
Data formats in GWASTools

Stephanie M. Gogarten

May 24, 2018

The central classes of the GWASTools package are GenotypeData and IntensityData. They
are designed to link all parts of a GWAS analysis (genotype data, SNP information, and sample
information) in a single S4 object, even when the genotype data is too large to be stored in R’s
memory at one time. In designing GWASTools, we took care to separate the application program-
ming interface (API) of the GenotypeData and IntensityData classes from the format in which
the data are stored.

Each class contains a data slot (for a GenotypeReader or IntensityReader object, respectively)
and annotation slots (a SnpAnnotationReader and a ScanAnnotationReader). These Reader
classes are actually class unions, allowing multiple options for storing data and enabling new storage
methods to be added without changing any code that uses GenotypeData and IntensityData

objects. The class unions are currently defined as follows:

� GenotypeReader: NcdfGenotypeReader, GdsGenotypeReader, or MatrixGenotypeReader

� IntensityReader: NcdfIntensityReader or GdsIntensityReader

� SnpAnnotationReader: SnpAnnotationDataFrame or SnpAnnotationSQLite

� ScanAnnotationReader: ScanAnnotationDataFrame or ScanAnnotationSQLite

We use the term “scan” to indicate a unique genotyping instance, as the same DNA sample may
be genotyped more than once. Each SNP and scan must have a unique integer ID (“snpID” and
“scanID”) that serves as the primary key between the genotype data and the annotation. Validity
methods ensure that these IDs, as well as chromosome and base position of SNPs, are consistent
between the data and annotation slots. Chromosome and position values must be integers, so all
classes which include SNP data have slots to record integer codes for non-autosomal chromosome
types (X, Y, pseudoautosomal, and mitochondrial).

1 Genotype data formats

1.1 NetCDF

The Network Common Data Form (NetCDF, http://www.unidata.ucar.edu/software/netcdf/) al-
lows array-oriented data to be stored on disk with fast access to subsets of the data in R using the
ncdf package. The NcdfReader class provides an S4 wrapper for ncdf objects. NcdfGenotype-

Reader and NcdfIntensityReader extend NcdfReader with methods specific to genotype and
intensity data.

1

http://www.unidata.ucar.edu/software/netcdf/

All NetCDF files created for GWASTools have two dimensions, one called snp and one titled
sample. Further, all NetCDF files have three variables in common: sampleID, chromosome and
position. The sampleID is used for indexing the columns of the two dimensional values stored in
the NetCDF files (genotype calls, for example). The index to the SNP probes in the NetCDF file
is the snpID, which is stored as values of the SNP dimension.

1.2 GDS

Genomic Data Structure (GDS, http://corearray.sourceforge.net/) is a storage format for bioin-
formatics data similar to NetCDF. An R interface is provided with the gdsfmt package. The
GWASTools functions convertNcdfGds and convertGdsNcdf allow conversion between NetCDF
and GDS format. GDS format is required for the SNPRelate package, which computes relatedness
and PCA as demonstrated in the “GWAS Data Cleaning” vignette, so it may be convenient to store
data in this format from the start. The GdsReader class provides a wrapper for gdsfmt objects
with the same API as the NcdfReader class. GdsGenotypeReader and GdsIntensityReader extend
GdsReader with methods specific to genotype and intensity data.

All GDS files created for GWASTools have variables sample.id, snp.id, snp.chromosome, and
snp.position. For genotype files, which store the count of the “A” allele in two bits, the A and
B alleles are stored in the snp.allele variable in the form “A/B”. Character SNP identifiers are
often stored in the variable snp.rs.id.

1.3 Matrix

The MatrixGenotypeReader class is convenient for analyses on smaller data sets which can easily
fit into R’s memory. It combines a matrix of genotypes with scanID, snpID, chromosome, and
position.

2 Annotation

SNP and scan annotation can be stored in either of two formats: an annotated data frame, or
a SQLite database. Either format may be supplied to the snpAnnot and scanAnnot slots of a
GenotypeData or IntensityData object. Each annotation object consists of two component data
frames (or tables). The main annotation data frame has one row for each SNP (or scan) and
columns containing variables such as (for SNPs) snpID, chromosome, position, rsID, A and B
alleles and (for scans) scanID, subject ID (to link duplicate scans of the same subject), sex, and
phenotype. The metadata data frame has one row for each column in the annotation data frame,
and (at minimum) a column containing a description of the variable. Both formats share methods
to return annotation columns and metadata.

