Package 'EnrichedHeatmap'

October 16, 2018

Type Package

Title Making Enriched Heatmaps

Version 1.10.0 **Date** 2018-4-6

Author Zuguang Gu

Maintainer Zuguang Gu <z.gu@dkfz.de>

Depends R (>= 3.1.2), methods, grid, ComplexHeatmap (>= 1.15.2), GenomicRanges

Imports matrixStats, stats, GetoptLong, Rcpp, utils, locfit, circlize (>= 0.4.1), IRanges

Suggests testthat (>= 0.3), knitr, markdown, genefilter, RColorBrewer

VignetteBuilder knitr

Description Enriched heatmap is a special type of heatmap which visualizes the enrichment of genomic signals on specific target regions. Here we implement enriched heatmap by ComplexHeatmap package. Since this type of heatmap is just a normal heatmap but with some special settings, with the functionality of ComplexHeatmap, it would be much easier to customize the heatmap as well as concatenating to a list of heatmaps to show correspondance between different data sources.

biocViews Software, Visualization, Sequencing, GenomeAnnotation, Coverage

URL https://github.com/jokergoo/EnrichedHeatmap

License MIT + file LICENSE

Repository Bioconductor

LinkingTo Rcpp

git_url https://git.bioconductor.org/packages/EnrichedHeatmap

git_branch RELEASE_3_7

git_last_commit 1aafeb1

git_last_commit_date 2018-04-30

Date/Publication 2018-10-15

+.AdditiveUnit

R topics documented:

	ditiveUnit Add heatmaps or row annotations to a heatmap list	
Index		24
	[.normalizedMatrix	
	show-EnrichedHeatmapList-method	
	show-EnrichedHeatmap-method	
	show-dispatch	
	rbind.normalizedMatrix	
	print.normalizedMatrix	
	normalizeToMatrix	
	makeWindows	
	getSignalsFromList	
	extract_anno_enriched	
	enriched_score	
	EnrichedHeatmapList-class	
	EnrichedHeatmapList	
	EnrichedHeatmap	
	draw-EnrichedHeatmapList-method	
	draw-EnrichedHeatmap-method	9
	draw-dispatch	
	dist_by_closeness	
	discretize	6
	default_smooth_fun	5
	copyAttr	
	anno_enriched	3
	+.AdditiveUnit	2

Description

Add heatmaps or row annotations to a heatmap list

Usage

```
## S3 method for class 'AdditiveUnit' x + y
```

Arguments

x an EnrichedHeatmap-class object, a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

y an EnrichedHeatmap-class object, a Heatmap-class object, a HeatmapAnnotation-class object or a HeatmapList-class object.

Details

It overwrites +. AdditiveUnit in the ComplexHeatmap package.

anno_enriched 3

Value

A HeatmapList-class object or an EnrichedHeatmapList-class object

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

Examples

```
\mbox{\tt\#} users should not use it directly \mbox{\tt NULL}
```

anno_enriched

Annotation function to show the enrichment

Description

Annotation function to show the enrichment

parency.

Usage

```
anno_enriched(gp = gpar(col = "red"), pos_line = TRUE, pos_line_gp = gpar(lty = 2),
    yaxis = TRUE, ylim = NULL, value = c("mean", "sum", "abs_mean", "abs_sum"),
    yaxis_side = "right", yaxis_facing = ifelse(yaxis_side == "right", "right", "left"),
    yaxis_gp = gpar(fontsize = 8), show_error = FALSE)
```

Arguments

gp	graphic parameters. There are two non-standard parameters: neg_col and pos_col. If these two parameters are defined, the positive signals and negatie signals are visualized separatedly. The graphic parameters can be set as vectors when the heatmap or heatmap list is split into several row clusters.
pos_line	whether to draw vertical lines which represent positions of target
pos_line_gp	graphic parameters for the position lines
yaxis	whether show yaxis
ylim	ranges on y-axis, by default it is inferred from the data
value	the method to summarize signals from columns of the noramlized matrix
yaxis_side	side of y-axis
yaxis_facing	facing of the axis ticks and labels. It can be set to avoid overlapping text when multiple heatmaps are plotted together
yaxis_gp	graphic parameters for y-axis
show_error	whether show error regions which are one standard error to the mean value. Color of error area is same as the corresponding lines with 75 percent trans-

4 copyAttr

Details

This annotation functions shows mean values (or depends on the method set in value argument) of columns in the normalized matrix which summarises the enrichment of the signals to the targets.

