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Introduction

miRNAs are small RNA fragments (18-23 nt long) that influence gene expression during
development and cell stability. Morin et al [1], discovered isomiRs first time after sequencing
human stem cells.
IsomiRs are miRNAs that vary slightly in sequence, which result from variations in the cleav-
age site during miRNA biogenesis (5’-trimming and 3’-trimming variants), nucleotide addi-
tions to the 3’-end of the mature miRNA (3’-addition variants) and nucleotide modifications
(substitution variants)[2].
There are many tools designed for isomiR detection, however the majority are web application
where user can not control the analysis. The two main command tools for isomiRs mapping
are SeqBuster and sRNAbench[3]. isomiRs package is designed to analyze the output of
SeqBuster tool or any other tool after converting to the desire format.

1 Citing isomiRs

If you use the package, please cite this paper [4].

2 Input format

The input should be the output of SeqBuster-miraligner tool (*.mirna files). It is compatible
with mirTOP tool as well, which parses BAM files with alignments against miRNA precursors.
For each sample the file should have the following format:
seq name freq mir start end mism add t5 t3

TGTAAACATCCTACACTCAGCT seq_100014_x23 23 hsa-miR-30b-5p 17 40 0 0 0 GT

TGTAAACATCCCTGACTGGAA seq_100019_x4 4 hsa-miR-30d-5p 6 26 13TC 0 0 g

TGTAAACATCCCTGACTGGAA seq_100019_x4 4 hsa-miR-30e-5p 17 37 12CT 0 0 g

CAAATTCGTATCTAGGGGATT seq_100049_x1 1 hsa-miR-10a-3p 63 81 0 TT 0 ata

TGACCTAGGAATTGACAGCCAGT seq_100060_x1 1 hsa-miR-192-5p 25 47 8GT 0 c agt

This is the standard output of SeqBuster-miraligner tool, but can be converted from any other
tool having the mapping information on the precursors. Read more on miraligner manual

3 IsomirDataSeq class

This object will store all raw data from the input files and some processed information used
for visualization and statistical analysis. It is a subclass of SummarizedExperiment with col

Data and counts methods. Beside that, the object contains raw and normalized counts from
miraligner allowing to update the summarization of miRNA expression.
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3.1 Access data

The user can access the normalized count matrix with counts(object, norm=TRUE).
You can browse for the same miRNA or isomiRs in all samples with isoSelect method.
library(isomiRs)

data(mirData)

head(isoSelect(mirData, mirna="hsa-let-7a-5p", 1000))

## DataFrame with 6 rows and 15 columns

## id pc1 pc2

## <character> <numeric> <numeric>

## 1 hsa-let-7a-5p 0 0 0 0 : TGAGGTAGTAGGTTGTATAGTT 382703 259187

## 2 hsa-let-7a-5p 0 0 0 T : TGAGGTAGTAGGTTGTATAGTTT 14582 9490

## 3 hsa-let-7a-5p 0 0 0 gtt : TGAGGTAGTAGGTTGTATA 1355 1036

## 4 hsa-let-7a-5p 0 0 0 t : TGAGGTAGTAGGTTGTATAGT 76284 65140

## 5 hsa-let-7a-5p 0 0 0 tt : TGAGGTAGTAGGTTGTATAG 7582 5884

## 6 hsa-let-7a-5p 0 A 0 0 : TGAGGTAGTAGGTTGTATAGTTA 15438 7826

## pc3 pc4 pc5 pc6 pc7 pt1 pt2

## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

## 1 279317 353169 337896 157358 247664 111195 239647

## 2 10487 13063 12455 5908 9233 4481 8640

## 3 1097 1482 1297 673 1022 370 986

## 4 62420 91323 89100 39450 63273 25631 57218

## 5 6201 9535 8264 3808 5963 2745 5242

## 6 10425 12032 10865 5021 8075 3677 7523

## pt3 pt4 pt5 pt6 pt7

## <numeric> <numeric> <numeric> <numeric> <numeric>

## 1 363483 321629 110483 222561 391118

## 2 14828 12396 4467 8337 15646

## 3 1173 853 448 917 1305

## 4 90108 60010 27788 50366 79196

## 5 8086 5455 2899 5300 7485

## 6 13486 13765 3728 7498 15605

metadata(mirData) contains two lists: rawList is a list with same length than number of
samples and stores the input files for each sample; isoList is a list with same length than
number of samples and stores information for each isomiR type summarizing the different
changes for the different isomiRs (trimming at 3’, trimming a 5’, addition and substitution).
For instance, you can get the data stored in isoList for sample 1 and 5’ changes with this
code metadata(ids)[["isoList"]][[1]]["t5sum"].

