
Package ‘OmicsMarkeR’
April 12, 2018

Title Classification and Feature Selection for 'Omics' Datasets

Description Tools for classification and feature selection for 'omics' level
datasets. It is a tool to provide multiple multivariate classification
and feature selection techniques complete with multiple stability metrics
and aggregation techniques. It is primarily designed for analysis of
metabolomics datasets but potentially extendable to proteomics and
transcriptomics applications.

Date 2017-01-05

Version 1.10.0

Author Charles E. Determan Jr. <cdetermanjr@gmail.com>

Maintainer Charles E. Determan Jr. <cdetermanjr@gmail.com>

VignetteBuilder knitr

Depends R (>= 3.2.0)

Imports graphics, stats, utils, plyr (>= 1.8), data.table (>= 1.9.4),
caret (>= 6.0-37), DiscriMiner (>= 0.1-29), e1071 (>= 1.6-1),
randomForest (>= 4.6-10), gbm (>= 2.1), pamr (>= 1.54.1),
glmnet (>= 1.9-5), caTools (>= 1.14), foreach (>= 1.4.1),
permute (>= 0.7-0), assertive (>= 0.3-0), assertive.base (>=
0.0-1)

Roxygen list(wrap = FALSE)

License GPL-3

LazyData true

URL http://github.com/cdeterman/OmicsMarkeR

BugReports http://github.com/cdeterman/OmicsMarkeR/issues/new

biocViews Metabolomics, Classification, FeatureExtraction

Repository Bioconductor

Suggests testthat, BiocStyle, knitr

RoxygenNote 5.0.1

NeedsCompilation no

1

http://github.com/cdeterman/OmicsMarkeR
http://github.com/cdeterman/OmicsMarkeR/issues/new

2 R topics documented:

R topics documented:
aggregation . 3
bagging.wrapper . 4
canberra . 5
canberra_stability . 6
CLA . 7
create.corr.matrix . 7
create.discr.matrix . 9
create.random.matrix . 10
denovo.grid . 12
EE . 13
EM . 13
ES . 14
extract.args . 15
extract.features . 15
feature.table . 16
fit.only.model . 17
fs.ensembl.stability . 18
fs.stability . 20
jaccard . 23
kuncheva . 24
modelList . 25
modelTuner . 26
modelTuner_loo . 27
noise.matrix . 28
ochiai . 28
optimize.model . 29
pairwise.model.stability . 30
pairwise.stability . 31
params . 32
perf.calc . 33
performance.metrics . 34
performance.stats . 35
perm.class . 35
perm.features . 37
pof . 38
predicting . 39
prediction.metrics . 40
predictNewClasses . 40
RPT . 42
sequester . 42
sorensen . 43
spearman . 44
svm.weights . 44
svmrfeFeatureRanking . 45
svmrfeFeatureRankingForMulticlass . 46
training . 47
tune.instructions . 48

Index 49

aggregation 3

aggregation Feature Aggregation

Description

Compiles matrix of ranked features via user defined ’metric’

Usage

aggregation(efs, metric, f = NULL)

Arguments

efs A matrix of selected features

metric string indicating the type of aggregation. Avialable options are "CLA" (Complete
Linear), "EM" (Ensemble Mean), "ES" (Ensemble Stability), and "EE" (Ensem-
ble Exponential)

f The number of features desired. Default f = NULL

Value

agg Aggregated list of features

Author(s)

Charles Determan Jr

References

Abeel T., Helleputte T., Van de Peer Y., Dupont P., Saeys Y. (2010) Robust biomarker identification
for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3) 392-398.

Meinshausen N., Buhlmann P. (2010) Stability selection. J.R. Statist. Soc. B. 72(4) 417-473.

Haury A., Gestraud P., Vert J. (2011) The Influence of Features Selection Methods on Accuracy, Sta-
bility, and Interpretability of Molecular Signatures. PLoS ONE 6(12) e28210. doi: 10.1371/jour-
nal.pone.0028210.

See Also

CLA, ES, EM, EE

Examples

test data
ranks <- replicate(5, sample(seq(50), 50))
row.names(ranks) <- paste0("V", seq(50))

aggregation(ranks, "CLA")

4 bagging.wrapper

bagging.wrapper Bagging Wrapper for Ensemble Features Selection

Description

Compiles results of ensemble feature selection

Usage

bagging.wrapper(X, Y, method, bags, f, aggregation.metric, k.folds, repeats,
res, tuning.grid, optimize, optimize.resample, metric, model.features,
allowParallel, verbose, theDots)

Arguments

X A matrix containing numeric values of each feature

Y A factor vector containing group membership of samples

method A vector listing models to be fit

bags Number of bags to be run

f Number of features desired
aggregation.metric

string indicating the type of ensemble aggregation. Avialable options are "CLA"
(Complete Linear), "EM" (Ensemble Mean), "ES" (Ensemble Stability), and
"EE" (Ensemble Exponential)

k.folds Number of folds generated during cross-validation

repeats Number of times cross-validation repeated

res Optional - Resolution of model optimization grid

tuning.grid Optional list of grids containing parameters to optimize for each algorithm. De-
fault "tuning.grid = NULL" lets function create grid determined by "res"

optimize Logical argument determining if each model should be optimized. Default
"optimize = TRUE"

optimize.resample

Logical argument determining if each resample should be re-optimized. De-
fault "optimize.resample = FALSE" - Only one optimization run, subsequent
models use initially determined parameters

metric Criteria for model optimization. Available options are "Accuracy" (Predication
Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve -
Receiver Operator Curve)

model.features Logical argument if should have number of features selected to be determined
by the individual model runs. Default "model.features = FALSE"

allowParallel Logical argument dictating if parallel processing is allowed via foreach package.
Default allowParallel = FALSE

verbose Logical argument if should output progress

theDots Optional arguments provided for specific models or user defined parameters if
"optimize = FALSE".

canberra 5

Value

results List with the following elements:

• Methods: Vector of models fit to data

• ensemble.results: List of length = length(method) containing aggregated features

• Number.bags: Number of bagging iterations

• Agg.metric: Aggregation method applied

• Number.features: Number of user-defined features

bestTunes If "optimize.resample = TRUE" then returns list of best parameters for each
iteration

Author(s)

Charles Determan Jr

canberra Canberra Distance

Description

Calculates canberra distance between two vectors. In brief, the higher the canberra distance the
greater the ’distance’ between the two vectors (i.e. they are less similar).

Usage

canberra(x, y)

Arguments

x numeric vector of ranks

y numeric vector of ranks with compatible length to x

Value

Returns the canberra distance for the two vectors

Note

The canberra_stability function is used internally to return the canberra metric.

Author(s)

Charles E. Determan Jr.

References

Jurman G., Merler S., Barla A., Paoli S., Galea A., & Furlanello C. (2008) Algebraic stability
indicators for ranked lists in molecular profiling. Bioinformatics 24(2): 258-264.

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

6 canberra_stability

Examples

Canberra demo
v1 <- seq(10)
v2 <- sample(v1, 10)
canberra(v1, v2)

canberra_stability(v1, v2)

canberra_stability Canberra Stability

Description

Calculates canberra stability between two ranked lists. In brief, the raw canberra distance is scaled
to a [0,1] distribution by the maximum canberra metric. Lastly, this value is subtracted from 1
to provide the same interpretation as the other stability metrics whereby 1 is identical and 0 is no
stability.