If rows are splitted, the enriched lines are calculated for each row cluster and there will also be multiple lines in this annotation viewport.

It should only be placed as column annotation of the enriched heatmap.

Value

A column annotation function which can be set to top_annotation argument in EnrichedHeatmap.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

Examples

copyAttr

Copy attributes to another object

Description

Copy attributes to another object

Usage

```
copyAttr(x, y)
```

Arguments

```
x object 1
y object 2
```

Details

The normalizeToMatrix object is actually a matrix but with more additional attributes attached. When manipulating such matrix, there are some circumstances that the attributes are lost. This function is used to copy these specific attributes when dealing with the matrix.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

default_smooth_fun 5

Examples

default_smooth_fun

Default smoothing function

Description

Default smoothing function

Usage

```
default_smooth_fun(x)
```

Arguments

Х

input numeric vector

Details

The smoothing function is applied to every row in the normalized matrix. For this default smoothing function, locfit is first tried on the vector. If there is error, loess smoothing is tried afterwards. If both smoothing are failed, there will be an error.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

```
# There is no example
```

6 discretize

discretize

Discretize a continuous matrix to a discrete matrix

Description

Discretize a continuous matrix to a discrete matrix

Usage

```
discretize(mat, rule, right_closed = FALSE)
```

Arguments

mat a normalize matrix from normalizeToMatrix.

rule a list of intervals which provide mapping between continuous values to discrete

values. Note the order of intervals determines the order of corresponding dis-

crete levels.

right_closed is the interval right closed?

Details

Assuming we have a normalized matrix with both positive values and negative values, we only want to see the enrichment of the windows/regions showing significant positive values and negative values and we are only interested in the direction of the values while not the value itself, then we can define the rule as:

```
rule = list(
    "positive" = c(0.5, Inf),
    "negative" = c(-Inf, -0.5)
)
```

And we can convert the continuous matrix to a discrete matrix and visualize it:

```
mat2 = discretize(mat, rule)
EnrichedHeatmap(mat2, col = c("positive" = "red", "negative" = "green"))
```

Another example is to discretize the signals to discrete levels according to the intensities:

```
rule = list(
    "very_high" = c(100, Inf),
    "high" = c(50, 100),
    "intermediate" = c(25, 50),
    "low" = c(1e-6, 25)
)
```

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
# There is no example NULL
```

dist_by_closeness 7

dist_by_closeness

Distance by closeness

Description

Distance by closeness

Usage

```
dist_by_closeness(mat)
```

Arguments

mat

a numeric matrix where the distance is calculated by rows

Details

For two rows in the matrix, assume $x_1, x_2, ..., x_n1$ are the column index of none-zero values in row 1 and $y_1, y_2, ..., y_n2$ are the column index for non-zero values in row 2, the distance between the two rows based on the closeness is calculated as:

```
d_{closeness} = sum_{i} sum_{j}(|x_{i} - y_{j}|) / (n_{1}*n_{2})
```

Value

A dist object

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
x1 = c(0, 0, 0, 0, 1, 1, 1, 0, 0, 0)

x2 = c(0, 0, 0, 1, 1, 1, 0, 0, 0, 0)

x3 = c(1, 0, 0, 0, 1, 1, 0, 0, 0, 0)

m = rbind(x1, x2, x3)

dist(m)

dist_by_closeness(m)
```

draw-dispatch

Method dispatch page for draw

Description

Method dispatch page for draw.