3.2 isomiRs annotation

IsomiR names follows this structure:
• miRNA name
• type: ref if the sequence is the same than the miRNA reference. ‘iso‘ if the sequence

has variations.
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• t5 tag: indicates variations at 5’ position. The naming contains two words: ‘direction
- nucleotides‘, where direction can be UPPER CASE NT (changes upstream of the
5’ reference position) or LOWER CASE NT (changes downstream of the 5’ reference
position). ‘0‘ indicates no variation, meaning the 5’ position is the same than the
reference. After ‘direction‘, it follows the nucleotide/s that are added (for upstream
changes) or deleted (for downstream changes).

• t3 tag: indicates variations at 3’ position. The naming contains two words: ‘direction
- nucleotides‘, where direction can be LOWER CASE NT (upstream of the 3’ reference
position) or UPPER CASE NT (downstream of the 3’ reference position). ‘0‘ indicates
no variation, meaning the 3’ position is the same than the reference. After ‘direction‘,
it follows the nucleotide/s that are added (for downstream changes) or deleted (for
upstream chanes).

• ad tag: indicates nucleotides additions at 3’ position. The naming contains two words:
‘direction - nucleotides‘, where direction is UPPER CASE NT (upstream of the 5’
reference position). ‘0‘ indicates no variation, meaning the 3’ position has no additions.
After ‘direction‘, it follows the nucleotide/s that are added.

• mm tag: indicates nucleotides substitutions along the sequences. The naming contains
three words: ‘position-nucleotideATsequence-nucleotideATreference‘.

• seed tag: same than ‘mm‘ tag, but only if the change happens between nucleotide 2
and 8.

In general nucleotides in UPPER case mean insertions respect to the reference sequence, and
nucleotides in LOWER case mean deletions respect to the reference sequence.

4 Quick start

We are going to use a small RNAseq data from human brain samples [5] to give some basic
examples of isomiRs analyses.
In this data set we will find two groups:

• pc: 7 control individuals
• pt: 7 patients with Parkinson’s Disease in early stage.

library(isomiRs)

data(mirData)

4.1 Reading input

The function IsomirDataSeqFromFiles needs a vector with the paths for each file and a data
frame with the design experiment similar to the one used for a mRNA differential expression
analysis. Row names of the data frame should be the names for each sample in the same
order than the list of files.
ids <- IsomirDataSeqFromFiles(fn_list, design=de)
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4.2 Descriptive analysis

You can plot isomiRs expression with isoPlot. In this figure you will see how abundant is
each type of isomiRs at different positions considering the total abundance and the total
number of sequences. The type parameter controls what type of isomiRs to show. It can be
trimming (iso5 and iso3), addition (add) or substitution (subs) changes.
ids <- isoCounts(mirData)

isoPlot(ids, type="iso5", column = "group")
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4.3 Count data

isoCounts gets the count matrix that can be used for many different downstream analyses
changing the way isomiRs are collapsed. The following command will merge all isomiRs into
one feature: the reference miRNA.
head(counts(ids))

## pc2 pt2 pt7 pc1 pt6 pc3 pt3 pt5

## hsa-let-7a-2-3p 11 7 10 13 4 13 9 3

## hsa-let-7a-3p 928 745 1159 1293 613 973 1361 433

## hsa-let-7a-5p 355578 324134 517950 507046 299028 375836 500423 152191

## hsa-let-7b-3p 1971 1410 1595 1646 1055 1267 1997 566

## hsa-let-7b-5p 77274 65928 92828 114643 53345 78586 96965 28974

## hsa-let-7c-3p 26 20 76 68 49 53 39 21

## pt4 pc5 pc4 pc7 pc6 pt1

## hsa-let-7a-2-3p 0 14 20 6 10 2

## hsa-let-7a-3p 978 1614 1050 1219 637 542

## hsa-let-7a-5p 419754 468792 489195 340782 215635 150421

## hsa-let-7b-3p 1148 2852 1986 1724 875 760

## hsa-let-7b-5p 71768 93764 97902 68304 43050 29572

## hsa-let-7c-3p 52 45 54 56 27 22
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The normalization uses rlog from DESeq2 package and allows quick integration to another
analyses like heatmap, clustering or PCA.
library(pheatmap)

ids = isoNorm(ids, formula = ~ group)

pheatmap(counts(ids, norm=TRUE)[1:100,],

annotation_col = data.frame(colData(ids)[,1,drop=FALSE]),

show_rownames = FALSE, scale="row")
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4.4 Differential expression analysis

