Package ‘MSnbase’

April 8, 2018
Title Base Functions and Classes for Mass Spectrometry and Proteomics
Version 2.4.2

Description MSnbase provides infrastructure to manipulation,
processing and visualisation mass spectrometry and
proteomics data, ranging from raw to quantitative and
annotated data.

Author Laurent Gatto, Johannes Rainer and Sebastian Gibb with
contributions from Guangchuang Yu, Samuel Wieczorek, Vasile-Cosmin
Lazar, Vladislav Petyuk, Thomas Naake, Richie Cotton and Martina
Fisher.

Maintainer Laurent Gatto <1g390@cam.ac.uk>

Depends R (>= 3.1), methods, BiocGenerics (>= 0.7.1), Biobase (>=
2.15.2), mzR (>=2.11.11), BiocParallel, ProtGenerics (>=
1.9.1)

Imports plyr, IRanges, preprocessCore, vsn, grid, stats4, afty,
impute, pcaMethods, MALDIquant (>= 1.16), mzID (>=1.5.2),
digest, lattice, ggplot2, S4Vectors, XML, Rcpp

Suggests testthat, pryr, gridExtra, microbenchmark, zoo, knitr (>=
1.1.0), rols, Rdisop, pRoloc, pRolocdata (>=1.7.1), msdata (>=
0.12.2), roxygen2, rgl, rpx, AnnotationHub, BiocStyle (>=
2.5.19), rmarkdown, imputeLCMD, norm, gplots, shiny

LinkingTo Rcpp
License Artistic-2.0
LazyData yes
VignetteBuilder knitr

BugReports https://github.com/lgatto/MSnbase/issues

URL https://github.com/1lgatto/MSnbase

biocViews Infrastructure, Proteomics, MassSpectrometry,
QualityControl, Datalmport

RoxygenNote 6.0.1

NeedsCompilation yes

https://github.com/lgatto/MSnbase/issues
https://github.com/lgatto/MSnbase

2 R topics documented:

R topics documented:

addldentificationData-methods 3
AEVAT . o o o o i e e e e e e e e e 6
AS L e e e e e e 7
averageMSnSet e e 8
bin-methods 9
calculateFragments-methods Lo 10
chromatogram,MSnExp-method oL 12
Chromatogram-class e 14
Chromatograms-class L 18
clean-methods e e 21
combineFeatures 23
commonFeatureNames 25
compareMSnSets e e 26
compareSpectra-methods oL oL 26
estimateNoise-methods L o 27
exprsToRatios-methods 28
extractPrecSpectra-methods oL 29
factorsAsSSIIIngs e 29
FeatComp-class o . e 30
featureCV L e 31
FeaturesOfInterest-class 32
fillUp . . . e 35
filterIdentificationDataFrame 35
formatRt 36
get.amino.acids L. e e e 37
ELAtOMIC.MASS ottt e e e e e e e 37
getVariableName 38
grepEcols L L 38
ImageNA2 e e 39
impute-methodso 40
PQF . o e 43
isCentroidedFromFile 44
iTRAQ4 . . e e 45
itraqdata L e 46
LstOf . . . e 46
makeCamelCase 47
makeNaData 48
MIAPE-class e 49
missing-data L. e 52
MSmap-class 53
MSnbaseOptions e e e e e e e 55
MSnExp-class 56
MSnProcess-class e 59
MSnSet-class 60
MSnSetList-class 65
MzTab-class e e e 67
NAnnotatedDataFrame-class 69
naploto e 70
navMS . . L e 71

addldentificationData-methods 3

Index

normalise-methods 73
normToReference 74
NPCV & v v o e 75
nQUANES e e e 76
OnDiskMSnExp-class. e 77
pickPeaks-methods L 83
plot-methods e e 84
plot.Spectrum.Spectrum-methodso 85
plot2d-methods e e 87
plotDensity-methods 88
plotMzDelta-methods L 89
plotNA-methods e 90
precSelection e e 91
ProcessingStep-class 92
pSet-class 93
purityCorrect-methods 96
quantify-methods 99
readMgfData L e e e 101
readMSData e 103
readMSnSet 104
readMzldData 106
readMzTabData e 107
readMzTabData_v0.9 e 108
reduce,data.frame-method 109
removeNold-methods 110
removePeaks-methods Lo 111
removeReporters-methods oL 112
Reporterlons-class L 113
selectFeatureData L. e 115
smooth-methods L 116
Spectrum-class e e e e e e e e e 117
Spectruml-class 119
Spectrum?2-class e e e e 120
TMTO e 121
trimMz-methods 122
updateObject-methods L. 123
writeMgfData-methods 123
writeMSData,MSnExp,character-method 124