Dispatch

draw can be dispatched on following classes:

- $\bullet \ \mathsf{draw}, \mathsf{EnrichedHeatmapList-method}, \mathsf{EnrichedHeatmapList-class} \ \mathbf{class} \ \mathbf{method}$
- draw, EnrichedHeatmap-method, EnrichedHeatmap-class class method

Examples

```
# no example
NULL
```

draw-EnrichedHeatmap-method

Draw a single heatmap

Description

Draw a single heatmap

Usage

```
## S4 method for signature 'EnrichedHeatmap'
draw(object, internal = FALSE, ...)
```

Arguments

 $object \hspace{1cm} an \hspace{0.1cm} \textit{EnrichedHeatmap-class} \hspace{0.1cm} object.$

internal only used internally.

... pass to draw, Heatmap List-method.

Details

The function creates an EnrichedHeatmapList-class object which only contains a single heatmap and call draw, EnrichedHeatmapList-method to make the final heatmap.

Value

An EnrichedHeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\begin{tabular}{ll} \# see documentation of EnrichedHeatmap \\ NULL \end{tabular}
```

 $\begin{tabular}{ll} draw-Enriched Heatmap List-method \\ Draw\ a\ list\ of\ heatmap s \\ \end{tabular}$

Description

Draw a list of heatmaps

Usage

```
## S4 method for signature 'EnrichedHeatmapList'
draw(object, padding = unit(c(2, 2, 2, 2), "mm"),
    newpage= TRUE, ...)
```

Arguments

object an EnrichedHeatmapList-class object

padding padding of the plot. The four values correspond to bottom, left, top, right

paddings.

newpage whether to create a new page

... pass to make_layout, HeatmapList-method or draw, HeatmapList-method

Details

It calls draw, HeatmapList-method to make the plot but with some adjustment specificly for enriched heatmaps.

Value

An EnrichedHeatmapList object

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\begin{tabular}{ll} \# see \ documentation \ of \ EnrichedHeatmap \\ NULL \end{tabular}
```

10 **EnrichedHeatmap**

EnrichedHeatmap	Constructor method for EnrichedHeatmap class

Description

Constructor method for EnrichedHeatmap class

Usage

```
EnrichedHeatmap(mat, col, top_annotation = HeatmapAnnotation(enriched = anno_enriched()),
    top_annotation_height = unit(2, "cm"),
   row_order = order(enriched_score(mat), decreasing = TRUE), pos_line = TRUE,
   pos_line_gp = gpar(lty = 2), axis_name = NULL, axis_name_rot = 0,
   axis_name_gp = gpar(fontsize = 10), border = TRUE, cluster_rows = FALSE,
   row_dend_reorder = -enriched_score(mat),
   show_row_dend = FALSE, show_row_names = FALSE,
   heatmap_legend_param = list(), ...)
```

Arguments

a matrix which is returned by normalizeToMatrix mat col

color settings. If the signals are categorical, color should be a vector with cate-

gory levels as names.

top_annotation a specific annotation which is always put on top of the enriched heatmap and is

constructed by anno_enriched

top_annotation_height

the height of the top annotation

row_order row order. Default rows are ordered by enriched scores calculated from enriched_score

pos_line whether draw vertical lines which represent the positions of target

graphic parameters for the position lines pos_line_gp

names for axis which is below the heatmap. If the targets are single points, axis_name

axis_name is a vector of length three which corresponds to upstream, target itself and downstream. If the targets are regions with width larger than 1, axis_name should be a vector of length four which corresponds to upstream,

start of targets, end of targets and downstream.

rotation for axis names axis_name_rot

graphic parameters for axis names axis_name_gp border whether show border of the heatmap clustering on rows are turned off by default cluster_rows

show_row_dend whether show dendrograms on rows if apply hierarchical clustering on rows

row_dend_reorder

weight for reordering the row dendrogram. It is reordered by enriched scores by

default.

show_row_names whether show row names

heatmap_legend_param

a list of settings for heatmap legends. at and labels can not be set here.