Usage

canberra_stability(x, y)

Arguments

x numeric vector of ranks

y numeric vector of ranks with compatible length to x

Value

Returns the canberra stability for the two vectors

Author(s)

Charles E. Determan Jr.

References

Jurman G., Merler S., Barla A., Paoli S., Galea A., & Furlanello C. (2008) Algebraic stability
indicators for ranked lists in molecular profiling. Bioinformatics 24(2): 258-264.

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

Examples

Canberra demo
v1 <- seq(10)
v2 <- sample(v1, 10)
canberra(v1, v2)

canberra_stability(v1, v2)

CLA 7

CLA Complete Linear Aggregation

Description

Compiles matrix of ranked features via complete linear aggregation

Usage

CLA(efs, f)

Arguments

efs A matrix of selected features

f The number of features desired. If rank correlation desired, f = NULL

Value

agg Aggregated list of features

Author(s)

Charles Determan Jr

References

Abeel T., Helleputte T., Van de Peer Y., Dupont P., Saeys Y. (2010) Robust biomarker identification
for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26:3 392-398.

See Also

ES, EM, EE

create.corr.matrix Correlated Multivariate Data Generator

Description

Generates a matrix of dimensions dim(U) with induced correlations. Blocks of variables are ran-
domly assigned and correlations are induced. A noise matrix is applied to the final matrix to perturb
’perfect’ correlations.

Usage

create.corr.matrix(U, k = 4, min.block.size = 2, max.block.size = 5)

8 create.corr.matrix

Arguments

U Numeric matrix

k Correlation Perturbation - The higher k, the more the data is perturbed. Default
k = 4

min.block.size minimum number of variables to correlate Default min.block.size = 2

max.block.size maximum number of variables to correlate Default max.block.size = 5

Value

A numberic matrix of dimension dim(U) with correlations induced between variables

Note

Output does not contain classes, may provide externally as classes are irrelevant in this function.

Author(s)

Charles E. Determan Jr.

References

Wongravee, K., Lloyd, G R., Hall, J., Holmboe, M. E., & Schaefer, M. L. (2009). Monte-Carlo
methods for determining optimal number of significant variables. Application to mouse urinary
profiles. Metabolomics, 5(4), 387-406. http://dx.doi.org/10.1007/s11306-009-0164-4

See Also

create.random.matrix, create.discr.matrix

Examples

Create Multivariate Matrices

Random Multivariate Matrix

50 variables, 100 samples, 1 standard devation, 0.2 noise factor

rand.mat <- create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)

Induce correlations in a numeric matrix

Default settings
minimum and maximum block sizes (min.block.size = 2, max.block.size = 5)
default correlation purturbation (k=4)
see ?create.corr.matrix for citation for methods

corr.mat <- create.corr.matrix(rand.mat)

Induce Discriminatory Variables

create.discr.matrix 9

10 discriminatory variables (D = 10)
default discrimination level (l = 1.5)
default number of groups (num.groups=2)
default correlation purturbation (k = 4)

dat.discr <- create.discr.matrix(corr.mat, D=10)

create.discr.matrix Discriminatory Multivariate Data Generator

Description

Generates a matrix of dimensions dim(U) with induced correlations. D variables are randomly se-
lected as discriminatory. If num.groups = 2 then discrimination is induced by adding and subtract-
ing values derived from the level of of discrimination, l, for the classes respectively. Multi-class
datasets have a few further levels of randomization. For each variable, a random number of the
groups are selected as discriminating while the remaining groups are not altered. For each discrim-
inatory group, a unique change is provided by randomly assigning addition or subtraction of the
discrimination factor. For example, if 3 groups are selected and two groups are assigned as addition
and the third subtraction, the second addition is multiplied by its number of replicates. E.g. (1,1,-1)
-> (1,2,-1). These values are randomized and then multiplied by the respective discrimination fac-
tor. The resulting values are then added/subtracted from the respective groups. A noise matrix is
applied to the final matrix to perturb ’perfect’ discrimination.

Usage

create.discr.matrix(V, D = 20, l = 1.5, num.groups = 2, k = 4)

Arguments

V Numeric matrix

D Number of discriminatory variables induced. Default D = 20

l Level of discrimination, higher = greater separation. Default l = 1.5

num.groups Number of groups in the dataset

k Correlation Perturbation - The higher k, the more the data is perturbed. Default
k = 4

Value

List of the following elements

discr.mat Matrix of dimension dim(V)+1 with discriminatory variables induced and the
.classes added to the end of the matrix.

features Vector of features that were induced to be discriminatory.

Author(s)

Charles E. Determan Jr.

10 create.random.matrix

References

Wongravee, K., Lloyd, G R., Hall, J., Holmboe, M. E., & Schaefer, M. L. (2009). Monte-Carlo
methods for determining optimal number of significant variables. Application to mouse urinary
profiles. Metabolomics, 5(4), 387-406. http://dx.doi.org/10.1007/s11306-009-0164-4

Examples

Create Multivariate Matrices

Random Multivariate Matrix

50 variables, 100 samples, 1 standard devation, 0.2 noise factor

rand.mat <- create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)

Induce correlations in a numeric matrix

Default settings
minimum and maximum block sizes (min.block.size = 2, max.block.size = 5)
default correlation purturbation (k=4)
see ?create.corr.matrix for citation for methods

corr.mat <- create.corr.matrix(rand.mat)

Induce Discriminatory Variables

10 discriminatory variables (D = 10)
default discrimination level (l = 1.5)
default number of groups (num.groups=2)
default correlation purturbation (k = 4)

dat.discr <- create.discr.matrix(corr.mat, D=10)

create.random.matrix Random Multivariate Data Generator

Description

Generates a matrix of dimensions nvar by nsamp consisting of random numbers generated from a
normal distriubtion. This normal distribution is then perturbed to more accurately reflect experi-
mentally acquired multivariate data.

Usage

create.random.matrix(nvar, nsamp, st.dev = 1, perturb = 0.2)

create.random.matrix 11

Arguments

nvar Number of features (i.e. variables)

nsamp Number of samples

st.dev The variation (i.e. standard deviation) that is typical in datasets of interest to the
user. Default spread = 1

perturb The amount of perturbation to the normal distribution. Default perturb = 0.2

Value

Matrix of dimension nvar by nsamp

Author(s)

Charles E. Determan Jr.