126

addIdentificationData-methods

Adds Identification Data

Description

These methods add identification data to a raw MS experiment (an "MSnExp" object) or to quanti-
tative data (an "MSnSet"” object). The identification data needs to be available as a mzIdentML file
(and passed as filenames, or directly as identification object) or, alternatively, can be passed as an
arbitrary data. frame. See details in the Methods section.

4 addldentificationData-methods

Details

The featureData slots in a "MSnExp" or a "MSnSet” instance provides only one row per MS2 spec-
trum but the identification is not always bijective. Prior to addition, the identification data is filtered
as documented in the filterIdentificationDataFrame function: (1) only PSMs matching the
regular (non-decoy) database are retained; (2) PSMs or rank greater than 1 are discarded; and (3)
only proteotypic peptides are kept.

If after filtering, more then one PSM per spectrum are still present, these are combined (reduced,
see reduce,data.frame-method) into a single row and separated by a semi-colon. This has as
side-effect that feature variables that are being reduced are converted to characters. See the reduce
manual page for examples.

See also the section about identification data in the MSnbase-demo vignette for details and addi-
tional examples.

After addition of the identification data, new feature variables are created. The column nprot
contains the number of members in the protein group; the columns accession and description
contain a semicolon separated list of all matches. The columns npsm.prot and npep.prot repre-
sent the number of PSMs and peptides that were matched to a particular protein group. The col-
umn npsm. pep indicates how many PSMs were attributed to a peptide (as defined by its sequence
pepseq). All these values are re-calculated after filtering and reduction.

Methods

signature(object = "MSnExp”, id = "character”, ... Adds the identification data stored
in mzIdentML files to a "MSnExp" instance. The method handles one or multiple mzIdentML
files provided via id. id has to be a character vector of valid filenames. See below for
additional arguments.

signature(object = "MSnExp”, id = "mzID"”, ...) Same as above but id is a mzID object
generated by mzID: :mzID. See below for additional arguments.

signature(object = "MSnExp"”, id = "mzIDCollection”, ...) Same as above but id is a
mzIDCollection object. See below for additional arguments.

signature(object = "MSnExp”, id = "mzRident"”, ... Same as above but id is a mzRident
object generated by mzR: :openIdfile. See below for additional arguments.

signature(object = "MSnExp", id = "data.frame”, ... Same as above but id could be a
data.frame. See below for additional arguments.

signature(object = "MSnSet”, id = "character”, ...) Adds the identification data stored
in mzIdentML files to an "MSnSet" instance. The method handles one or multiple mzIdentML
files provided via id. id has to be a character vector of valid filenames. See below for
additional arguments.

signature(object = "MSnSet”, id = "mzID", ...) Same as above but id is a mzID object.
See below for additional arguments.

signature(object = "MSnSet”, id = "mzIDCollection”, ...) Same as above but id is a
mzIDCollection object. See below for additional arguments.

signature(object = "MSnSet"”, id = "data.frame”, ...) Same asabovebutidisadata.frame.
See below for additional arguments.

The methods above take the following additional argument. These need to be set when adding
identification data as a data. frame. In all other cases, the defaults are set automatically.

fcol The matching between the features (raw spectra or quantiative features) and identification
results is done by matching columns in the featue data (the featureData slot) and the identi-
fication data. These values are the spectrum file index and the acquisition number, passed as

addldentificationData-methods 5

a character of length 2. The default values for these variables in the object’s feature data
are "spectrum.file” and "acquisition.num”. Values need to be provided when id is a
data.frame.

icol The default values for the spectrum file and acquisition numbers in the identification data (the
id argument) are "spectrumFile” and "acquisitionNum”. Values need to be provided when
idis adata.frame.

acc The protein (group) accession number or identifier. Defaults are "DatabaseAccess” when
passing filenames or mzRident objects and "accession” when passing mzID ormzIDCollection
objects. A value needs to be provided when id is a data. frame.

desc The protein (group) description. Defaults are "DatabaseDescription” when passing file-
names or mzRident objects and "description” when passing mzID or mzIDCollection ob-
jects. A value needs to be provided when id is a data. frame.