pass to Heatmap

Details

EnrichedHeatmap-class is inherited from Heatmap-class. Following parameters are set with pre-defined values:

```
cluster_columns enforced to be FALSE show_column_names enforced to be FALSE bottom_annotation enforced to be NULL column_title_side enforced to be top
```

A EnrichedHeatmap-class object is also a Heatmap-class object, thus, most of the arguments in Heatmap are usable in EnrichedHeatmap such as to apply clustering on rows, or to split rows by data frame or k-means clustering. Users can also add more than one heatmaps by + operator. For a detailed demonstration, please go to the vignette.

Value

An EnrichedHeatmap-class object which is inherited from Heatmap-class.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

EnrichedHeatmap-class Class for a single heatmap

Description

Class for a single heatmap

Details

The EnrichedHeatmap-class is inherited from Heatmap-class.

Methods

The EnrichedHeatmap-class provides following methods:

- EnrichedHeatmap: constructor method.
- draw, EnrichedHeatmap-method: draw a single heatmap.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

12 EnrichedHeatmapList

See Also

```
EnrichedHeatmapList-class
```

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

 ${\tt Enriched Heatmap List}$

Constructor method for EnrichedHeatmapList class

Description

Constructor method for EnrichedHeatmapList class

Usage

```
EnrichedHeatmapList(...)
```

Arguments

```
... arguments
```

Details

There is no public constructor method for the ${\sf EnrichedHeatmapList-class}$.

Value

No value is returned.

Author(s)

```
Zuguang Gu <z.gu@dkfz.de>
```

```
# no example
NULL
```

 ${\tt Enriched Heatmap List-class}$

Class for a list of heatmaps

Description

Class for a list of heatmaps

Details

 $The \ {\tt Enriched Heatmap List-class} \ is \ inherited \ from \ {\tt Heatmap List-class}.$

Methods

The EnrichedHeatmapList-class provides following methods:

• draw, EnrichedHeatmapList-method: draw a list of heatmaps.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example
```

enriched_score

Enriched scores

Description

Enriched scores

Usage

```
enriched_score(mat)
```

Arguments

mat

a normalized matrix from normalizeToMatrix

14 extract_anno_enriched

Details

The function calculates how the signal is enriched in the target by weighting the distance to the target.

For a numeric vector, assume the vector is denoted as combination of three sub-vectors c(x1, x2, x3) with length n1, n2 and n3, where x1 are data points in upstream windows, x2 are data points in target windows and x3 are data points in downstream windows, the enriched score is calcualted as

```
sum(x_1i*i/n1) + sum(x_3j*(n3-j+1)/n3) + sum(x_2k*abs(n2/2-abs(k-n2/2)))
```

where the first two terms are the distance to the start or end position of the target by weighting the distance to the position that if it is closer to the start or end position of the target, it has higher weight. The second term weight the distance to the center point of the target and similar, if it is closer to the center position, it has higher weight.

Value

A numeric vector

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

This enriched_score is the default scoring function for score_fun argument in EnrichedHeatmap function. It is also an example function for implementing customized scoreing function. Basically, to be a score function which calculates enriched score, it should accept three arguments which are the values in upstream windows, the target windows and downstream windows The user-defined function should return a single value. Rows are sorted decreasingly by the enriched scores.

Examples

```
# There is no example NULL
```

extract_anno_enriched Extarct enrichment annotation graphic as a separate plot

Description

Extarct enrichment annotation graphic as a separate plot

Usage

```
extract_anno_enriched(ht_list, which = NULL, newpage = TRUE)
```

Arguments

ht_list	the heatmap 1	list returned by	draw, EnrichedHeatma	pList-method
---------	---------------	------------------	----------------------	--------------

which the index of enriched heamtap in the heatmap list. The value can be an integer

index or a character index (which are names of heatmaps)

newpage whether call grid. newpage to create a new page

getSignalsFromList 15

Details

The extracted plot is exactly the same as that on the heatmap.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
# There is no example NULL
```

 ${\tt getSignalsFromList}$

Get signals from a list

Description

Get signals from a list

Usage

```
getSignalsFromList(lt, fun = function(x) mean(x, na.rm = TRUE))
```

Arguments

1t

a list of normalized matrices which are returned by normalizeToMatrix. Matrices in the list should be generated with same settings (e.g. they should use same target regions, same extension to targets and same number of windows).

fun

a user-defined function to summarize signals.