References

Wongravee, K., Lloyd, G R., Hall, J., Holmboe, M. E., & Schaefer, M. L. (2009). Monte-Carlo
methods for determining optimal number of significant variables. Application to mouse urinary
profiles. Metabolomics, 5(4), 387-406. http://dx.doi.org/10.1007/s11306-009-0164-4

See Also

create.corr.matrix, create.discr.matrix

Examples

Create Multivariate Matrices

Random Multivariate Matrix

50 variables, 100 samples, 1 standard devation, 0.2 noise factor

rand.mat <- create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)

Induce correlations in a numeric matrix

Default settings
minimum and maximum block sizes (min.block.size = 2, max.block.size = 5)
default correlation purturbation (k=4)
see ?create.corr.matrix for citation for methods

corr.mat <- create.corr.matrix(rand.mat)

Induce Discriminatory Variables

10 discriminatory variables (D = 10)
default discrimination level (l = 1.5)
default number of groups (num.groups=2)

12 denovo.grid

default correlation purturbation (k = 4)

dat.discr <- create.discr.matrix(corr.mat, D=10)

denovo.grid Denovo Grid Generation

Description

Greates grid for optimizing selected models

Usage

denovo.grid(data, method, res)

Arguments

data data of method to be tuned

method vector indicating the models to generate grids. Available options are "plsda"
(Partial Least Squares Discriminant Analysis), "rf" (Random Forest), "gbm"
(Gradient Boosting Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-
net Generalized Linear Model), and "pam" (Prediction Analysis of Microarrays)

res Resolution of model optimization grid.

Value

A list containing dataframes of all combinations of parameters for each model:

Author(s)

Charles Determan Jr

See Also

"expand.grid" for generating grids of specific parameters desired. However, NOTE that you must
still convert the generated grid to a list.

Examples

random test data
set.seed(123)
dat.discr <- create.discr.matrix(

create.corr.matrix(
create.random.matrix(nvar = 50,

nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

df <- data.frame(dat.discr$discr.mat, .classes = dat.discr$classes)

EE 13

create tuning grid
denovo.grid(df, "gbm", 3)

EE Ensemble Exponential Aggregation

Description

Compiles matrix of ranked features via ensemble exponential aggregation

Usage

EE(efs, f)

Arguments

efs A matrix of selected features

f The number of features desired. If rank correlation desired, f = NULL

Value

agg Aggregated list of features

Author(s)

Charles Determan Jr

References

Haury A., Gestraud P., Vert J. (2011) The Influence of Features Selection Methods on Accuracy, Sta-
bility, and Interpretability of Molecular Signatures. PLoS ONE 6(12) e28210. doi: 10.1371/jour-
nal.pone.0028210

See Also

CLA, ES, EM,

EM Ensemble Mean Aggregation

Description

Compiles matrix of ranked features via ensemble mean aggregation

Usage

EM(efs, f)

14 ES

Arguments

efs A matrix of selected features

f The number of features desired. If rank correlation desired, f = NULL

Value

agg Aggregated list of features

Author(s)

Charles Determan Jr

References

Abeel T., Helleputte T., Van de Peer Y., Dupont P., Saeys Y. (2010) Robust biomarker identification
for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26:3 392-398.

See Also

CLA, ES, EE

ES Ensemble Stability Aggregation

Description

Compiles matrix of ranked features via ensemble stability aggregation

Usage

ES(efs, f)

Arguments

efs A matrix of selected features

f The number of features desired. If rank correlation desired, f = NULL

Value

agg Aggregated list of features

Author(s)

Charles Determan Jr

References

Meinshausen N., Buhlmann P. (2010) Stability selection. J.R. Statist. Soc. B. 72:4 417-473.

See Also

CLA, EM, EE

extract.args 15

extract.args Argument extractor

Description

Extract arguments from previously fs.stability models

Usage

extract.args(fs.model, method)

Arguments

fs.model Previously fit fs.stability model
method Which model to extract from

Value

args List of model arguments

extract.features Feature Extraction

Description

Extracts features from models that have been previously fit.

Usage

extract.features(x, dat = NULL, grp = NULL, method,
model.features = FALSE, bestTune = NULL, f, comp.catch = NULL)

Arguments

x Previously fitted model
dat Numeric variable data used for fitted models (In appropriate format)
grp Vector of training classes
method String indicating the INDIVIDUAL model being extracted from
model.features Logical argument dictating if features selected determined by models instead of

user determined number of features.
bestTune If model.features = TRUE, must provide the parameter at which to extract

features from the model.
f Number of features to subset
comp.catch An internal check for plsda models. If the optimal model contains only 1 com-

ponent, the ncomp paramter must be set to 2 for the model. However, features
are still extracted only from the first component.

Value

Returns list of the features selected from the fitted model.

16 feature.table

feature.table Feature Consistency Table

Description

Extracts and sorts the features identified for a given method.

Usage

feature.table(features, method)

Arguments

features A fs.stability fitted object
method Algorithm of interest Available options are "plsda" (Partial Least Squares Dis-

criminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boosting Ma-
chine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Generalized
Linear Model), and "pam" (Prediction Analysis of Microarrays)

Value

A data frame containing:

features Features identified by model
consistency Number of iterations feature was identified
frequency Frequency of iterations the feature was identified

Author(s)

Charles Determan Jr

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')

feature.table(fits, "plsda")

fit.only.model 17

fit.only.model Fit Models without Feature Selection

Description

Applies models to high-dimensional data for classification.

Usage

fit.only.model(X, Y, method, p = 0.9, optimize = TRUE, tuning.grid = NULL,
k.folds = if (optimize) 10 else NULL, repeats = if (optimize) 3 else NULL,
resolution = if (optimize) 3 else NULL, metric = "Accuracy",
allowParallel = FALSE, verbose = "none", ...)

Arguments

X A scaled matrix or dataframe containing numeric values of each feature
Y A factor vector containing group membership of samples
method A vector listing models to be fit. Available options are "plsda" (Partial Least

Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boost-
ing Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Gener-
alized Linear Model), and "pam" (Prediction Analysis of Microarrays)

p Percent of data to by ’trained’
optimize Logical argument determining if each model should be optimized. Default

"optimize = TRUE"

tuning.grid Optional list of grids containing parameters to optimize for each algorithm. De-
fault "tuning.grid = NULL" lets function create grid determined by "res"

k.folds Number of folds generated during cross-validation. Default "k.folds = 10"

repeats Number of times cross-validation repeated. Default "repeats = 3"

resolution Resolution of model optimization grid. Default "resolution = 3"

metric Criteria for model optimization. Available options are "Accuracy" (Predication
Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve -
Receiver Operator Curve)

allowParallel Logical argument dictating if parallel processing is allowed via foreach package.
Default allowParallel = FALSE

verbose Logical argument if should output progress
... Extra arguments that the user would like to apply to the models

Value

Methods Vector of models fit to data
performance Performance metrics of each model and bootstrap iteration
specs List with the following elements:

• total.samples: Number of samples in original dataset
• number.features: Number of features in orginal dataset
• number.groups: Number of groups
• group.levels: The specific levels of the groups
• number.observations.group: Number of observations in each group

18 fs.ensembl.stability

Author(s)

Charles Determan Jr

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fit <- fit.only.model(X=vars,
Y=groups,
method="plsda",
p = 0.9)

fs.ensembl.stability Ensemble Classification & Feature Selection

Description

Applies ensembles of models to high-dimensional data to both classify and determine important
features for classification. The function bootstraps a user-specified number of times to facilitate
stability metrics of features selected thereby providing an important metric for biomarker investiga-
tions, namely whether the important variables can be identified if the models are refit on ’different’
data.

