neighborhoods (SegNeigh) method [4]. Each segment q = 1, ..., Q (Q is the total number of
segments estimated in all series) is subsequently smoothed by wavelet decomposition and shrinkage
[5]. The segments will be used for the subpopulation estimation (sets of clustered segments de�ne a
subpopulation). The denoising removes the data autocorrelation and generates an "identity" vector
for each segment that is used in clustering.

traj1.denoise<-denoiseSegments(object=traj1.tr,seg_method="SegNeigh",maxQ=15,fn=1,factor=0.8,thresh_level=TRUE,minobs=200)

3.4 Step 3: Subpopulation estimation

The data from each denoised segment are summarized (in a vector of quantiles) and used in hierar-
chical clustering that assesses segments similarity (Euclidean distances) and groups similar segments
together in a hierarchical tree fashion. The user inspects the tree structure, the time series plots and
the signi�cance of the clusters (if pvclust algorithm [6] is used) to decide how many and which subpop-
ulations to derive. Here we illustrate subpopulation identi�cation using the pvclust algorithm. The
alternative, simple hierarchical clustering option will also discussed later. To use pvclust clustering,
we �rst estimate the multi-scale bootstrap p-values:

pvals<-clusterPV(object=traj1.denoise,bootstrap=500)

We will now use the p-values in the hierarchical clustering to aid our grouping of segments.

traj1.ss <- clusterSegments(object = traj1.denoise, intervention = "pvclust",

pv = pvals)

## Segment grouping. Click on the root of the groups you want clustered.

## Please ensure that ALL segments are grouped (boxed). Otherwise, function

## will not exit. To exit, click Esc (Windows/Linux) or Ctrl-click (Mac)
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Figure 4: clusterSegments run with pvclust. The top �gure shows the initial segments (product
of denoiseSegment) and the bottom �gure shows the resulting clustering using pvclust. Here, the
segments have been grouped into 6 subpopulations (boxed).

The top plot shows the segmented data for each (sub)series. The vertical lines separate each
(sub)series, within which each segment has a unique color. The bottom plot shows the result of the
pvclust algorithm, consisting of a simple hierarchical tree (Euclidean distances and average linkage;
obtained by the hclust function) and the two kinds of estimated p-values at each node. The ones in
red (Approximately Unbiased; AU) are more reliable than the ones in green (Bootstrap Probability;
BP)[6].

To describe how pvclust inference is made, assume two disjoint segment sets qi ∩ qj = 0 for two
vectors i, j ∈ [1, ..., Q ]. The null hypothesis of "H0: qi and qj are clustered together" is rejected if
the p-value of the respective node is lower than a threshold. Here, we avoid explicitly specifying the
threshold (e.g. 0.05) because (1) it depends on the user's assumptions on how many clusters he wants
to identify (a priori assumption aided by data visualization) and (2) the p-values are meant to be
provide evidence of possible subpopulations and only help the user decide which subpopulations can
be meaningful.

Practically, the user wishes to identify a small number of ergodic subpopulation, so the focus is
on the p-values of the top nodes. In this example, based on the estimated AU p-values we estimate 6
subpopulations which are subsequently plotted in Figure 6.
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plot(traj1.ss)

Figure 5: Result of the clusterSegments grouping, with segments coloured according to their re-
spective subpopulations.

Instead of pvclust the user can simply use hierarchical clustering to derive the subpopulations of
interest. This is done in two alternative ways: (1) by simply specifying the number of subpopulations
to be identi�ed (the algorithm requests a value and splits automatically) and (2) by interactive, point
and click user intervention on the plot according to which the clusters are separated based on height
(see ?hclust). These are more trivial but ultimately e�ective subpopulation identi�cation options.

3.4.1 Obtaining the subpopulation intervals

The resulted subpopulations and the respective snapshot intervals they occur can be obtained by the
following convenience function:

getIntervals(traj1.ss)

## $subpopulation

## [1] 1 2 1 3 4 3 5 3 4 3 5 3 4 6 1 2 1

##

## $interval.start

## [1] 1 1125 1354 5001 5597 5799 6113 6571 7167 8619 10001

## [12] 10252 10480 12776 13435 13780 14517

3.5 Step 4: Diagnostic plots

This post-processing step should always performed to assess the validity of the results and especially
of the wavelet modeling. We assume that the residuals of the model are approximately normally
distributed N(0,σ2) or, at least, symmetrically distributed around 0. Also, the residuals should not
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exhibit signi�cant autocorrelation coe�cients. We run a series of statistical tests whose results we
visualize in terms of autocorrelation plots, histograms and p-values for the signi�cance of the null
hypothesis "H0: the residuals are N(0,σ

2) distributed".

diagnosticPlots(object = traj1.ss, norm.test = "KS", single.series = TRUE)

Figure 6: diagnosticPlots
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4 Appendix

In this section we will describe the case of series di�erentiation, which is performed by function
transformedSeries. As mentioned earlier, di�erentiation is suitable for series exhibiting a trend-
like behavior causing the weak stationarity assumption to fail. Below, we simulate a set of data that
could be appropriately analyzed with this method.