pepseq The peptide sequence variable name. Defaults are "sequence” when passing filenames
or mzRident objects and "pepseq” when passing mzID or mzIDCollection objects. A value
needs to be provided when id is a data. frame.

key The key to be used when the identification data need to be reduced (see details section). De-
faults are "spectrumID” when passing filenames or mzRident objects and "spectrumid”
when passing mzID or mzIDCollection objects. A value needs to be provided when id is a
data.frame.

decoy The feature variable used to define whether the PSM was matched in the decoy of regular
fasta database for PSM filtering. Defaults are "isDecoy"” when passing filenames or mzRident
objects and "isdecoy"” when passing mzID or mzIDCollection objects. A value needs to be
provided when id is a data.frame. See filterIdentificationDataFrame for details.

rank The feature variable used to defined the rank of the PSM for filtering. Defaults is "rank”. A
value needs to be provided when id is adata. frame. See filterIdentificationDataFrame
for details.

accession The feature variable used to defined the protein (groupo) accession or identifier for PSM
filterin. Defaults is to use the same value as acc . A value needs to be provided when id is a
data.frame. See filterIdentificationDataFrame for details.

verbose A logical defining whether to print out messages or not. Default is to use the session-
wide open from isMSnbaseVerbose.

Author(s)

Sebastian Gibb <mail @sebastiangibb.de> and Laurent Gatto

See Also

filterIdentificationDataFrame for the function that filters identification data, readMzIdData
to read the identification data as a unfiltered data.frame and reduce,data.frame-method to re-
duce it to a data. frame that contains only unique PSMs per row.

Examples

find path to a mzXML file

quantFile <- dir(system.file(package = "MSnbase”, dir = "extdata"),
full.name = TRUE, pattern = "mzXML$")

find path to a mzIdentML file

identFile <- dir(system.file(package = "MSnbase”, dir = "extdata"),
full.name = TRUE, pattern = "dummyiTRAQ.mzid")

aggvar

create basic MSnExp
msexp <- readMSData(quantFile)

add identification information
msexp <- addIdentificationData(msexp, identFile)

access featureData
fData(msexp)

idSummary (msexp)

aggvar Identify aggregation outliers

Description

This function evaluates the variability within all protein group of an MSnSet. If a protein group is
composed only of a single feature, NA is returned.

Usage

aggvar(object, groupBy, fun)

Arguments
object An object of class MSnSet.
groupBy A character containing the protein grouping feature variable name.
fun A function the summarise the distance between features within protein groups,
typically max or mean.median.
Details

This function can be used to identify protein groups with incoherent feature (petides or PSMs)
expression patterns. Using max as a function, one can identify protein groups with single extreme
outliers, such as, for example, a mis-identified peptide that was erroneously assigned to that protein
group. Using mean identifies more systematic inconsistencies where, for example, the subsets of
peptide (or PSM) feautres correspond to proteins with different expression patterns.

Value

A matrix providing the number of features per protein group (nb_feats column) and the aggrega-
tion summarising distance (agg_dist column).

Author(s)

Laurent Gatto

See Also

combineFeatures to combine PSMs quantitation into peptides and/or into proteins.

as 7

Examples

library("pRolocdata”)

data(hyperLOPIT2@15ms3r1psm)

groupBy <- "Protein.Group.Accessions”

res1 <- aggvar(hyperLOPIT2015ms3r1psm, groupBy, fun = max)
res2 <- aggvar(hyperLOPIT2015ms3r1psm, groupBy, fun = mean)
par(mfrow = c(1, 3))

non

plot(res1, log = "y", main = "Single outliers (max)")

plot(res2, log = "y", main = "Overall inconsistency (mean)")
plot(res1[, "agg_dist"”], res2[, "agg_dist"],
xlab = "max", ylab = "mean")
as Coerce identification data to a data.frame
Description

A function to convert the identification data contained in an mzRident object to a data.frame.
Each row represents a scan, which can however be repeated several times if the PSM matches
multiple proteins and/or contains two or more modifications. To reduce the data.frame so that
rows/scans are unique and use semicolon-separated values to combine information pertaining a
scan, use reduce.

Arguments

from An object of class mzRident defined in the mzR package.

Details

See also the Tandem MS identification data section in the MSnbase-demo vignette.