Usage

fs.ensembl.stability(X, Y, method, k = 10, p = 0.9,
f = ceiling(ncol(X)/10), bags = 40, aggregation.metric = "CLA",
stability.metric = "jaccard", optimize = TRUE,
optimize.resample = FALSE, tuning.grid = NULL, k.folds = if (optimize)
10 else NULL, repeats = if (k.folds == "LOO") NULL else if (optimize) 3 else
NULL, resolution = if (optimize) 3 else NULL, metric = "Accuracy",
model.features = FALSE, allowParallel = FALSE, verbose = "none", ...)

Arguments

X A matrix containing numeric values of each feature

Y A factor vector containing group membership of samples

method A vector listing models to be fit. Available options are "plsda" (Partial Least
Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boost-
ing Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Gener-
alized Linear Model), and "pam" (Prediction Analysis of Microarrays)

fs.ensembl.stability 19

k Number of bootstrapped interations

p Percent of data to by ’trained’

f Number of features desired. Default is top 10 "f = ceiling(ncol(variables)/10)".
If rank correlation is desired, set "f = NULL"

bags Number of iterations for ensemble bagging. Default "bags = 40"

aggregation.metric

String indicating which aggregation metric for features selected during bagging.
Avialable options are "CLA" (Complete Linear), "EM" (Ensemble Mean), "ES"
(Ensemble Stability), and "EE" (Ensemble Exponential)

stability.metric

string indicating the type of stability metric. Avialable options are "jaccard"
(Jaccard Index/Tanimoto Distance), "sorensen" (Dice-Sorensen’s Index), "ochiai"
(Ochiai’s Index), "pof" (Percent of Overlapping Features), "kuncheva" (Kuncheva’s
Stability Measures), "spearman" (Spearman Rank Correlation), and "canberra"
(Canberra Distance)

optimize Logical argument determining if each model should be optimized. Default
"optimize = TRUE"

optimize.resample

Logical argument determining if each resample should be re-optimized. De-
fault "optimize.resample = FALSE" - Only one optimization run, subsequent
models use initially determined parameters

tuning.grid Optional list of grids containing parameters to optimize for each algorithm. De-
fault "tuning.grid = NULL" lets function create grid determined by "res"

k.folds Number of folds generated during cross-validation. May optionally be set to
"LOO" for leave-one-out cross-validation. Default "k.folds = 10"

repeats Number of times cross-validation repeated. Default "repeats = 3"

resolution Optional - Resolution of model optimization grid. Default "res = 3"

metric Criteria for model optimization. Available options are "Accuracy" (Predication
Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve -
Receiver Operator Curve)

model.features Logical argument if should have number of features selected to be determined
by the individual model runs. Default "model.features = FALSE"

allowParallel Logical argument dictating if parallel processing is allowed via foreach package.
Default allowParallel = FALSE

verbose Character argument specifying how much output progress to print. Options are
’none’, ’minimal’ or ’full’.

... Extra arguments that the user would like to apply to the models

Value

Methods Vector of models fit to data

performance Performance metrics of each model and bootstrap iteration

RPT Robustness-Performance Trade-Off as defined in Saeys 2008

features List concerning features determined via each algorithms feature selection crite-
ria.

• metric: Stability metric applied

20 fs.stability

• features: Matrix of selected features

• stability: Matrix of pairwise comparions and average stability

stability.models

Function perturbation metric - i.e. how similar are the features selected by each
model.

all.tunes If "optimize.resample = TRUE" then returns list of optimized parameters for
each bagging and bootstrap interation.

final.best.tunes

If "optimize.resample = TRUE" then returns list of optimized parameters for
each bootstrap of the bagged models refit to aggregated selected features.

specs List with the following elements:

• total.samples: Number of samples in original dataset

• number.features: Number of features in orginal dataset

• number.groups: Number of groups

• group.levels: The specific levels of the groups

• number.observations.group: Number of observations in each group

Author(s)

Charles Determan Jr

References

Saeys Y., Abeel T., et. al. (2008) Machine Learning and Knowledge Discovery in Databases.
313-325. http://link.springer.com/chapter/10.1007/978-3-540-87481-2_21

Examples

Not run:
fits <- fs.ensembl.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')

End(Not run)

fs.stability Classification & Feature Selection

Description

Applies models to high-dimensional data to both classify and determine important features for
classification. The function bootstraps a user-specified number of times to facilitate stability metrics
of features selected thereby providing an important metric for biomarker investigations, namely
whether the important variables can be identified if the models are refit on ’different’ data.

fs.stability 21

Usage

fs.stability(X, Y, method, k = 10, p = 0.9, f = NULL,
stability.metric = "jaccard", optimize = TRUE,
optimize.resample = FALSE, tuning.grid = NULL, k.folds = if (optimize)
10 else NULL, repeats = if (k.folds == "LOO") NULL else if (optimize) 3 else
NULL, resolution = if (is.null(tuning.grid) && optimize) 3 else NULL,
metric = "Accuracy", model.features = FALSE, allowParallel = FALSE,
verbose = "none", ...)

Arguments

X A scaled matrix or dataframe containing numeric values of each feature

Y A factor vector containing group membership of samples

method A vector listing models to be fit. Available options are "plsda" (Partial Least
Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boost-
ing Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Gener-
alized Linear Model), and "pam" (Prediction Analysis of Microarrays)

k Number of bootstrapped interations

p Percent of data to by ’trained’

f Number of features desired. If rank correlation is desired, set "f = NULL"
stability.metric

string indicating the type of stability metric. Avialable options are "jaccard"
(Jaccard Index/Tanimoto Distance), "sorensen" (Dice-Sorensen’s Index), "ochiai"
(Ochiai’s Index), "pof" (Percent of Overlapping Features), "kuncheva" (Kuncheva’s
Stability Measures), "spearman" (Spearman Rank Correlation), and "canberra"
(Canberra Distance)

optimize Logical argument determining if each model should be optimized. Default
"optimize = TRUE"

optimize.resample

Logical argument determining if each resample should be re-optimized. De-
fault "optimize.resample = FALSE" - Only one optimization run, subsequent
models use initially determined parameters

tuning.grid Optional list of grids containing parameters to optimize for each algorithm. De-
fault "tuning.grid = NULL" lets function create grid determined by "res"

k.folds Number of folds generated during cross-validation. May optionally be set to
"LOO" for leave-one-out cross-validation. Default "k.folds = 10"

repeats Number of times cross-validation repeated. Default "repeats = 3"

resolution Resolution of model optimization grid. Default "resolution = 3"

metric Criteria for model optimization. Available options are "Accuracy" (Predication
Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve -
Receiver Operator Curve)

model.features Logical argument if should have number of features selected to be determined
by the individual model runs. Default "model.features = FALSE"

allowParallel Logical argument dictating if parallel processing is allowed via foreach package.
Default allowParallel = FALSE

verbose Character argument specifying how much output progress to print. Options are
’none’, ’minimal’ or ’full’.

... Extra arguments that the user would like to apply to the models

22 fs.stability

Value

Methods Vector of models fit to data

performance Performance metrics of each model and bootstrap iteration

RPT Robustness-Performance Trade-Off as defined in Saeys 2008

features List concerning features determined via each algorithms feature selection crite-
ria.