2.1 Annotated data frames

The SnpAnnotationDataFrame and ScanAnnotationDataFrame classes extend the Annotated-

DataFrame class in the Biobase package. In addition to GWASTools methods, all methods de-
fined for AnnotatedDataFrame are available to these classes, including operators which allow these
objects to be used like standard data frames in many ways. This format provides some built-in

2

http://corearray.sourceforge.net/

functionality from AnnotatedDataFrame to ensure that the annotation and metadata data frames
are consistent.

2.2 SQLite databases

The ScanAnnotationSQLite and ScanAnnotationSQLite classes provide an alternate means of
storing annotation that is portable across multiple platforms. In addition to the methods shared
with the annotation data frame classes, these classes have getQuery methods to pass any SQL
query to the database.

3 Input

3.1 Plain text

Data in plain text format (for example, FinalReport files produced by Illumina’s GenomeStudio)
can be converted to NetCDF or GDS files using the function createDataFile. See the “GWAS
Data Cleaning” and “Preparing Affymetrix Data” vignettes for examples.

3.2 PLINK

PLINK ped/map files can be converted to NetCDF with accompanying SNP and scan annota-
tion using the function plinkToNcdf. plinkToNcdf will automatically convert between the sex
chromosome codes used by PLINK and the default codes used by GWASTools.

snpgdsBED2GDS in the SNPRelate package converts binary PLINK to GDS. snpgdsBED2GDS is
significantly faster than plinkToNcdf, and the resulting GDS file may be used with SNPRelate as
well. The option cvt.snpid="int" is required to generate integer snpIDs. Chromosome codes are
not converted.

> library(GWASTools)

> library(SNPRelate)

> bed.fn <- system.file("extdata", "plinkhapmap.bed.gz", package="SNPRelate")

> fam.fn <- system.file("extdata", "plinkhapmap.fam.gz", package="SNPRelate")

> bim.fn <- system.file("extdata", "plinkhapmap.bim.gz", package="SNPRelate")

> gdsfile <- "snps.gds"

> snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, gdsfile, family=TRUE,

+ cvt.chr="int", cvt.snpid="int", verbose=FALSE)

Now that the file has been created, we can access it in GWASTools using the GdsGenotypeR-

eader class. We create sample and SNP annotation from the variables stored in the GDS file. Note
that PLINK sex chromosome coding is different from the GWASTools default, so specify codes if
your file contains Y or pseudoautosomal SNPs.

> (gds <- GdsGenotypeReader(gdsfile, YchromCode=24L, XYchromCode=25L))

File: /tmp/Rtmp3T8PWN/Rbuild20974b120b55/GWASTools/vignettes/snps.gds (101.2K)

+ [] *

|--+ sample.id { Str8 60 LZMA_ra(53.8%), 265B }

3

|--+ snp.id { Int32 5000 LZMA_ra(11.7%), 2.3K }

|--+ snp.rs.id { Int32 5000 LZMA_ra(20.8%), 4.1K }

|--+ snp.position { Int32 5000 LZMA_ra(78.5%), 15.3K }

|--+ snp.chromosome { UInt8 5000 LZMA_ra(3.00%), 157B } *

|--+ snp.allele { Str8 5000 LZMA_ra(13.8%), 2.7K }

|--+ genotype { Bit2 60x5000, 73.2K } *

\--+ sample.annot [data.frame] *

|--+ family { Int32 60 LZMA_ra(35.8%), 93B }

|--+ father { Int32 60 LZMA_ra(35.8%), 93B }

|--+ mother { Int32 60 LZMA_ra(35.8%), 93B }

|--+ sex { Str8 60 LZMA_ra(136.7%), 89B }

\--+ phenotype { Int32 60 LZMA_ra(37.5%), 97B }

> scanID <- getScanID(gds)

> family <- getVariable(gds, "sample.annot/family")

> father <- getVariable(gds, "sample.annot/father")

> mother <- getVariable(gds, "sample.annot/mother")

> sex <- getVariable(gds, "sample.annot/sex")

> sex[sex == ""] <- NA # sex must be coded as M/F/NA

> phenotype <- getVariable(gds, "sample.annot/phenotype")

> scanAnnot <- ScanAnnotationDataFrame(data.frame(scanID, father, mother,

+ sex, phenotype,

+ stringsAsFactors=FALSE))