Value

A data.frame

Author(s)

Laurent Gatto

Examples

find path to a mzIdentML file

identFile <- dir(system.file(package = "MSnbase”, dir = "extdata"),
full.name = TRUE, pattern = "dummyiTRAQ.mzid")

library("mzR")

x <- openlIDfile(identFile)

X

as(x, "data.frame")

8 averageMSnSet

averageMSnSet Generate an average MSnSet

Description

Given a list of MSnSet instances, typically representing replicated experiments, the function returns
an average MSnSet.

Usage

averageMSnSet(x, avg = function(x) mean(x, na.rm = TRUE), disp = npcv)

Arguments
X A list of valid MSnSet instances to be averaged.
avg The averaging function. Default is the mean after removing missing values, as
computed by function(x) mean(x, na.rm = TRUE).
disp The disperion function. Default is an non-parametric coefficient of variation that
replaces the standard deviation by the median absolute deviation as computed
by mad(x)/abs(mean(x)). See npcv for details. Note that the mad of a single
value is O (as opposed to NA for the standard deviation, see example below).
Details

This function is aimed at facilitating the visualisation of replicated experiments and should not be
used as a replacement for a statistical analysis.

The samples of the instances to be averaged must be identical but can be in a different order (they
will be reordered by default). The features names of the result will correspond to the union of the
feature names of the input MSnSet instances. Each average value will be computed by the avg
function and the dispersion of the replicated measurements will be estimated by the disp function.
These dispersions will be stored as a data. frame in the feature metadata that can be accessed with
fData(.)$disp. Similarly, the number of missing values that were present when average (and
dispersion) were computed are available in fData(.)$disp.

Currently, the feature metadata of the returned object corresponds the the feature metadata of the
first object in the list (augmented with the missing value and dispersion values); the metadata of the
features that were missing in this first input are missing (i.e. populated with NAs). This may change
in the future.

Value

A new average MSnSet.

Author(s)

Laurent Gatto

See Also

compfnames to compare MSnSet feature names.

bin-methods 9

Examples

library("pRolocdata”)

3 replicates from Tan et al. 2009

data(tan2009r1)

data(tan2009r2)

data(tan2009r3)

X <- MSnSetList(list(tan2009r1, tan2009r2, tan2009r3))

avg <- averageMSnSet(x)

dim(avg)

head(exprs(avg))

head(fData(avg) $nNA)

head(fData(avg)$disp)

using the standard deviation as measure of dispersion

avg?2 <-averageMSnSet(x, disp = sd)

head(fData(avg2)$disp)

keep only complete observations, i.e proteins

that had @ missing values for all samples

sel <- apply(fData(avg)$nNA, 1 , function(x) all(x == 0))

avg <- avglsel,]

disp <- rowMax(fData(avg)$disp)

library(”"pRoloc")

setStockcol (paste@d(getStockcol(), "AA"))

plot2D(avg, cex = 7.7 * disp)

title(main = paste(”"Dispersion: non-parametric CV",
paste(round(range(disp), 3), collapse =" - ")))

bin-methods Bin 'MSnExp’ or ’Spectrum’ instances

Description

This method aggregates individual spectra (Spectrum instances) or whole experiments (MSnExp
instances) into discrete bins. All intensity values which belong to the same bin are summed together.

Methods

signature(object = "MSnExp”, binSize = "numeric"”, verbose = "logical"”) Bins all spec-
tra in an MSnExp object. Use binSize to control the size of a bin (in Dalton, default is 1).
Displays a control bar if verbose set to TRUE (default). Returns a binned MSnExp instance.

signature(object = "Spectrum”, binSize = "numeric”, breaks = "numeric”, msLevel. = "numeric")
Bin the Spectrum object. Use binSize to control the size of a bin (in Dalton, default is 1).
Similar to hist you could use breaks to specify the breakpoints between m/z bins. msLevel.
defines the level of the spectrum, and if msLevel (object) != msLevel., cleaning
isignored. Only relevant when called from OnDiskMSnExp and is only relevant for developers.

Returns a binned Spectrum instance.

Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

See Also

clean, pickPeaks, smooth, removePeaks and trimMz for other spectra processing methods.

10

Examples

calculateFragments-methods

s <- new("Spectrum2”, mz=1:10, intensity=1:10)

intensity(s)

intensity(bin(s, binSize=2))

data(itraqdata)

sum(peaksCount(itraqdata))
itraqdata2 <- bin(itragdata, binSize=2)
sum(peaksCount (itragdata2))
processingData(itraqdata2)

calculateFragments-methods

Calculate ions produced by fragmentation.