• metric: Stability metric applied

• features: Matrix of selected features

• stability: Matrix of pairwise comparions and average stability

stability.models

Function perturbation metric - i.e. how similar are the features selected by each
model.

original.best.tunes

If "optimize.resample = TRUE" then returns list of optimized parameters for
each bootstrap.

final.best.tunes

If "optimize.resample = TRUE" then returns list of optimized parameters for
each bootstrap of models refit to selected features.

specs List with the following elements:

• total.samples: Number of samples in original dataset

• number.features: Number of features in orginal dataset

• number.groups: Number of groups

• group.levels: The specific levels of the groups

• number.observations.group: Number of observations in each group

Author(s)

Charles Determan Jr

References

Saeys Y., Abeel T., et. al. (2008) Machine Learning and Knowledge Discovery in Databases.
313-325. http://link.springer.com/chapter/10.1007/978-3-540-87481-2_21

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

jaccard 23

fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')

jaccard Jaccard Index

Description

Calculates jaccard index between two vectors of features. In brief, the closer to 1 the more similar
the vectors. The two vectors may have an arbitrary cardinality (i.e. don’t need same length). Also
known as the Tanimoto distance metric. Defined as the size of the vectors’ intersection divided by
the size of the union of the vectors.

Usage

jaccard(x, y)

Arguments

x vector of feature names

y vector of feature names

Value

Returns the jaccard index for the two vectors. It takes values in [0,1], with 0 meaning no overlap
between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.

References

Jaccard P. (1908) Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat.
44: 223-270.

Real R. & Vargas J.M. (1996) The Probabilistic Basis of Jaccard’s Index of Similarity Systematic
Biology 45(3): 380-385.

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability

24 kuncheva

Examples

Jaccard demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
jaccard(v1, v2)

kuncheva Kuncheva’s Index

Description

Calculates Kuncheva’s index between two vectors of features. In brief, the closer to 1 the more
similar the vectors. The two vectors must have the same cardinality (i.e. same length).

Usage

kuncheva(x, y, num.features)

Arguments

x Character vector of feature names

y Character vector of feature names

num.features total number of features in the original dataset

Value

Returns the Kuncheva Index for the two vectors. It takes values in [0,1], with 0 meaning no overlap
between two sets and 1 meaning two sets are identical.

Note

The returned Kuncheva Index has been scaled from its original [-1,1] range to [0,1] in order to make
it compatible with RPT.

Author(s)

Charles E. Determan Jr.

References

Kuncheva L. (2007) A stability index for feature selection. Proceedings of the 25th IASTED Inter-
national Multi-Conference: Artificial Intelligence and Applications. pp. 390-395.

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability

modelList 25

Examples

Kuncheva demo
Assuming 50 metabolites were measured
But only 10 were found significant

For demonstration purposes only!!!
some.numbers <- seq(20)

Metabolites identified from one run
v1 <- paste("Metabolite", sample(some.numbers, 10), sep="_")
Metabolites identifed from second run
v2 <- paste("Metabolite", sample(some.numbers, 10), sep="_")
kuncheva(v1, v2, 50)

modelList Model List

Description

Provide a list of currently implemented methods for OmicsMarkeR.

Usage

modelList()

Value

A data.frame containing:

methods The abbreviated code for the method

description Full name of the method

Author(s)

Charles Determan Jr.

Examples

modelList()

26 modelTuner

modelTuner Model Tuner

Description

Optimizes each model based upon the parameters provided either by the internal denovo.grid
function or by the user.

Usage

modelTuner(trainData, guide, method, inTrain, outTrain, lev,
savePredictions = FALSE, allowParallel = FALSE, verbose = "none",
theDots = NULL)

Arguments

trainData Data used to fit the model

guide Output from tune.instructions. Facilitates the optimization by avoiding re-
dundant model fitting.

method Vector of strins listing models to be fit

inTrain Indicies for cross-validated training models

outTrain Indicies for cross-validated testing models

lev Group levels

savePredictions

Logical argument dictating if should save the prediction data. Default savePredictions = FALSE

allowParallel Logical argument dictating if parallel processing is allowed via foreach package

verbose Character argument specifying how much output progress to print. Options are
’none’, ’minimal’ or ’full’.

theDots List of additional arguments provided in the initial classification and features
selection function

Value

Returns list of fitted models

Author(s)

Charles E. Determan Jr.

modelTuner_loo 27

modelTuner_loo Model Tuner for Leave-One-Out Cross-Validation

Description

Optimizes each model via LOO CV based upon the parameters provided either by the internal
denovo.grid function or by the user.

Usage

modelTuner_loo(trainData, guide, method, inTrain, outTrain, lev,
savePredictions = FALSE, allowParallel = FALSE, verbose = "none",
theDots = NULL)

Arguments

trainData Data used to fit the model

guide Output from tune.instructions. Facilitates the optimization by avoiding re-
dundant model fitting.

method Vector of strins listing models to be fit

inTrain Indicies for cross-validated training models

outTrain Indicies for cross-validated testing models

lev Group levels

savePredictions

Logical argument dictating if should save the prediction data. Default savePredictions = FALSE

allowParallel Logical argument dictating if parallel processing is allowed via foreach package

verbose Character argument specifying how much output progress to print. Options are
’none’, ’minimal’ or ’full’.

theDots List of additional arguments provided in the initial classification and features
selection function

Value

Returns list of fitted models

Author(s)

Charles E. Determan Jr.

28 ochiai

noise.matrix Noise Matrix Generator

Description

Provides a matrix to perturb randomly generated data to facilitate a more realistic dataset.

Usage

noise.matrix(matrix, k)

Arguments

matrix A matrix of simulated data with dimensions comparable to ’real’ datasets

k Correlation Perturbation - The higher k, the more the data is perturbed.

Value

Returns a matrix of the same dimensions as matrix that can add to perturb the original simulated
data.

Author(s)

Charles E. Determan Jr.

ochiai Ochiai’s Index

Description

Calculates Ochiai’s index between two vectors of features. In brief, the closer to 1 the more similar
the vectors. The two vectors may have an arbitrary cardinality (i.e. don’t need same length). Very
similar to the Jaccard Index jaccard but Ochiai is a geometric means of the ratio.

Usage

ochiai(x, y)

Arguments

x Character vector of feature names

y Character vector of feature names

Value

Returns the Ochiai Index for the two vectors. It takes values in [0,1], with 0 meaning no overlap
between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.

optimize.model 29

References

Ochiai A. (1957) Zoogeographical studies on the soleoid fishes found in Japan and its neigbouring
regions. Bulletin of the Japanese Society of Scientific Fisheries. 22: 526-530.

Zucknick M., Richardson S., & Stronach E.A. (2008) Comparing the characteristics of gene expres-
sion profiles derived by univariate and multivariate classification methods. Statistical Applications
in Genetics and Molecular Biology. 7(1): Article 7. doi:10.2202/1544-6115.1307

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability

Examples

Ochiai demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
ochiai(v1, v2)

optimize.model Model Optimization and Metrics

Description

Optimizes each model based upon the parameters provided either by the internal denovo.grid
function or by the user.

