
BrowserVizDemo

Paul Shannon

October 30, 2017

Contents

1 Introduction . 1

2 Technical Overview . 2

3 The BrowserVizDemo Application 2

1 Introduction

BrowserVizDemo implements an (initially very simple, minimally-featured) interactive R-to-
web-browser x-y plotting capability. It is a direct subclass of BrowserViz and therefore uses its
simple four-field JSON messages transported over websockets (see below). It thus illustrates
the benefits of creating visualization tools in a web browser connected interactively to an R
session. Powerful interactive graphics libraries are currently, and increasingly, available for
HTML5 browsers running Javascript; d3 and cytoscape.js are two examples.
BrowserVizDemo thus serves two purposes:

• It demonstrates the few simple steps required to create an interactive R/browser ap-
plication by subclassing the BrowserViz package.

• It could be extended into a full, web-based replacement for the base R plot function,
and perhaps inspire the creation of, or porting of, other popular R visualization tools
to web brower graphics.

Please see the vignette for the Bioconductor package BrowserViz for a discussion of the
underlying architecture, techniques and the message format used to communicate between
R and the browser.
Note that extending BrowserVizDemo to include more capabilities, or to create other packages
derived from BrowserViz , requires two sets of programming skills:

• A solid understanding of R.
• Good knowledge of Javascript, jQuery, and, quite probably, of d3.

For those having these skills, or willing to acquire them, is virutally no limit to the rich, inter-
active, graphical exploratory data analyses tools that can be created, in which the graphical
richness is matched by all of the interactive power of the R programming language.

http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserViz

BrowserVizDemo

2 Technical Overview

(Please see the vignette for BrowserViz for a more comprehensive treatment of this topic.)
Just as the ubiquitous and language-neutral websockets protocol provides the BrowserVizDemo
communication mechanism, so does JSON provide the message notation. Native data types
in R (a named list) and Javascript (an object, with key:value pairs) are easily converted to and
from JSON by libraries standard in each language. We have adopted a simple, adaptable data
structure flexible enough for all of the uses so far encountered. In JSON (and Javascript):

{{cmd: "setWindowTitle", status: "request", callback:"handleResponse",

payload: "BrowserVizDemo Demo"}}

Websocket servers both send and receive messages. Thus a typical BrowserVizDemo event
begins with sending a message from one environment to the other, and often concludes with
some sort of a return or “callback” message.

• cmd : the name of the operation the sender wishes to be performed by the receiver.
• status: might be “success”, “failure”, “error”, “deferred response”.
• callback: provided by the sender, this specifies the operation which the receiver is to

call in the client after it (the receiver) completes the operation it was asked to perform.
• payload An open-ended data structure, sometimes empty, as simple as a character

string, as complex as any conceivable deeply nested list.

3 The BrowserVizDemo Application

The BrowserVizDemo package adds only two methods to those provided by its base class:
• plot: takes an x and y vector as arguments
• getSelection: returns the names of all d3 selected points, in the browser plot, to R.

d3 points are selected by dragging the mouse; the selected region is indicated by a
red-bordered box.

These methods are inherited from BrowserViz :
• port

• ready

• browserResponseReady

• getBrowserResponse

• closeWebSocket

• send

• getBrowserWindowSize

• getBrowserWindowTitle

• setBrowserWindowTitle

2

http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserViz

BrowserVizDemo

S4 class inheritance thus proves very powerful. BrowserViz has almost 400 lines of R code;
BrowserVizDemo has few than 60. In addition to the utility methods listed above, the
base class provides code which greatly simplifies the plumbing needed to connect R and
the browser: web socket setup, port choice, send and receive, JSON transformations, send-
message/receive-response latencies, specifying functions to be called when incoming messages
arrive. This ensures that the R programming of any derived class is as simple as possible.
We provide a similar benefit for the Javascript, though neither proper classes nor inheri-
tance come native with the language. Instead BrowserViz includes, and we elsewhere host,
BrowserViz.js a module of about 300 lines, which exposes about fifteen utility functions.
These, like their counterparts in the BrowserViz S4 class, provide socket initialization, func-
tiond dispatch, management of functions to call when the HTML DOM is ready, and when
the socket connection has been opened and is ready for use.
We recommend that the HTML/Javascript/CSS portion of every BrowserViz subclass include
this file in its header. The capabilities it provides are then available:
hub = BrowserViz();

demo = BrowserVizDemo();

demo.setHub(hub)

demo.addMessageHandlers()

hub.addOnDocumentReadyFunction(demo.initializeUI);

// configure and open socket, run queued functions, enable

// dispatch of incoming commands their Javascript handler functions

hub.start();

> library(BrowserVizDemo)

> plotter <- BrowserVizDemo(port=8000:8100); # plenty of ports to choose from

[1] waiting in BrowserViz.ready, browserResponseReady not yet true

[1] browserResponseReady now true, after 1 sleepInterval/s of 0.100000

> stopifnot(ready(plotter))

[1] waiting in BrowserViz.ready, browserResponseReady not yet true

[1] browserResponseReady now true, after 1 sleepInterval/s of 0.100000

> title <- "simple xy plot test";

> setBrowserWindowTitle(plotter, title)

[1] "simple xy plot test"

> plot(plotter, 1:10, (1:10)^2)

[1] ""

> selectedPoints <- getSelection(plotter)

> # selectedPoints will be an empty list -unless- you have selected some in the browser with your mouse.

> closeWebSocket(plotter)

3

http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserViz

	1 Introduction
	2 Technical Overview
	3 The BrowserVizDemo Application