Description

These method calculates a-, b-, c-, x-, y- and z-ions produced by fragmentation.

Arguments

sequence
object

tolerance

method

type

z

modifications

neutrallLoss

verbose

character, peptide sequence.
Object of class "Spectrum2” or "missing” .

numeric tolerance between the theoretical and measured MZ values (only avail-
able if object is not missing).

method used for for duplicated matches. Choose "highest” or "closest” to
select the peak with the highest intensity respectively the closest MZ in the tol-
erance range. If "all” is given all possible matches in the tolerance range are
reported (only available if object is not missing).

character vector of target ions; possible values: c("a", "b", "c", "x", "y", "z");
default: type=c("b", "y").

numeric desired charge state; default z=1.

named numeric vector of used modifications. The name must correspond to the
one-letter-code of the modified amino acid and the numeric value must repre-
sent the mass that should be added to the original amino accid mass, default:
Carbamidomethyl modifications=c(C=57.02146). Use Nterm or Cterm as
names for modifications that should be added to the amino respectively carboxyl-
terminus.

list, it has to have two named elments, namely water and ammonia that contain

a character vector which type of neutral loss should be calculated. Currently
neutral loss on the C terminal "Cterm”, at the amino acids c("D", "E", "S", "T")
for "water” (shown with an _) and c("K", "N", "Q", "R") for "ammonia”
(shown with an *) are supported.

There is a helper function defaultNeutralloss that returns the correct list. It
has two arguments disableWaterLoss and disableAmmonialoss to remove
single neutral loss options. See the example section for use cases.

logical if TRUE (default) the used modifications are printed.

calculateFragments-methods 11

Methods

signature(sequence = "character”, object = "missing”, ...) Calculates the theoretical
fragments for a peptide sequence. Returns a data. frame with the columns c("mz", "ion", "type”,

signature(sequence = "character”, object = "Spectrum2”, ...) Calculates and matches
the theoretical fragments for a peptide sequence and a "Spectrum2” object. The ... argu-
ments are passed to the internal functions. Currently tolerance, method and relative are
supported. You could change the tolerance (default 25e-6) and decide whether this toler-
ance should be applied relative (default relative = TRUE) or absolute (relative = FALSE)
to match the theoretical fragment MZ with the MZ of the spectrum. In cases of multiple
matches use method to select the peak with the highest intensity (method = "highest”, de-
fault) respectively closest MZ (method = "closes"”). If method = "all"” is set all possible
matches in the current tolerance range are reported. Returns the same data.frame as above
but the mz column represents the matched MZ values of the spectrum. Additionally there is a
column error that contains the difference between the observed MZ (from the spectrum) to
the theoretical fragment MZ.

Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

Examples

find path to a mzXML file
file <- dir(system.file(package = "MSnbase”, dir = "extdata"),
full.name = TRUE, pattern = "mzXML$")

create basic MSnExp
msexp <- readMSData(file, centroided = FALSE)

centroid them
msexp <- pickPeaks(msexp)

calculate fragments for ACE with default modification
calculateFragments("ACE"”, modifications=c(C=57.02146))

calculate fragments for ACE with an addition N-terminal modification
calculateFragments("ACE"”, modifications=c(C=57.02146, Nterm=229.1629))

calculate fragments for ACE without any modifications
calculateFragments("ACE"”, modifications=NULL)

calculateFragments("VESITARHGEVLQLRPK",
type:C(”a", Vlbll’ IICII’ “X", llylr’ IVZII)’
z=1:2)
calculateFragments("VESITARHGEVLQLRPK", msexp[[1]])

neutral loss
defaultNeutrallLoss()

disable water loss on the C terminal
defaultNeutralloss(disableWaterLoss="Cterm")

real example
calculateFragments("PQR")

12

chromatogram,MSnExp-method

calculateFragments("PQR",

neutrallLoss=defaultNeutralloss(disableWaterLoss="Cterm"))

calculateFragments("PQR",

neutrallLoss=defaultNeutrallLoss(disableAmmonialoss="Q"))

disable neutral loss completely
calculateFragments("PQR", neutrallLoss=NULL)

chromatogram,MSnExp-method

Extract chromatogram object(s)

Description

The chromatogram method extracts chromatogram(s) from an MSnExp or OnDiskMSnExp object.
Depending on the provided parameters this can be a total ion chromatogram (TIC), a base peak
chromatogram (BPC) or an extracted ion chromatogram (XIC) extracted from each sample/file.

