Package 'MSstatsQC'

October 16, 2018

Version 1.2.0

Type Package

Title Longitudinal system suitability monitoring and quality control for proteomic experiments

Description MSstatsQC is an R package which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments.

License Artistic License 2.0

LazyData TRUE

URL http://msstats.org/msstatsqc

BugReports https://groups.google.com/forum/#!forum/msstatsqc

RoxygenNote 6.0.1.9000

Imports dplyr,plotly,RecordLinkage,ggplot2,ggExtra, stats,grid, MSnbase, qcmetrics

Suggests knitr, rmarkdown, testthat, RforProteomics

VignetteBuilder knitr

biocViews Software, QualityControl, Proteomics, MassSpectrometry

git_url https://git.bioconductor.org/packages/MSstatsQC

git_branch RELEASE_3_7

git_last_commit f9bca48

git_last_commit_date 2018-04-30

Date/Publication 2018-10-15

Author Eralp Dogu [aut, cre], Sara Taheri [aut], Olga Vitek [aut]

Maintainer Eralp Dogu <eralp.dogu@gmail.com>

R topics documented:

nangePointEstimator	2
USUMChart	3
ataProcess	4
ecisionMap	5
SnbaseToMSstatsQC	6

RadarPlot		•		 •		•	•		•		•	•	•	•	•	•	•			•	•	•	•		•	•	6
RiverPlot			• •	 •																							7
S9Site54.			•	 •																							8
XmRChart				 •					•	•			•				•	•	•								9
																											11

ChangePointEstimator A function to identify the time of a change in the mean or variability of a metric

Description

A function to identify the time of a change in the mean or variability of a metric

Usage

```
ChangePointEstimator(data = NULL, peptide, L = 1, U = 5, metric,
normalization = TRUE, ytitle = "Change Point Plot - mean",
type = "mean", selectMean = NULL, selectSD = NULL)
```

Arguments

data	comma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
peptide	the name of precursor of interest.
L	Lower bound of the guide set.
U	Upper bound of the guide set.
metric	the name of metric of interest.
normalization	TRUE metric is standardized and FALSE if not standardized.
ytitle	the y-axis title of the plot. Defaults to "Change Point Plot - mean". The x-axis title is by default "QCno-name of peptide"
type	the type of the control chart. Two values can be assigned, "mean" or "variabil- ity". Default is "mean".
selectMean	the mean of a metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
selectSD	the standard deviation of a metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL.

Value

A plot of likelihood statistics versus time per peptide and metric generated from CP.data.prepare data frame.

Index

CUSUMChart

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)</pre>
head(sampleData)
# Find the name of the peptides
levels(sampleData$Precursor)
# Calculate change point statistics
ChangePointEstimator(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime")
ChangePointEstimator(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
                     ytitle = "Change Point Plot - variability", type = "variability")
ChangePointEstimator(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
                     selectMean = 27.78, selectSD = 8.19)
ChangePointEstimator(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea")
ChangePointEstimator(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea",
                     selectMean = 35097129, selectSD = 34132861)
ChangePointEstimator(data = sampleData, peptide = "TAAYVNAIEK", metric = "MaxFWHM")
ChangePointEstimator(data = sampleData, peptide = "LVNELTEFAK", metric = "Peak Assymetry")
```

```
CUSUMChart
```

A function to create cumulative sum charts for mean (CUSUMm) and cumulative sum charts for variability (CUSUMv) control charts

Description

A function to create cumulative sum charts for mean (CUSUMm) and cumulative sum charts for variability (CUSUMv) control charts

Usage