x<-getTraj(traj1.tr)[['D_GBTOT3_1']]

y<-x[,2]-35; y1<-y[1:2000]; y2<-y[2001:length(y)]+17

ss<-c(seq(50,length(y2),100),length(y2))

for(i in 1:(length(ss)-1)) y2[ss[i]:ss[(i+1)]]<-y2[ss[i]:ss[(i+1)]]+i^1.85

y<-cbind(x[,1],c(y1,y2))

simtraj<-parseTraj(files=list(y),fromfile=FALSE)

simtraj

## class: Trajectories

## Source: /tmp/Rtmpeqd6RT/Rbuild6d664c7aa3a0/deltaGseg/vignettes/

## Names: 1

## Trajectories: 1

## Points per trajectory: 2775

## adf p-values: 0.8402461

##

## Available slots: path filenames trajlist avd

plot(simtraj)

Figure 7: The simulated series from D_GBTOT3_1

The plot above presents our simulated series, obtained by shifting downwards the D_GBTOT3_1

data by 35 and altering, after t = 2000 the increase rate as Bt = k × B1.85
t , where for the �rst 50

observations we use initial value k = 1 and increase k = k + 1 for subsequent disjoint segments of
100 observations each. Additionally, at t = 2000 we shifted the series upwards by 17. In this way the
simulated data (simtraj)resemble a real, more variable than D_GBTOT3_1.
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In the �rst step, we will use transformSeries with method="splitting" to divide the series into
two subseries, s1 and s2.

simtraj.tr <- transformSeries(object = simtraj, method = "splitting", breakpoints = 1)

simtraj.tr

## class: TransTrajectories

## Method: splitting

## Names: 1_1 1_2

## Trajectories: 2

## Points per trajectory: 2000 775

## adf p-values: 0.01 0.07739078

## Segment splits per trajectory: 1

##

## class: Trajectories

## Source: /tmp/Rtmpeqd6RT/Rbuild6d664c7aa3a0/deltaGseg/vignettes/

## Names: 1

## Trajectories: 1

## Points per trajectory: 2775

## adf p-values: 0.8402461

##

## Available slots: tmethod breakpoints tavd ttrajlist tfilenames difftraj path filenames trajlist avd

plot(simtraj.tr)

Figure 8: The transformed series

The BinSeg algorithm successfully identi�ed the splitting point at t = 2000 (red line). We run the
adf test which for s2 estimates adf p-value = 0.077, implying that we do not have enough evidence
to reject the null hypothesis of non-stationarity. If we split s2 again, we take very small segments
(green lines), which by default our methodology does not accept (the minimum length of a segment is
arbitrarily set to 200). If we consider a subset of these segments to split s2, the adf test will fail for
certain series (not shown). Accepting these segmentation results is not methodologically correct [4].

For such cases we suggest running transformSeries with method="differentiation".
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simtraj.tr2 <- transformSeries(object = simtraj.tr, method = "differentiation")

simtraj.tr2

plotDiff(simtraj.tr2,name="1_2")

Figure 9: Second segment before and after di�erentiation

The plot shows the di�erentiated data of s2, D = Bt - Bt−1, and the segments identi�ed. Evi-
dently, no signi�cantly di�erent segments are present (the one at the end is much smaller than 200
observations). In practice (long series like the one we studied above), we might conclude that the
whole s2 belongs to a transition-like period. Notice that the di�erentiated data �uctuates around 0
and thus they are not comparable to the original free binding energies. For this reason D is used for
segmentation only. Once the segments have been estimated, they are applied to the original, Bt, data
that are subsequently denoised and clustered.
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Figure 10: Final segmentation results of the simulated series
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sessionInfo()

## R version 3.5.0 (2018-04-23)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.4 LTS

##

## Matrix products: default

## BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so

## LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] grid stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] deltaGseg_1.20.0 scales_0.5.0 reshape_0.8.7

## [4] fBasics_3042.89 timeSeries_3042.102 timeDate_3043.102

## [7] pvclust_2.0-0 tseries_0.10-44 wavethresh_4.6.8

## [10] MASS_7.3-50 changepoint_2.2.2 zoo_1.8-1

## [13] ggplot2_2.2.1

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.16 knitr_1.20 magrittr_1.5 munsell_0.4.3

## [5] colorspace_1.3-2 lattice_0.20-35 rlang_0.2.0 quadprog_1.5-5
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## [9] TTR_0.23-3 stringr_1.3.0 highr_0.6 plyr_1.8.4

## [13] tools_3.5.0 xts_0.10-2 quantmod_0.4-13 gtable_0.2.0

## [17] lazyeval_0.2.1 tibble_1.4.2 formatR_1.5 curl_3.2

## [21] evaluate_0.10.1 stringi_1.1.7 compiler_3.5.0 pillar_1.2.2

## [25] spatial_7.3-11
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