Usage

S4 method for signature 'MSnExp'
chromatogram(object, rt, mz, aggregationFun = "sum”,

missing = NA_real_, msLevel = 1L, BPPARAM

Arguments

object

rt

mz

aggregationFun

missing

msLevel

BPPARAM

bpparam())

For chromatogram: a MSnExp or OnDiskMSnExp object from which the chro-
matogram should be extracted.

A numeric(2) or two-column matrix defining the lower and upper boundary
for the retention time range/window(s) for the chromatogram(s). If a matrix is
provided, a chromatogram is extracted for each row. If not specified, a chro-
matogram representing the full retention time range is extracted. See examples
below for details.

A numeric(2) or two-column matrix defining the mass-to-charge (mz) range(s)
for the chromatogram(s). For each spectrum/retention time, all intensity val-
ues within this mz range are aggregated to result in the intensity value for the
spectrum/retention time. If not specified, the full mz range is considered. See
examples below for details.

character defining the function to be used for intensity value aggregation along
the mz dimension. Allowed values are "sum” (TIC), "max” (BPC), "min" and
"mean”.

numeric(1) allowing to specify the intensity value for if for a given reten-
tion time (spectrum) no signal was measured within the mz range. Defaults
toNA_real _.

integer specifying the MS level from which the chromatogram should be ex-
tracted. Defaults to msLevel = 1L.

Parallelisation backend to be used, which will depend on the architecture. De-
fault is BiocParallel: :bparam().

chromatogram,MSnExp-method 13

Details

Arguments rt and mz allow to specify the MS data slice from which the chromatogram should be
extracted. The parameter aggregationSum allows to specify the function to be used to aggregate
the intensities across the mz range for the same retention time. Setting aggregationFun = "sum”
would e.g. allow to calculate the fotal ion chromatogram (TIC), aggregationFun = "max" the base
peak chromatogram (BPC). The length of the extracted Chromatogram object, i.e. the number of
available data points, corresponds to the number of scans/spectra measured in the specified retention
time range. If in a specific scan (for a give retention time) no signal was measured in the specified mz
range, a NA_real_ is reported as intensity for the retention time (see Notes for more information).
This can be changed using the missing parameter.

By default or if mz and/or rt are numeric vectors, the function extracts one Chromatogram object
for each file in the MSnExp or OnDiskMSnExp object. Providing a numeric matrix with argument
mz or rt enables to extract multiple chromatograms per file, one for each row in the matrix. If the
number of columns of mz or rt are not equal to 2, range is called on each row of the matrix.

Value

chromatogram returns a Chromatograms object with the number of columns corresponding to the
number of files in object and number of rows the number of specified ranges (i.e. number of rows
of matrices provided with arguments mz and/or rt).

Author(s)

Johannes Rainer

See Also

Chromatogram and Chromatograms for the classes that represent single and multiple chromatograms.

Examples

Read a test data file.

library(msdata)

f <- c(system.file("microtofq/MM14.mzML", package = "msdata”),
system.file("microtofq/MM8.mzML", package = "msdata”))

Read the data as an MSnExp
msd <- readMSData(f, msLevel = 1)

Extract the total ion chromatogram for each file:
tic <- chromatogram(msd)

tic
Extract the TIC for the second file:

tic[1, 2]

Plot the TIC for the first file
plot(rtime(tic[1, 1]), intensity(tic[1, 11), type = "1",
xlab = "rtime”, ylab = "intensity"”, main = "TIC")

Extract chromatograms for a MS data slices defined by retention time
and mz ranges.
rtr <- rbind(c(10, 60), c(280, 300))

14 Chromatogram-class

mzr <- rbind(c(140, 160), c(300, 320))
chrs <- chromatogram(msd, rt = rtr, mz = mzr)

Each row of the returned Chromatograms object corresponds to one mz-rt
range. The Chromatogram for the first range in the first file is empty,
because the retention time range is outside of the file's rt range:
chrs[1, 1]

Also the Chromatogram for the second range in the second file is empty
chrs[2, 2]

Get the extracted chromatogram for the first range in the second file
chr <- chrs[1, 2]

chr

plot(rtime(chr), intensity(chr), xlab = "rtime"”, ylab = "intensity")

Chromatogram-class Representation of chromatographic MS data

Description

The Chromatogram class is designed to store chromatographic MS data, i.e. pairs of retention
time and intensity values. Instances of the class can be created with the Chromatogram constructor
function but in most cases the dedicated methods for OnDiskMSnExp and MSnExp objects extracting
chromatograms should be used instead (i.e. the chromatogram method).