Details

Let's assume you have a list of histone modification signals for different samples and you want to visualize the mean pattern across samples. You can first normalize histone mark signals for each sample and then calculate means values across all samples. In following example code, hm_gr_list is a list of GRanges objects which contain positions of histone modifications, tss is a GRanges object containing positions of gene TSS.

```
mat_list = NULL
for(i in seq_along(hm_gr_list)) {
   mat_list[[i]] = normalizeToMatrix(hm_gr_list[[i]], tss, value_column = "density")
}
```

If we compress the list of matrices as a three-dimension array where the first dimension corresponds to genes, the second dimension corresponds to windows and the third dimension corresponds to samples, the mean signal across all sample can be calculated on the third dimension. Here getSignalsFromList simplifies this job.

Applying getSignalsFromList() to mat_list, it gives a new normalized matrix which contains mean signals across all samples and can be directly used in EnrichedHeatmap().

16 makeWindows

```
mat_mean = getSignalsFromList(mat_list)
EnrichedHeatmap(mat_mean)
```

The correlation between histone modification and gene expression can also be calculated on the third dimension of the array. In the user-defined function fun, x is the vector for gene i and window j in the array, and i is the index of current gene.

```
mat_corr = getSignalsFromList(mat_list,
    fun = function(x, i) cor(x, expr[i, ], method = "spearman"))
```

Then mat_corr here can be used to visualize how gene expression is correlated to histone modification around TSS.

EnrichedHeatmap(mat_corr)

Value

A normalizeToMatrix object which can be directly used for EnrichedHeatmap.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

NULL

makeWindows

Split regions into windows

Description

Split regions into windows

Usage

Arguments

query	a GRanges-class object.
W	window size, a value larger than 1 means the number of base pairs and a value between 0 and 1 is the percent to the current region.
k	number of partitions for each region. If it is set, all other arguments are ignored.
direction	where to start the splitting. See 'Details' section.
short.keep	if the the region can not be split equally under the window size, the argument controls whether to keep the windows that are smaller than the window size. See 'Details' section.

normalizeToMatrix 17

Details

Following illustrates the meaning of direction and short.keep:

```
-->-->- one region, split by 3bp window (">" represents the direction of the sequence)

aaabbbccc direction = "normal", short.keep = FALSE

aaabbbcccd direction = "normal", short.keep = TRUE

aaabbbccc direction = "reverse", short.keep = FALSE

abbbcccddd direction = "reverse", short.keep = TRUE
```

Value

A GRanges-class object with two additional columns attached:

- .i_query which contains the correspondance between small windows and original regions in query
- .i_window which contains the index of the small window on the current region.

Author(s)

Zuguang gu <z.gu@dkfz.de>

Examples

```
query = GRanges(seqnames = "chr1", ranges = IRanges(start = c(1, 11, 21), end = c(10, 20, 30)))
makeWindows(query, w = 2)
makeWindows(query, w = 0.5)
makeWindows(query, w = 3, direction = "reverse")
makeWindows(query, w = 3, short.keep = TRUE)
makeWindows(query, w = 3, direction = "reverse", short.keep = TRUE)
makeWindows(query, w = 12)
makeWindows(query, w = 12, short.keep = TRUE)
makeWindows(query, k = 2)
makeWindows(query, k = 3)
query = GRanges(seqnames = "chr1", ranges = IRanges(start = c(1, 11, 31), end = c(10, 30, 70)))
makeWindows(query, w = 2)
makeWindows(query, w = 0.2)
```