```
CUSUMChart(data = NULL, peptide, L = 1, U = 5, metric,
normalization = TRUE, ytitle = "CUSUMm", type = "mean",
selectMean = NULL, selectSD = NULL, referenceValue = 0.5,
decisionInterval = 5)
```

Arguments

data	comma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
peptide	the name of precursor of interest.
L	Lower bound of the guide set.
U	Upper bound of the guide set.
metric	the name of metric of interest.
normalization	TRUE if metric is standardized and FALSE if not standardized.
ytitle	the y-axis title of the plot. Defaults to "CUSUMm". The x-axis title is by default "Time : name of peptide"
type	the type of the control chart. Two values can be assigned, "mean" or "variabil- ity". Default is "mean"
selectMean	the mean of a metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.

selectSD	the standard deviation of a metric. It is used when standard deviation is known.							
	It is NULL when mean is not known. The default is NULL.							
referenceValue	the value that is used to tune the control chart for a proper shift size							
decisionInterva	al							
	the threshold to detect an out-of-control observation							

Value

A plot of pozitive and negative CUSUM statistics versus time per peptide and metric generated from CUSUM.data.prepare data frame.

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)</pre>
head(sampleData)
# Find the name of the peptides
levels(sampleData$Precursor)
# Calculate CUSUM statistics
CUSUMChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime")
CUSUMChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
           ytitle = "CUSUMv", type = "variability")
CUSUMChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
           selectMean = 27.78, selectSD = 8.19)
CUSUMChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea")
CUSUMChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea",
           selectMean = 35097129, selectSD = 34132861)
CUSUMChart(data = sampleData, peptide = "TAAYVNAIEK", metric = "MaxFWHM")
CUSUMChart(data = sampleData, peptide = "LVNELTEFAK", metric = "Peak Assymetry")
```

DataProcess

A data processing function

Description

A data processing function

Usage

```
DataProcess(data = NULL)
```

Arguments

data Comma-separated (*.csv), QC file format. It should contain a Precursor column and the metrics columns.

Value

A data frame that processes using input.sanity.check function.

Examples

```
# The data is "S9Site54" which is defined in the package.
data <- DataProcess(S9Site54)</pre>
```

DecisionMap	A function to create heatmaps to compare performance with user de-
	fined performance criteria

Description

A function to create heatmaps to compare performance with user defined performance criteria

Usage

```
DecisionMap(data = NULL, method = "XmR", peptideThresholdRed = 0.7,
    peptideThresholdYellow = 0.5, L = 1, U = 5, type = "mean",
    title = "heatmap plot", listMean = NULL, listSD = NULL)
```

Arguments

data	Comma-separated (*.csv), QC file format. It should contain a Precursor column and the metrics columns.
method peptideThresho	It is either "CUSUM" or "XmR" 1dRed
	Is a threshold that marks percentage of peptides above it red on the heatmap. Defaults to 0.7
peptideThresho	ldYellow
	Is a threshold that marks percentage of peptides above it and below the peptide- ThresholdRed, yellow on the heatmap. Defaults to 0.5
L	Lower bound of the giude set. Defaults to 1
U	Upper bound of the guide set. Defaults to 5
type	can take two values, "mean" or "dispersion". Defaults to "mean"
title	the title of the plot. Defaults to "heatmap plot"
listMean	List of the means for the metrics. If you don't know the means leave it as NULL and they will be calculated automatically by using L and U. The default is NULL.
listSD	List of the standard deviations for the metrics. If you don't know the standard deviations leave it as NULL and they will be calculated automatically by using L and U. The default is NULL.

Value

A heatmap to aggregate results per metric generated from heatmap.DataFrame data frame.

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)
head(sampleData)
# Draw Decision maker plot
DecisionMap(data = sampleData, method = "CUSUM")
DecisionMap(data = sampleData, method = "CUSUM", type = "variability")
DecisionMap(data = sampleData, method = "XmR")
DecisionMap(data = sampleData, method = "XmR", type = "variability")
```

MSnbaseToMSstatsQC A function to convert MSnbase files to MSstatsQC format

Description

A function to convert MSnbase files to MSstatsQC format

Usage

MSnbaseToMSstatsQC(msfile)

Arguments

msfile data file to be converted

Value

A data frame that can be used with MSstatsQC

A csv file that is converted from raw files

RadarPlot

A function to create radar plot to aggregate results from X and mR charts or CUSUMm and CUSUMv charts.

Description

A function to create radar plot to aggregate results from X and mR charts or CUSUMm and CUSUMv charts.

Usage

```
RadarPlot(data = NULL, L = 1, U = 5, method = "XmR", listMean = NULL,
listSD = NULL)
```

RiverPlot

Arguments

data	omma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
L	lower bound of the guide set.
U	upper bound of the guide set.
method	defines the method selected to construct control charts.
listMean	list of the means for each metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
listSD	list of the standard deviations for each metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL. automatically by using L and U. The default is NULL.

Value

A radar plot to aggregate results per metric generated from XmR.Radar.Plot.DataFrame data frame or CUSUM.Radar.Plot.DataFrame data frame.

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)</pre>
head(sampleData)
# Draw XmR radar plot
RadarPlot(data = sampleData)
RadarPlot(data = sampleData, method = "CUSUM")
RadarPlot(data = sampleData,
                listMean = list("BestRetentionTime" = 27.78,
                                 "TotalArea" = 35097129,
                                 "MaxFWHM" = 0.28,
                                 "Peak Assymetry" = 0.98),
                listSD = list("BestRetentionTime" = 8.19,
                               "TotalArea" = 34132861,
                               "MaxFWHM" = 0.054,
                               "Peak Assymetry" = 0.002)
                )
```

RiverPlot

A function to create river plot to aggregate results from X and mR charts or CUSUMm and CUSUMv charts.