Chromatogram: create an instance of the Chromatogram class.
aggregationFun,aggregationFun<- get or set the aggregation function.

productMz get the mz of the product chromatogram/ion. The function returns a numeric(2) with
the lower and upper mz value.

rtime returns the retention times for the rentention time - intensity pairs stored in the chromatogram.
intensity returns the intensity for the rentention time - intensity pairs stored in the chromatogram.

mz get the mz (range) of the chromatogram. The function returns a numeric(2) with the lower and
upper mz value.

precursorMz get the mz of the precursor ion. The function returns a numeric(2) with the lower
and upper mz value.

fromFile returns the value from the fromFile slot.

length returns the length (number of retention time - intensity pairs) of the chromatogram.
as.data.frame returns the rtime and intensity values from the object as data. frame.
filterRt: filters the chromatogram based on the provided retention time range.

clean: Removes unused O-intensity data points. See clean documentation for more details and
examples.

plot: plots a Chromatogram object.
msLevel returns the MS level of the chromatogram.

isEmpty returns TRUE for empty chromatogram or chromatograms with all intensities being NA.

Chromatogram-class

Usage

Chromatogram(rtime = numeric(), intensity = numeric(), mz = c(NA_real_,
NA_real_), filterMz = c(NA_real_, NA_real_), precursorMz = c(NA_real_,
NA_real_), productMz = c(NA_real_, NA_real_), fromFile = integer(),
aggregationFun = character(), msLevel = 1L)

aggregationFun(object)
productMz(object)

S4 method for signature 'Chromatogram'
show(object)

S4 method for signature 'Chromatogram'
rtime(object)

S4 method for signature 'Chromatogram'
intensity(object)

S4 method for signature 'Chromatogram'
mz(object, filter = FALSE)

S4 method for signature 'Chromatogram'
precursorMz(object)

S4 method for signature 'Chromatogram'
fromFile(object)

S4 method for signature 'Chromatogram'
length(x)

S4 method for signature 'Chromatogram'
as.data.frame(x)

S4 method for signature 'Chromatogram'
filterRt(object, rt)

S4 method for signature 'Chromatogram'
clean(object, all = FALSE, na.rm = FALSE)

S4 method for signature 'Chromatogram,ANY'
plot(x, col = "#00000060", 1ty = 1,
type = "1", xlab = "retention time"”, ylab = "intensity"”, main = NULL,

.2

S4 method for signature 'Chromatogram
msLevel (object)

S4 method for signature 'Chromatogram'
isEmpty(x)

16

Arguments

rtime
intensity

mz

filterMz
precursorMz
productMz
fromFile
aggregationFun
msLevel

object
filter

rt

all

na.rm

col
1ty
type
xlab
ylab

main

Details

Chromatogram-class

numeric with the retention times (length has to be equal to the length of intensity).
numeric with the intensity values (length has to be equal to the length of rtime).

numeric(2) representing the mz value range (min, max) on which the chro-
matogram was created. This is supposed to contain the real range of mz values
in contrast to the filterMz below. If not applicable use mzrange = c(0,).

numeric(2) representing the mz value range (min, max) that was used to filter
the original object on mz dimension. If not applicable use filterMz = c(0, 0).

numeric(2) for SRM/MRM transitions. Represents the mz of the precursor ion.
See details for more information.

numeric(2) for SRM/MRM transitions. Represents the mz of the product. See
details for more information.

integer (1) the index of the file within the OnDiskMSnExp or MSnExp from
which the chromatogram was extracted.

character string specifying the function that was used to aggregate intensity
values for the same retention time across the mz range. Supported are "sum”
(total ion chromatogram), "max"” (base peak chromatogram), "min" and "mean”.

integer with the MS level from which the chromatogram was extracted.
A Chromatogram object.

For mz: whether the mz range used to filter the original object should be returned
(filter = TRUE), or the mz range calculated on the real data (filter = FALSE).

For as.data.frame and length: a Chromatogram object.