normalizeToMatrix

Normalize associations between genomic signals and target regions into a matrix

Description

Normalize associations between genomic signals and target regions into a matrix

Usage

```
normalizeToMatrix(signal, target, extend = 5000, w = max(extend)/50,
  value_column = NULL, mapping_column = NULL, background = ifelse(smooth, NA, 0), empty_value = N
  mean_mode = c("absolute", "weighted", "w0", "coverage"), include_target = any(width(target)) > 1
  target_ratio = min(c(0.4, mean(width(target)))/(sum(extend) + mean(width(target))))),
  k = min(c(20, min(width(target)))), smooth = FALSE, smooth_fun = default_smooth_fun,
  keep = c(0, 1), trim = NULL)
```

18 normalizeToMatrix

Arguments

signal a GRanges-class object. target a GRanges-class object.

extend extended base pairs to the upstream and/or downstream of target. It can be a

vector of length one or two. Length one means same extension to the upstream

and downstream.

w window size for splitting upstream and downstream, measured in base pairs

value_column index in signal that is mapped to colors. If it is not set, it assumes

values for all signal regions are 1.

mapping_column mapping column to restrict overlapping between signal and target. By default

it tries to look for all regions in signal that overlap with every target.

background values for windows that don't overlap with signal.

empty_value deprecated, please use background instead.

mean_mode when a window is not perfectly overlapped to signal, how to summarize values

to the window. See 'Details' section for a detailed explanation.

include_target whether include target in the heatmap. If the width of all regions in target is

1, include_target is enforced to FALSE.

target_ratio the ratio of target columns in the normalized matrix. If the value is 1, extend

will be reset to 0.

k number of windows only when target_ratio = 1 or extend == 0, otherwise

ignored.

smooth whether apply smoothing on rows in the matrix.

smooth_fun the smoothing function that is applied to each row in the matrix. This self-

defined function accepts a numeric vector (may contain NA values) and returns a vector with same length. If the smoothing is failed, the function should call stop to throw errors so that normalizeToMatrix can catch how many rows are

failed in smoothing. See the default default_smooth_fun for example.

keep percentiles in the normalized matrix to keep. The value is a vector of two per-

cent values. Values less than the first percentile is replaces with the first pencentile and values larger than the second percentile is replaced with the second

percentile.

trim deprecated, please use keep instead.

Details

In order to visualize associations between signal and target, the data is transformed into a matrix and visualized as a heatmap by EnrichedHeatmap afterwards.

Upstream and downstream also with the target body are splitted into a list of small windows and overlap to signal. Since regions in signal and small windows do not always 100 percent overlap, there are four different averaging modes:

Following illustrates different settings for mean_mode (note there is one signal region overlapping with other signals):

40 50 20 values in signal regions
++++++ +++ ++++ signal regions
30 values in signal region
++++++ signal region

print.normalizedMatrix

Value

A matrix with following additional attributes:

```
upstream_index column index corresponding to upstream of target
target_index column index corresponding to target
downstream_index column index corresponding to downstream of target
extend extension on upstream and downstream
smooth whether smoothing was applied on the matrix
failed_rows index of rows which are failed after smoothing
```

The matrix is wrapped into a simple normalizeToMatrix class.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
print.normalizedMatrix
```

Print normalized matrix

Description

Print normalized matrix

Usage

```
## S3 method for class 'normalizedMatrix'
print(x, ...)
```

20 rbind.normalizedMatrix

Arguments

x the normalized matrix returned by normalizeToMatrix... other arguments

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

rbind.normalizedMatrix

Bind matrix by rows

Description

Bind matrix by rows

Usage

```
## S3 method for class 'normalizedMatrix'
rbind(..., deparse.level = 1)
```

Arguments