Usage

optimize.model(trainVars, trainGroup, method, k.folds = 10, repeats = 3,
res = 3, grid = NULL, metric = "Accuracy", allowParallel = FALSE,
verbose = "none", theDots = NULL)

Arguments

trainVars Data used to fit the model

trainGroup Group identifiers for the training data

method A vector of strings listing models to be optimized

k.folds Number of folds generated during cross-validation. Default "k.folds = 10"

repeats Number of times cross-validation repeated. Default "repeats = 3"

res Resolution of model optimization grid. Default "res = 3"

grid Optional list of grids containing parameters to optimize for each algorithm. De-
fault "grid = NULL" lets function create grid determined by "res"

metric Criteria for model optimization. Available options are "Accuracy" (Predication
Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve -
Receiver Operator Curve)

allowParallel Logical argument dictating if parallel processing is allowed via foreach package

30 pairwise.model.stability

verbose Character argument specifying how much output progress to print. Options are
’none’, ’minimal’ or ’full’.

theDots List of additional arguments provided in the initial classification and features
selection function

Value

Basically a list with the following elements:

method Vector of strings listing models that were optimized

performance Performance generated internally to optimize model

bestTune List of paramaters chosen for each model

dots List of extra arguments initially provided

metric Criteria that was used for model optimization

finalModels The fitted models with the ’optimum’ parameters
performance.metrics

The performance metrics calculated internally for each resulting prediction

tune.metrics The results from each tune

perfNames The names of the performance metrics

comp.catch If the optimal PLSDA model contains only 1 component, the model must be refit
with 2 components. This catches the 1 component parameter so feature selection
and further performance analysis can be conducted on the 1 component.

Author(s)

Charles E. Determan Jr.

pairwise.model.stability

Pairwise Model Stability Metrics

Description

Conducts all pairwise comparisons of each model’s selected features selected following bootstrap-
ping. Also known as the function perturbation ensemble approach

Usage

pairwise.model.stability(features, stability.metric, nc)

Arguments

features A matrix of selected features
stability.metric

string indicating the type of stability metric. Avialable options are "jaccard"
(Jaccard Index/Tanimoto Distance), "sorensen" (Dice-Sorensen’s Index), "ochiai"
(Ochiai’s Index), "pof" (Percent of Overlapping Features), "kuncheva" (Kuncheva’s
Stability Measures), "spearman" (Spearman Rank Correlation), and "canberra"
(Canberra Distance)

nc Number of original features

pairwise.stability 31

Value

A list is returned containing:

comparisons Matrix of pairwise comparisons

overall The average of all pairwise comparisons

Author(s)

Charles Determan Jr

References

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

See Also

pairwise.stability

Examples

pairwise.model.stability demo
For demonstration purposes only!!!
some.numbers <- seq(20)

A list containing the metabolite matrices for each algorithm
As an example, let's say we have the output from two different models
such as plsda and random forest.
matrix of Metabolites identified (e.g. 5 trials)
plsda <-

replicate(5, paste("Metabolite", sample(some.numbers, 10), sep="_"))
rf <-

replicate(5, paste("Metabolite", sample(some.numbers, 10), sep="_"))

features <- list(plsda=plsda, rf=rf)

nc may be omitted unless using kuncheva
pairwise.model.stability(features, "kuncheva", nc=20)

pairwise.stability Pairwise Stability Metrics

Description

Conducts all pairwise comparisons of features selected following bootstrapping. Also known as the
data perturbation ensemble approach.

Usage

pairwise.stability(features, stability.metric, nc)

32 params

Arguments

features A matrix of selected features
stability.metric

string indicating the type of stability metric.

nc Optional argument to be used with ’kuncheva’ stability. Refers to the num-
ber of variables in original data. Available options are "jaccard" (Jaccard In-
dex/Tanimoto Distance), "sorensen" (Dice-Sorensen’s Index), "ochiai" (Ochiai’s
Index), "pof" (Percent of Overlapping Features), "kuncheva" (Kuncheva’s Sta-
bility Measures), "spearman" (Spearman Rank Correlation), and "canberra"
(Canberra Distance) @param nc Number of variables in original dataset

Value

A list is returned containing:

comparisons Matrix of pairwise comparisons

overall The average of all pairwise comparisons

Author(s)

Charles Determan Jr

References

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

Examples

pairwise.stability demo

For demonstration purposes only!!!
some.numbers <- seq(20)

matrix of Metabolites identified (e.g. 5 trials)
features <-

replicate(5, paste("Metabolite", sample(some.numbers, 10), sep="_"))

nc may be omitted unless using kuncheva
pairwise.stability(features, "jaccard")

params Model Parameters and Properties

Description

Provides a list of the models with their respective parameters and properties.

Usage

params(method = NULL)

perf.calc 33

Arguments

method A vector of strings listing the models to be returned

Value

Returns a dataframe of the following components:

method A vector of strings listing models returned

parameter A vector of possible parameters to be optimized

label A vector of the names for each possible parameter

seq A logical indicator if the parameter is sequential in the model (i.e. if model is able to fit all
’lower’ parameters simultaneously)

Examples

params("plsda")

perf.calc Performance Statistics Calculations

Description

Calculates confusion matrix and ROC statistics comparing the results of the fitted models to the
observed groups.

Usage

perf.calc(data, lev = NULL, model = NULL)

Arguments

data dataframe of predicted (pred) and observed (obs) groups

lev Group levels

model String indicating which model was initially run

Value

Returns confusion matrix and ROC performance statistics including Accuracy, Kappa, ROC.AUC,
Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value

See Also

caret function confusionMatrix

34 performance.metrics

performance.metrics Performance Metrics of fs.stability or fs.ensembl.stability object

Description

This will provide a concise data.frame of confusion matrix and ROC statistics from the results of
fs.stability or fs.ensembl.stability.

Usage

performance.metrics(fit.model, digits = max(3, getOption("digits") - 3))

Arguments

fit.model An fs.stability or fs.ensembl.stability object

digits How many digits to round values

Value

Dataframe of performance statistics by model

Author(s)

Charles E. Determan Jr.

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')

performance.metrics(fits)

performance.stats 35

performance.stats Performance Statistics (Internal for perf.calc)

Description

Calculates confusion matrix and ROC statistics comparing the results of the fitted models to the
observed groups.

Usage

performance.stats(pred, obs)

Arguments

pred vector of groups predicted by a fitted classification model

obs vector of groups from the original dataset

Value

Returns confusion matrix and ROC performance statistics including Accuracy, Kappa, ROC.AUC,
Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value

See Also

caret function confusionMatrix

perm.class Monte Carlo Permutation of Model Performance

Description

Applies Monte Carlo permutations to user specified models. The user can either use the results
from fs.stability or provide specified model parameters.

Usage

perm.class(fs.model = NULL, X, Y, method, k.folds = 5,
metric = "Accuracy", nperm = 10, allowParallel = FALSE,
create.plot = FALSE, verbose = TRUE, ...)

Arguments

fs.model Object containing results from fs.stability

X A scaled matrix or dataframe containing numeric values of each feature

Y A factor vector containing group membership of samples

method A string of the model to be fit. Available options are "plsda" (Partial Least
Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boost-
ing Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Gener-
alized Linear Model), and "pam" (Prediction Analysis of Microarrays)

36 perm.class

k.folds How many and what fractions of dataset held-out for prediction (i.e. 3 = 1/3, 10
= 1/10, etc.)

metric Performance metric to assess. Available options are "Accuracy", "Kappa", and
"ROC.AUC".

nperm Number of permutations, default nperm = 10

allowParallel Logical argument dictating if parallel processing is allowed via foreach package.
Default allowParallel = FALSE

create.plot Logical argument whether to create a distribution plot of permuation results.

verbose Logical argument whether output printed automatically in ’pretty’ format. De-
fault create.plot = FALSE

... Extra arguments that the user would like to apply to the models

Value

p.value Resulting p-value of permuation test

Author(s)

Charles Determan Jr.

