Package 'SIMLR'

October 16, 2018

```
Maintainer Daniele Ramazzotti <daniele.ramazzotti@yahoo.com>
Depends R (>= 3.4),
Imports parallel, Matrix, stats, methods, Rcpp, pracma, RcppAnnoy,
     RSpectra
Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph
Description In this package we provide implementations of both SIMLR and CIMLR. These meth-
      ods were originally applied to single-cell and cancer genomic data, but they are in principle capa-
     ble of effectively and efficiently learning similarities in all the contexts where diverse and hetero-
     geneous statistical characteristics of the data make the problem harder for standard approaches.
Encoding UTF-8
LazyData TRUE
License file LICENSE
URL https://github.com/BatzoglouLabSU/SIMLR
BugReports https://github.com/BatzoglouLabSU/SIMLR
biocViews Clustering, GeneExpression, Sequencing, SingleCell
RoxygenNote 6.0.1
LinkingTo Rcpp
NeedsCompilation yes
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/SIMLR
git_branch RELEASE_3_7
git_last_commit cc9b4e7
git_last_commit_date 2018-04-30
Date/Publication 2018-10-15
Author Daniele Ramazzotti [aut, cre],
     Bo Wang [aut],
     Luca De Sano [aut],
```

Serafim Batzoglou [ctb]

Title Title: SIMLR and CIMLR Multi-kernel LeaRning methods

Version 1.6.0 **Date** 2018-03-09

2 BuettnerFlorian

R topics documented:

Index		9
	ZeiselAmit	8
	SIMLR_Large_Scale	
	SIMLR_Feature_Ranking	6
	SIMLR_Estimate_Number_of_Clusters	5
	SIMLR	5
	GliomasReduced	4
	CIMLR_Estimate_Number_of_Clusters	3
	CIMLR	
	BuettnerFlorian	

 ${\tt BuettnerFlorian}$

test dataset for SIMLR

Description

example dataset to test SIMLR from the work by Buettner, Florian, et al.

Usage

data(BuettnerFlorian)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an $(m \times n)$ gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Buettner, Florian, et al. "Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells." Nature biotechnology 33.2 (2015): 155-160.

CIMLR 3

CIMLR CIMLR

Description

perform the CIMLR clustering algorithm

Usage

```
CIMLR(X, c, no.dim = NA, k = 10, cores.ratio = 1)
```

Arguments

Χ	a list of multi-omic data each of which is an (m x n) data matrix of measurements
	of cancer patients

c number of clusters to be estimated over X

no.dim number of dimensions k tuning parameter

cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the patients based on CIMLR and their similarities

list of 8 elements describing the clusters obtained by CIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S = similarities computed by CIMLR, F = results from network diffiusion, ydata = data referring the the results by k-means, alphaK = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE, LF = parameters of the clustering

Examples

```
CIMLR(X = GliomasReduced$in_X, c = 3, cores.ratio = 0)
```

```
CIMLR_Estimate_Number_of_Clusters
```

CIMLR Estimate Number of Clusters

Description

estimate the number of clusters by means of two huristics as discussed in the CIMLR paper

Usage

```
CIMLR_Estimate_Number_of_Clusters(all_data, NUMC = 2:5, cores.ratio = 1)
```

4 GliomasReduced

Arguments

all_data is a list of multi-omic data each of which is an (m x n) data matrix of measure-

ments of cancer patients

NUMC vector of number of clusters to be considered

cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value

a list of 2 elements: K1 and K2 with an estimation of the best clusters (the lower values the better) as discussed in the original paper of SIMLR

Examples

```
CIMLR_Estimate_Number_of_Clusters(GliomasReduced$in_X,
   NUMC = 2:5,
   cores.ratio = 0)
```

GliomasReduced

test dataset for CIMLR

Description

example dataset to test CIMLR. This is a reduced version of the dataset from the work by The Cancer Genome Atlas Research Network.

Usage

```
data(GliomasReduced)
```

Format

multi-omic data of cancer patients

Value

list of 1 element: $in_X = input$ dataset as a list of 4 (reduced) multi-omic data each of which is an $(m \times n)$ measurements of cancer patients

Source

Cancer Genome Atlas Research Network. "Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas." New England Journal of Medicine 372.26 (2015): 2481-2498.