Description

A function to create river plot to aggregate results from X and mR charts or CUSUMm and CUSUMv charts.

Usage

```
RiverPlot(data = NULL, L = 1, U = 5, method = "XmR", listMean = NULL,
listSD = NULL)
```

Arguments

data	omma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
L	lower bound of the guide set.
U	upper bound of the guide set.
method	defines the method selected to construct control charts.
listMean	list of the means for each metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
listSD	list of the standard deviations for each metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL.

Value

A river plot to aggregate results per metric generated from XmR.Summary.DataFrame data frame or CUSUM.Summary.DataFrame data frame.

Examples

S9Site54

CPTAC study 9.1 site 54 dataset

Description

system suitabilty testing results generated during CPTAC Study 9.1 for Site 54

Usage

```
data(S9Site54)
```

Format

csv

Details

CPTAC system suitability testing data for Site 54 from Study 9.1

XmRChart

Value

An example dataset generated from CPTAC study 9.1

References

http://www.mcponline.org/content/early/2015/02/18/mcp.M114.047050

XmRChart	A function to construct individual (X) and moving range (mR) control charts

Description

A function to construct individual (X) and moving range (mR) control charts

Usage

```
XmRChart(data = NULL, peptide, L = 1, U = 5, metric,
normalization = FALSE, ytitle = "Individual observations",
type = "mean", selectMean = NULL, selectSD = NULL)
```

Arguments

data	comma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
peptide	the name of precursor of interest.
L	Lower bound of the guide set.
U	Upper bound of the guide set.
metric	the name of metric of interest.
normalization	TRUE if metric is standardized and FALSE if not standardized.
ytitle	the y-axis title of the plot. Defaults to "Individual observations". The x-axis title is by default "Time : name of peptide"
type	the type of the control chart. Two values can be assigned, "mean" or "variabil- ity". Default is "mean".
selectMean	the mean of a metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
selectSD	the standard deviation of a metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL.

Value

A plot of individual values or moving ranges versus time per peptide and metric generated from XmR.data.prepare data frame.

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)</pre>
head(sampleData)
# Find the name of the peptides
levels(sampleData$Precursor)
# Calculate X and mR statistics
XmRChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime")
XmRChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
        ytitle = "moving ranges", type = "variability")
XmRChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
         selectMean = 27.78, selectSD = 8.19)
XmRChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea")
XmRChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea",
         selectMean = 35097129, selectSD = 34132861)
XmRChart(data = sampleData, peptide = "TAAYVNAIEK", metric = "MaxFWHM")
XmRChart(data = sampleData, peptide = "LVNELTEFAK", metric = "Peak Assymetry")
```

10

Index

*Topic MSnbase, MSnbaseToMSstatsQC, 6 *Topic Sum, CUSUMChart, 3 *Topic XmR, XmRChart,9 *Topic XmR RadarPlot, 6 RiverPlot, 7 *Topic change ${\tt ChangePointEstimator, 2}$ *Topic chart ChangePointEstimator, 2 CUSUMChart, 3 XmRChart, 9 *Topic **control** ${\tt ChangePointEstimator, 2}$ CUSUMChart, 3XmRChart, 9 *Topic cumulative CUSUMChart, 3 *Topic datasets S9Site54,8 *Topic heatmap DecisionMap, 5 *Topic **input** MSnbaseToMSstatsQC, 6 *Topic **point**, ChangePointEstimator, 2 *Topic qcmetrics, MSnbaseToMSstatsQC, 6 ChangePointEstimator, 2 CUSUMChart, 3 DataProcess, 4 DecisionMap, 5 MSnbaseToMSstatsQC, 6 RadarPlot, 6 RiverPlot, 7 S9Site54,8 XmRChart, 9