References

Guo Y., et. al. (2010) Sample size and statistical power considerations in high-dimensionality data
settings: a comparative study of classification algorithms. BMC Bioinformatics 11:447.

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')

perm.class(fits, vars, groups, "rf", k.folds=5,
metric="Accuracy", nperm=10)

perm.features 37

perm.features Feature Selection via Monte Carlo Permutation

Description

Applies Monte Carlo permutations to user specified models. The user can either use the results
from fs.stability or provide specified model parameters.

Usage

perm.features(fs.model = NULL, X, Y, method, sig.level = 0.05, nperm = 10,
allowParallel = FALSE, verbose = TRUE, ...)

Arguments

fs.model Object containing results from fs.stability

X A scaled matrix or dataframe containing numeric values of each feature

Y A factor vector containing group membership of samples

method A vector listing models to be fit. Available options are "plsda" (Partial Least
Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boost-
ing Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Gener-
alized Linear Model), and "pam" (Prediction Analysis of Microarrays)

sig.level Desired significance level for features, default sig.level = .05

nperm Number of permutations, default nperm = 10

allowParallel Logical argument dictating if parallel processing is allowed via foreach package.
Default allowParallel = FALSE

verbose Logical argument whether output printed automatically in ’pretty’ format.

... Extra arguments that the user would like to apply to the models

Value

sig.level User-specified significance level

num.sig.features

Number of significant features

sig.features Dataframe of significant features

Author(s)

Charles Determan Jr.

References

Wongravee K., et. al. (2009) Monte-Carlo methods for determining optimal number of significant
variables. Application to mouse urinary profiles. Metabolomics 5:387-406.

38 pof

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')

permute variables/features
perm.features(fits, vars, groups, "rf",

sig.level = .05, nperm = 10)

pof Percentage of Overlapping Features

Description

Calculates percent of overlapping features between two vectors of features. In brief, the closer to
1 the more similar the vectors. The two vectors may have an arbitrary cardinality (i.e. don’t need
same length).

Usage

pof(x, y)

Arguments

x Character vector of feature names

y Character vector of feature names

Value

Returns the percent of overlapping features for the two vectors. It takes values in [0,1], with 0
meaning no overlap between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.

predicting 39

References

Shi L., et al. (2005) Cross-platform comparability of microarray technology: intra-platform con-
sistency and appropriate data analysis procedures are essential. BMC Bioinformatics. 6 (Suppl. 2)
S12. He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability

Examples

Percent-Overlapping Features demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
pof(v1, v2)

predicting Model Group Prediction

Description

This function evaluates a single fitted model and returns the predicted group memberships.

Usage

predicting(method, modelFit, orig.data, indicies, newdata, param = NULL)

Arguments

method String of the model to be evaluated

modelFit The fitted model being evaluated

orig.data The orginal data before subsetting training sets. Required to have the ’observed’
group membership

indicies The indicies for the training subsets

newdata The testing data to predict group membership

param The parameters being fit to the model (Determined by model optimization).

Value

Returns a list of predicted group membership

40 predictNewClasses

prediction.metrics Prediction Metric Calculations

Description

Performance evaluation of all fitted models. This function concisely provides model performance
metrics, including confusion matrix and ROC.

Usage

prediction.metrics(finalModel, method, raw.data, inTrain, outTrain, features,
bestTune, grp.levs, stability.metric)

Arguments

finalModel List of fitted models

method Vector of strings dictating the models that were fit

raw.data Original dataset prior to any training subset

inTrain List of training indicies for each feature selection run

outTrain List of testing data indicies for each feature selection run

features List of selected features for each model

bestTune List of parameters that have been optimized for the each respective model

grp.levs Vector of group levels
stability.metric

A character object specifying the stability metric

Value

Returns a dataframe consisting of each feature selection runs evaluated Accuracy, Kappa, ROC.AUC,
Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value.

See Also

performance.stats, perf.calc caret function confusionMatrix

predictNewClasses Class Prediction

Description

This function evaluates a single fitted model and returns the predicted group memberships of new
data.

Usage

predictNewClasses(modelFit, method, orig.data, newdata, param = NULL)

predictNewClasses 41

Arguments

modelFit The fitted model being evaluated

method String of the model to be evaluated

orig.data The orginal data before subsetting training sets. Required to have the ’observed’
group membership

newdata The testing data to predict group membership

param Optional alternate parameters being fit to the model

Value

Returns a list of predicted group membership

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')

newdata <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)$discr.mat

orig.df <- data.frame(vars, groups)

see what the PLSDA predicts for the new data
NOTE, newdata does not require a .classes column
predictNewClasses(fits, "plsda", orig.df, newdata)

42 sequester

RPT Robustness-Performance Trade-Off

Description

A variation on the F-measure (precision and recall) to assess robustness versus classification per-
formance.

Usage

RPT(stability, performance, beta = 1)

Arguments

stability Stability metric i.e. result from jaccard, sorensen, etc.

performance Model performance e.g. accuracy

beta Relative of importance of stability versus performance. Default beta = 1 treats
stability and performance equally.

Value

Harmonic mean of robustness and classification performance

References

Saeys Y., Abeel T., et. al. (2008) Machine Learning and Knowledge Discovery in Databases.
313-325. http://link.springer.com/chapter/10.1007/978-3-540-87481-2_21

Examples

RPT demo
RPT(stability=0.85, performance=0.90, beta=1)

sequester Sequester Additional Parameters

Description

When the user provides additional arguments to either fs.stability or fs.ensembl.stability
this function will extract the parameters to be fit if optimization is not used i.e. optimize = FALSE.

Usage

sequester(theDots, method)

Arguments

theDots List of additional arguments

method Vector of strings listing models to be fit

sorensen 43

Value

Returns a list of the following elements

parameters The parameters that will be fit to models
pnames The names of the specific parameters

sorensen Dice-Sorensen’s Index

Description

Calculates Dice-Sorensen’s index between two vectors of features. In brief, the closer to 1 the more
similar the vectors. The two vectors may have an arbitrary cardinality (i.e. don’t need same length).
Very similar to the Jaccard Index jaccard but Dice-Sorensen is the harmonic mean of the ratio.

Usage

sorensen(x, y)

Arguments

x vector of feature names
y vector of feature names

Value

Returns the Dice-Sorensen’s Index for the two vectors. It takes values in [0,1], with 0 meaning no
overlap between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.

References

Sorensen T. (1948) A method of establishing roups of equal amplitude in plant sociology based on
similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab. 5(4): 1-34.

Dice, Lee R. (1945) Measures of the Amount of Ecologic Association Between Species. Ecology 26
(3): 297-302. doi:10.2307/1932409

He. Z. & Weichuan Y. (2010) Stable feature selection for biomarker discovery. Computational
Biology and Chemistry 34 215-225.