> snpID <- getSnpID(gds)

> chromosome <- getChromosome(gds)

> position <- getPosition(gds)

> alleleA <- getAlleleA(gds)

> alleleB <- getAlleleB(gds)

> rsID <- getVariable(gds, "snp.rs.id")

> snpAnnot <- SnpAnnotationDataFrame(data.frame(snpID, chromosome, position,

+ rsID, alleleA, alleleB,

+ stringsAsFactors=FALSE),

+ YchromCode=24L, XYchromCode=25L)

> genoData <- GenotypeData(gds, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

> getGenotype(genoData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 2 1 0

[2,] 0 0 0 0 1

[3,] 1 0 1 1 0

[4,] 1 1 0 0 0

[5,] 0 0 1 0 1

> close(genoData)

4

3.3 VCF

Bi-allelic SNP data from Variant Call Format (VCF) can be converted to GDS using the function
snpgdsVCF2GDS in the SNPRelate package.

> library(GWASTools)

> library(SNPRelate)

> vcffile <- system.file("extdata", "sequence.vcf", package="SNPRelate")

> gdsfile <- "snps.gds"

> snpgdsVCF2GDS(vcffile, gdsfile, verbose=FALSE)

Now that the file has been created, we can access it in GWASTools using the GdsGenotypeR-

eader class. We create a SnpAnnotationDataFrame from the variables stored in the GDS file.

> (gds <- GdsGenotypeReader(gdsfile))

File: /tmp/Rtmp3T8PWN/Rbuild20974b120b55/GWASTools/vignettes/snps.gds (2.6K)

+ [] *

|--+ sample.id { Str8 3 LZMA_ra(375.0%), 97B }

|--+ snp.id { Int32 2 LZMA_ra(975.0%), 85B }

|--+ snp.rs.id { Str8 2 LZMA_ra(745.5%), 89B }

|--+ snp.position { Int32 2 LZMA_ra(975.0%), 85B }

|--+ snp.chromosome { Str8 2 LZMA_ra(1300.0%), 85B }

|--+ snp.allele { Str8 2 LZMA_ra(975.0%), 85B }

|--+ genotype { Bit2 3x2, 2B } *

\--+ snp.annot []

|--+ qual { Float32 2 LZMA_ra(975.0%), 85B }

\--+ filter { Str8 2 LZMA_ra(911.1%), 89B }

> getScanID(gds)

[1] "NA00001" "NA00002" "NA00003"

> snpID <- getSnpID(gds)

> chromosome <- as.integer(getChromosome(gds))

> position <- getPosition(gds)

> alleleA <- getAlleleA(gds)

> alleleB <- getAlleleB(gds)

> rsID <- getVariable(gds, "snp.rs.id")

> qual <- getVariable(gds, "snp.annot/qual")

> filter <- getVariable(gds, "snp.annot/filter")

> snpAnnot <- SnpAnnotationDataFrame(data.frame(snpID, chromosome, position,

+ rsID, alleleA, alleleB,

+ qual, filter,

+ stringsAsFactors=FALSE))

> genoData <- GenotypeData(gds, snpAnnot=snpAnnot)

> getGenotype(genoData)

5

[,1] [,2] [,3]

[1,] 2 1 0

[2,] 2 1 2

> close(genoData)

3.4 Imputed genotypes

Genotype probabilities or dosages from IMPUTE2, BEAGLE, or MaCH can be converted into A
allele dosage and stored in NetCDF or GDS with the function imputedDosageFile.

4 Output

4.1 PLINK

A GenotypeData object can be written to PLINK ped/map files with the function plinkWrite.

4.2 VCF

A GenotypeData object can be written to VCF with the function vcfWrite. genoDataAsVCF

converts a GenotypeData object to a VCF object for use with the VariantAnnotation package.

4.3 snpStats

asSnpMatrix converts a GenotypeData object to a SnpMatrix object for use with the snpStats
package.

6

	1 Genotype data formats
	1.1 NetCDF
	1.2 GDS
	1.3 Matrix

	2 Annotation
	2.1 Annotated data frames
	2.2 SQLite databases

	3 Input
	3.1 Plain text
	3.2 PLINK
	3.3 VCF
	3.4 Imputed genotypes

	4 Output
	4.1 PLINK
	4.2 VCF
	4.3 snpStats