The isoDE uses functions from DESeq2 package. This function has parameters to create
a matrix using only the reference miRNAs, all isomiRs, or some of them. This matrix and
the design matrix are the inputs for DESeq2. The output will be a DESeqDataSet object,
allowing to generate any plot or table explained in DESeq2 package vignette.
dds <- isoDE(ids, formula=~group)

library(DESeq2)

plotMA(dds)
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head(results(dds, format="DataFrame"))

## log2 fold change (MLE): group preclinic vs Controlpreclinic

## Wald test p-value: group preclinic vs Controlpreclinic

## DataFrame with 6 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## hsa-let-7a-2-3p 8.282474e+00 -1.034311579 0.5180708 -1.99646767 0.04588304

## hsa-let-7a-3p 9.346179e+02 -0.164169458 0.2420068 -0.67836707 0.49753898

## hsa-let-7a-5p 3.467309e+05 -0.002840299 0.2177472 -0.01304402 0.98959267

## hsa-let-7b-3p 1.475014e+03 -0.316417693 0.3152244 -1.00378553 0.31548200

## hsa-let-7b-5p 6.872642e+04 -0.143770326 0.2306833 -0.62323671 0.53312898

## hsa-let-7c-3p 3.978041e+01 0.048300096 0.2145063 0.22516869 0.82184805

## padj

## <numeric>

## hsa-let-7a-2-3p 0.9852389

## hsa-let-7a-3p 0.9852389

## hsa-let-7a-5p 0.9971689

## hsa-let-7b-3p 0.9852389

## hsa-let-7b-5p 0.9852389

## hsa-let-7c-3p 0.9852389

You can differentiate between reference sequences and isomiRs at 5’ end with this command:
dds = isoDE(ids, formula=~group, ref=TRUE, iso5=TRUE)

head(results(dds, tidy=TRUE))

## row baseMean log2FoldChange lfcSE stat

## 1 hsa-let-7a-2-3p.iso.t5:0 3.3721956 -1.8884006 0.7912017 -2.3867498

## 2 hsa-let-7a-2-3p.iso.t5:A 0.1684532 -1.0125876 3.0746413 -0.3293352

## 3 hsa-let-7a-2-3p.ref.t5:0 4.6743318 -0.4022899 0.6242767 -0.6444096

## 4 hsa-let-7a-3p.iso.t5:0 633.9291305 -0.1123118 0.2165499 -0.5186417

## 5 hsa-let-7a-3p.iso.t5:A 1.8192053 1.1303400 0.9964880 1.1343238

## 6 hsa-let-7a-3p.iso.t5:TAA 0.2865428 -1.0504155 3.0735687 -0.3417576

## pvalue padj

## 1 0.01699806 0.9835941

## 2 0.74190234 0.9835941
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## 3 0.51930985 0.9835941

## 4 0.60401061 0.9835941

## 5 0.25665876 0.9835941

## 6 0.73253331 0.9835941

Alternative, for more complicated cases or if you want to control more the differential expres-
sion analysis paramters you can use directly DESeq2 package feeding it with the output of
counts(ids) and colData(ids) like this:
dds = DESeqDataSetFromMatrix(counts(ids),

colData(ids), design = ~ group)