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability

Examples

Dice-Sorensen demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
sorensen(v1, v2)

44 svm.weights

spearman Spearman Rank Correlation Coefficient

Description

Calculates spearman rank correlation between two vectors

Usage

spearman(x, y)

Arguments

x numeric vector of ranks

y numeric vector of ranks with compatible length to x

Value

Returns the spearman rank coefficient for the two vectors

Examples

Spearman demo
v1 <- seq(10)
v2 <- sample(v1, 10)
spearman(v1, v2)

svm.weights SVM Multiclass Weights Ranking

Description

This calculates feature weights for multiclass Support Vector Machine (SVM) problems

Usage

S3 method for class 'weights'
svm(model)

Arguments

model A fitted SVM model of multiclass

Value

Vector of feature weights

References

Guyon I. et. al. (2010) Gene Selection for Cancer Classification using Support Vector Machines.
Machine Learning 46 389-422.

svmrfeFeatureRanking 45

svmrfeFeatureRanking SVM Recursive Feature Extraction (Binary)

Description

This conducts feature selection for Support Vector Machines models via recursive feature extraction.
This returns a vector of the features in x ordered by relevance. The first item of the vector has
the index of the feature which is more relevant to perform the classification and the last item of
the vector has the feature which is less relevant. This function is specific to Binary classification
problems,

Usage

svmrfeFeatureRanking(x, y, c, perc.rem = 10)

Arguments

x A matrix where each column represents a feature and each row represents a
sample

y A vector of labels corresponding to each sample’s group membership

c A numeric value corresponding to the ’cost’ applied during the svm model fit-
ting. This can be selected by the user if using this function directly or is done
internally.

perc.rem A numeric value indicating the percent of features removed during each itera-
tion. Default perc.rem = 10.

Value

Vector of features ranked from most important to least important.

References

Guyon I. et. al. (2010) Gene Selection for Cancer Classification using Support Vector Machines.
Machine Learning 46 389-422.

See Also

svmrfeFeatureRankingForMulticlass

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

46 svmrfeFeatureRankingForMulticlass

binary class feature ranking
svmrfeFeatureRanking(x = vars,

y = groups,
c = 0.1,
perc.rem = 10)

svmrfeFeatureRankingForMulticlass

SVM Recursive Feature Extraction (Multiclass)

Description

This conducts feature selection for Support Vector Machines models via recursive feature extraction.
This returns a vector of the features in x ordered by relevance. The first item of the vector has
the index of the feature which is more relevant to perform the classification and the last item of
the vector has the feature which is less relevant. This function is specific to Binary classification
problems.

Usage

svmrfeFeatureRankingForMulticlass(x, y, c, perc.rem = 10)

Arguments

x A matrix where each column represents a feature and each row represents a
sample

y A vector of labels corresponding to each sample’s group membership

c A numeric value corresponding to the ’cost’ applied during the svm model fit-
ting. This can be selected by the user if using this function directly or is done
internally.

perc.rem A numeric value indicating the percent of features removed during each itera-
tion. Default perc.rem = 10.

Value

Vector of features ranked from most important to least important.

References

Guyon I. et. al. (2010) Gene Selection for Cancer Classification using Support Vector Machines.
Machine Learning 46 389-422.

See Also

svmrfeFeatureRanking

training 47

Examples

dat.discr <- create.discr.matrix(
create.corr.matrix(

create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),

D = 10,
num.groups=4

)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

multiclass
svmrfeFeatureRankingForMulticlass(x = vars,

y = groups,
c = 0.1,
perc.rem = 10)

training Model Training

Description

This fits each model with the defined parameters

Usage

training(data, method, tuneValue, obsLevels, theDots = NULL)

Arguments

data Dataframe consisting of both numeric feature values and a single column named
’.classes’ to denoted group membership.

method String dictating which model to fit

tuneValue List of parameters to be applied to the specific model

obsLevels Observed group levels

theDots List of additional parameters to be applied to the specific model

Value

fit Fitted model with list with the following elements:

• xNames: Names of the features

• tuneValue: Parameters applied to the fitted model

• obsLevels: Observed levels of the groups

Author(s)

Charles Determan Jr

48 tune.instructions

tune.instructions Model Optimization Instructions

Description

Provides directions for which parameters to loop over during tuning. This becomes important when
certain models can access ’lower’ parameters without running them independently.

Usage

tune.instructions(method, grid)

Arguments

method Vector of strings indicating which models will be fit

grid A list of parameters grids to be applied to the models

Value

modelInfo List of the following components

.

• scheme: String dictating which looping scheme to apply

• loop: Dataframe of parameters to loop through for each model

• model: Information regarding parameters of specific model

• constant: Names of the ’loop’ dataframe components

• vary: Indication of parameters that vary and can access recursively

Author(s)

Charles E. Determan Jr.

Index

aggregation, 3

bagging.wrapper, 4

canberra, 5
canberra_stability, 5, 6
CLA, 3, 7, 13, 14
confusionMatrix, 33, 35, 40
create.corr.matrix, 7, 11
create.discr.matrix, 8, 9, 11
create.random.matrix, 8, 10

denovo.grid, 12, 26, 27, 29

EE, 3, 7, 13, 14
EM, 3, 7, 13, 13, 14
ES, 3, 7, 13, 14, 14
extract.args, 15
extract.features, 15

feature.table, 16
fit.only.model, 17
fs.ensembl.stability, 18
fs.stability, 20

jaccard, 23, 28, 43

kuncheva, 23, 24, 24, 29, 39, 43

modelList, 25
modelTuner, 26
modelTuner_loo, 27

noise.matrix, 28

ochiai, 23, 24, 28, 29, 39, 43
optimize.model, 29

pairwise.model.stability, 23, 24, 29, 30,
39, 43

pairwise.stability, 23, 24, 29, 31, 31, 39,
43

params, 32
perf.calc, 33, 40
performance.metrics, 34
performance.stats, 35, 40

perm.class, 35
perm.features, 37
pof, 23, 24, 29, 38, 39, 43
predicting, 39
prediction.metrics, 40
predictNewClasses, 40

RPT, 42

sequester, 42
sorensen, 23, 24, 29, 39, 43, 43
spearman, 44
svm.weights, 44
svmrfeFeatureRanking, 45, 46
svmrfeFeatureRankingForMulticlass, 45,

46

training, 47
tune.instructions, 26, 27, 48

49

	aggregation
	bagging.wrapper
	canberra
	canberra_stability
	CLA
	create.corr.matrix
	create.discr.matrix
	create.random.matrix
	denovo.grid
	EE
	EM
	ES
	extract.args
	extract.features
	feature.table
	fit.only.model
	fs.ensembl.stability
	fs.stability
	jaccard
	kuncheva
	modelList
	modelTuner
	modelTuner_loo
	noise.matrix
	ochiai
	optimize.model
	pairwise.model.stability
	pairwise.stability
	params
	perf.calc
	performance.metrics
	performance.stats
	perm.class
	perm.features
	pof
	predicting
	prediction.metrics
	predictNewClasses
	RPT
	sequester
	sorensen
	spearman
	svm.weights
	svmrfeFeatureRanking
	svmrfeFeatureRankingForMulticlass
	training
	tune.instructions
	Index