```
... matrices
deparse.level -deparse.level
```

Value

 $A \ {\tt normalizedMatrix} \ class \ object.$

Author(s)

z.gu@dkfz.de

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

show-dispatch 21

show-dispatch

Method dispatch page for show

Description

Method dispatch page for show.

Dispatch

show can be dispatched on following classes:

- show, EnrichedHeatmapList-method, EnrichedHeatmapList-class class method
- show, EnrichedHeatmap-method, EnrichedHeatmap-class class method

Examples

```
# no example
NULL
```

show-EnrichedHeatmap-method

Draw the single heatmap with default parameters

Description

Draw the single heatmap with default parameters

Usage

```
## S4 method for signature 'EnrichedHeatmap'
show(object)
```

Arguments

object

an EnrichedHeatmap-class object.

Details

Actually it calls draw, EnrichedHeatmap-method, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to draw, EnrichedHeatmap-method.

Value

An EnrichedHeatmapList-class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

22 [.normalizedMatrix

Examples

```
\label{eq:continuous_problem} \mbox{$\#$ see documentation of EnrichedHeatmap} \\ \mbox{$NULL$}
```

```
\verb|show-EnrichedHeatmapList-method|\\
```

Draw a list of heatmaps with default parameters

Description

Draw a list of heatmaps with default parameters

Usage

```
## S4 method for signature 'EnrichedHeatmapList'
show(object)
```

Arguments

object

an EnrichedHeatmapList-class object.

Details

Actually it calls draw, EnrichedHeatmapList-method, but only with default parameters. If users want to customize the heatmap, they can pass parameters directly to draw, EnrichedHeatmapList-method.

Value

An EnrichedHeatmapList-class object.

Examples

```
\label{eq:continuous} \mbox{\# see documentation of EnrichedHeatmap} \\ \mbox{NULL}
```

[.normalizedMatrix

Subset normalized matrix by rows

Description

Subset normalized matrix by rows

Usage

```
## S3 method for class 'normalizedMatrix'
x[i, j, drop = FALSE]
```

[.normalizedMatrix 23

Arguments

x 1	the normalized	l matrix returned	by n	normal:	izeToMatrix
-----	----------------	-------------------	------	---------	-------------

i row index

j column index

drop whether drop the dimension

Value

A normalizedMatrix class object.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

```
\label{eq:continuous_problem} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\mbox{\sc H}}}} \mbox{\ensuremath{\mbox{\sc H}}} \mbox{\ensuremath{\mbox{\sc
```

Index

```
+.AdditiveUnit, 2
                                                 rbind.normalizedMatrix, 20
[.normalizedMatrix, 22
                                                 show (show-dispatch), 21
anno_enriched, 3, 10
                                                 show,EnrichedHeatmap-method
                                                          (show-EnrichedHeatmap-method),
copyAttr, 4
                                                 show, EnrichedHeatmapList-method
default_smooth_fun, 5, 18
                                                          (show-EnrichedHeatmapList-method),
discretize, 6
dist, 7
                                                 show-dispatch, 21
dist_by_closeness, 7
                                                 show-EnrichedHeatmap-method, 21
draw, 8, 9
                                                 show-EnrichedHeatmapList-method, 22
draw(draw-dispatch), 7
                                                 stop, 18
draw, EnrichedHeatmap-method
        (draw-EnrichedHeatmap-method),
draw, EnrichedHeatmapList-method
        (draw-EnrichedHeatmapList-method),
{\it draw-dispatch}, {\it 7}
draw-EnrichedHeatmap-method, 8
draw-EnrichedHeatmapList-method, 9
enriched_score, 10, 13, 14
EnrichedHeatmap, 4, 10, 11, 14, 16, 18
EnrichedHeatmap-class, 11
EnrichedHeatmapList, 9, 12
EnrichedHeatmapList-class, 13
extract_anno_enriched, 14
getSignalsFromList, 15, 15
grid.newpage, 14
Heatmap, 10, 11
locfit, 5
loess, 5
make_layout, 9
makeWindows, 16
normalizeToMatrix, 4, 6, 10, 13, 15, 16, 17,
        18, 20, 23
print.normalizedMatrix, 19
```