4.5 Supervised classification

Partial Least Squares Discriminant Analysis (PLS-DA) is a technique specifically appropriate
for analysis of high dimensionality data sets and multicollineality [6]. PLS-DA is a supervised
method (i.e. makes use of class labels) with the aim to provide a dimension reduction
strategy in a situation where we want to relate a binary response variable (in our case young
or old status) to a set of predictor variables. Dimensionality reduction procedure is based on
orthogonal transformations of the original variables (isomiRs) into a set of linearly uncorrelated
latent variables (usually termed as components) such that maximizes the separation between
the different classes in the first few components [7]. We used sum of squares captured
by the model (R2) as a goodness of fit measure. We implemented this method using the
DiscriMiner into isoPLSDA function. The output p-value of this function will tell about
the statistical significant of the group separation using miRNA expression data. Moreover,
the function isoPLSDAplot helps to visualize the results. It will plot the samples using the
significant components (t1, t2, t3 ...) from the PLS-DA analysis and the samples distribution
along the components.
ids = isoCounts(ids, iso5=TRUE, minc=10, mins=6)

ids = isoNorm(ids, formula = ~ group)

pls.ids = isoPLSDA(ids, "group", nperm = 2)

df = isoPLSDAplot(pls.ids)

The analysis can be done again using only the most important discriminant isomiRS from
the PLS-DA models based on the analysis. We used Variable Importance for the Projection
(VIP) criterion to select the most important features, since takes into account the contribution
of a specific predictor for both the explained variability on the response and the explained
variability on the predictors.
pls.ids = isoPLSDA(ids,"group", refinment = FALSE, vip = 0.8)
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Session info

Here is the output of sessionInfo on the system on which this document was compiled:
• R version 3.4.2 (2017-09-28), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 16.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, DESeq2 1.18.0,

DelayedArray 0.4.0, DiscriMiner 0.1-29, GenomeInfoDb 1.14.0,
GenomicRanges 1.30.0, IRanges 2.12.0, RcppEigen 0.3.3.3.0, S4Vectors 0.16.0,
SummarizedExperiment 1.8.0, TMB 1.7.11, bindrcpp 0.2, isomiRs 1.6.0, knitr 1.17,
matrixStats 0.52.2, pheatmap 1.0.8

• Loaded via a namespace (and not attached): AnnotationDbi 1.40.0,
BiocParallel 1.12.0, BiocStyle 2.6.0, DBI 0.7, Formula 1.2-2, GGally 1.3.2,
GenomeInfoDbData 0.99.1, Hmisc 4.0-3, KernSmooth 2.23-15, MASS 7.3-47,
Matrix 1.2-11, R6 2.2.2, RColorBrewer 1.1-2, RCurl 1.95-4.8, RSQLite 2.0,
Rcpp 0.12.13, XML 3.98-1.9, XVector 0.18.0, acepack 1.4.1, annotate 1.56.0,
assertthat 0.2.0, backports 1.1.1, base64enc 0.1-3, bindr 0.1, bit 1.1-12, bit64 0.9-7,
bitops 1.0-6, blob 1.1.0, caTools 1.17.1, checkmate 1.8.5, cluster 2.0.6,
colorspace 1.3-2, compiler 3.4.2, data.table 1.10.4-3, digest 0.6.12, dplyr 0.7.4,
evaluate 0.10.1, foreign 0.8-69, gamlss 5.0-4, gamlss.data 5.0-0, gamlss.dist 5.0-3,
gdata 2.18.0, genefilter 1.60.0, geneplotter 1.56.0, ggplot2 2.2.1, glue 1.2.0,
gplots 3.0.1, grid 3.4.2, gridExtra 2.3, gtable 0.2.0, gtools 3.5.0, highr 0.6, hms 0.3,
htmlTable 1.9, htmltools 0.3.6, htmlwidgets 0.9, labeling 0.3, lattice 0.20-35,
latticeExtra 0.6-28, lazyeval 0.2.1, lme4 1.1-14, locfit 1.5-9.1, magrittr 1.5,
memoise 1.1.0, minqa 1.2.4, munsell 0.4.3, nlme 3.1-131, nloptr 1.0.4, nnet 7.3-12,
pkgconfig 2.0.1, plyr 1.8.4, purrr 0.2.4, readr 1.1.1, reshape 0.8.7, rlang 0.1.2,
rmarkdown 1.6, rpart 4.1-11, rprojroot 1.2, scales 0.5.0, splines 3.4.2, stringi 1.1.5,
stringr 1.2.0, survival 2.41-3, tibble 1.3.4, tidyr 0.7.2, tidyselect 0.2.2, tools 3.4.2,
xtable 1.8-2, yaml 2.1.14, zlibbioc 1.24.0
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