SIMLR 5

Description

perform the SIMLR clustering algorithm

Usage

```
SIMLR(X, c, no.dim = NA, k = 10, if.impute = FALSE, normalize = FALSE,
    cores.ratio = 1)
```

Arguments

X	an (m x n) data matrix of gene expression measurements of individual cells or and object of class $SCESet$
С	number of clusters to be estimated over X
no.dim	number of dimensions
k	tuning parameter
if.impute	should I traspose the input data?
normalize	should I normalize the input data?
cores.ratio	ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the cells based on SIMLR and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S = similarities computed by SIMLR, F = results from network diffiusion, ydata = data referring the the results by k-means, alphaK = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE, LF = parameters of the clustering

Examples

```
SIMLR(X = BuettnerFlorian\$in\_X, \ c = BuettnerFlorian\$n\_clust, \ cores.ratio = 0)
```

```
{\it SIMLR\_Estimate\_Number\_of\_Clusters} \\ {\it SIMLR\_Estimate\ Number\ of\ Clusters}
```

Description

estimate the number of clusters by means of two huristics as discussed in the SIMLR paper

Usage

```
SIMLR_Estimate_Number_of_Clusters(X, NUMC = 2:5, cores.ratio = 1)
```

Arguments

X an (m x n) data matrix of gene expression measurements of individual cells

NUMC vector of number of clusters to be considered

cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value

a list of 2 elements: K1 and K2 with an estimation of the best clusters (the lower values the better) as discussed in the original paper of SIMLR

Examples

```
SIMLR_Estimate_Number_of_Clusters(BuettnerFlorian$in_X,
    NUMC = 2:5,
    cores.ratio = 0)
```

SIMLR_Feature_Ranking SIMLR Feature Ranking

Description

perform the SIMLR feature ranking algorithm. This takes as input the original input data and the corresponding similarity matrix computed by SIMLR

Usage

```
SIMLR_Feature_Ranking(A, X)
```

Arguments

A an (n x n) similarity matrix by SIMLR

X an (m x n) data matrix of gene expression measurements of individual cells

Value

a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

Examples

```
SIMLR_Feature_Ranking(A = BuettnerFlorian$results$S, X = BuettnerFlorian$in_X)
```

SIMLR_Large_Scale 7

SIMLR_Large_Scale SIMLR Large Scale

Description

perform the SIMLR clustering algorithm for large scale datasets

Usage

```
SIMLR_Large_Scale(X, c, k = 10, kk = 100, if.impute = FALSE,
    normalize = FALSE)
```

Arguments

X	an $(m \ x \ n)$ data matrix of gene expression measurements of individual cells or and object of class SCESet
С	number of clusters to be estimated over X
k	tuning parameter
kk	number of principal components to be assessed in the PCA
if.impute	should I traspose the input data?
normalize	should I normalize the input data?

Value

clusters the cells based on SIMLR Large Scale and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S0 = similarities computed by SIMLR, F = results from the large scale iterative procedure, ydata = data referring the the results by k-means, alphaK = clustering coefficients, val = distances from the k-nearest neighbour search, ind = indeces from the k-nearest neighbour search, execution.time = execution time of the present run

Examples

```
resized = ZeiselAmit$in_X[, 1:340]
## Not run:
SIMLR_Large_Scale(X = resized, c = ZeiselAmit$n_clust, k = 5, kk = 5)
## End(Not run)
```

8 ZeiselAmit

ZeiselAmit

test dataset for SIMLR large scale

Description

example dataset to test SIMLR large scale. This is a reduced version of the dataset from the work by Zeisel, Amit, et al.

Usage

data(ZeiselAmit)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Zeisel, Amit, et al. "Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq." Science 347.6226 (2015): 1138-1142.

Index

```
BuettnerFlorian, 2

CIMLR, 3

CIMLR_Estimate_Number_of_Clusters, 3

GliomasReduced, 4

SIMLR, 5

SIMLR_Estimate_Number_of_Clusters, 5

SIMLR_Feature_Ranking, 6

SIMLR_Large_Scale, 7

ZeiselAmit, 8
```