For filterRt: numeric(2) defining the lower and upper retention time for the
filtering.

For clean: logical (1) whether all O intensities should be removed (default is
FALSE). See clean for more details and examples.

For clean: logical(1) whether all NA intensities should be removed before
cleaning the Chromatogram. Defaults to FALSE. See clean for more details and
examples.

For plot: the color to be used for plotting.

For plot: the line type. See plot for more details.

For plot: the type of plot. See plot for more details.

For plot: the x-axis label.

For plot: the y-axis label.

For plot: the plot title. If not provided the mz range will be used as plot title.

For plot: additional arguments to be passed to the plot function.

The mz, filterMz, precursorMz and productMz are stored as a numeric(2) representing a range
even if the chromatogram was generated for only a single ion (i.e. a single mz value). Using
ranges for mz values allow this class to be used also for e.g. total ion chromatograms or base peak

chromatograms.

The slots precursorMz and productMz allow to represent SRM (single reaction monitoring) and
MRM (multiple SRM) chromatograms. As example, a Chromatogram for a SRM transition 273 ->
153 will have a @precursorMz = ¢(273, 273) and a @productMz = c(153, 153).

Chromatogram-class 17

Slots
.__classVersion__,rtime,intensity,mz,filterMz,precursorMz,productMz,fromFile, aggregationFun,msLe
See corresponding parameter above.
Author(s)

Johannes Rainer

See Also

Chromatograms for combining Chromatogram in a two-dimensional matrix (rows being mz-rt
ranges, columns samples). chromatogram for the method to extract chromatogram data from a
MSnExp or OnDiskMSnExp object. clean for the method to clean a Chromatogram object.

Examples

Create a simple Chromatogram object.

ints <- abs(rnorm(100, sd = 100))

rts <- seg_len(length(ints))

chr <- Chromatogram(rtime = rts, intensity = ints)
chr

Extract intensities
intensity(chr)

Extract retention times
rtime(chr)

Extract the mz range - is NA for the present example
mz(chr)

plot the Chromatogram
plot(chr)

Create a simple Chromatogram object based on random values.

chr <- Chromatogram(intensity = abs(rnorm(1000, mean = 2000, sd = 200)),
rtime = sort(abs(rnorm(1000, mean = 10, sd = 5))))

chr

Get the intensities
head(intensity(chr))

Get the retention time
head(rtime(chr))

What is the retention time range of the object?
range(rtime(chr))

Filter the chromatogram to keep only values between 4 and 10 seconds
chr2 <- filterRt(chr, rt = c(4, 10))

range(rtime(chr2))

18 Chromatograms-class

Chromatograms-class Container for multiple Chromatogram objects

Description

The Chromatograms class allows to store Chromatogram objects in a matrix-like two-dimensional
structure.

Chromatograms: create an instance of class Chromatograms.

Chromatograms objects can, just like a matrix, be subsetted using the [method. Single ele-
ments, rows or columns can be replaced using e.g. x[1, 1] <- value where value has to be
a Chromatogram object or a 1ist of such objects.

plot: plots a Chromatograms object. For each row in the object one plot is created, i.e. all
Chromatogram objects in the same row are added to the same plot.

phenoData: accesses the phenotypical desccription of the samples. Returns an NAnnotatedDataFrame
object.

pData: accesses the phenotypical description of the samples. Returns a data. frame.
pData<-: replace the phenotype data.
$ and $<-: get or replace individual columns of the object’s pheno data.

colnames<-: replace or set the column names of the Chromatograms object. Does also set the
rownames of the phenoData.

sampleNames: get the sample names.

sampleNames<-: replace or set the sample names of the Chromatograms object (i.e. the rownames
of the pheno data and colnames of the data matrix.

isEmpty: returns TRUE if the Chromatograms object or all of its Chromatogram objects is/are empty
or contain only NA intensities.

Usage

Chromatograms(data, phenoData, ...)

S4 method for signature 'Chromatograms'
show(object)

S4 method for signature 'Chromatograms,ANY,ANY,ANY'
x[i, j, drop = FALSE]

S4 replacement method for signature 'Chromatograms'’
x[i, j1 <- value

S4 method for signature 'Chromatograms,ANY'
plot(x, col = "#00000060", 1ty =1,
type = "1", xlab = "retention time", ylab = "intensity”, main = NULL,

)

S4 method for signature 'Chromatograms'
phenoData(object)

Chromatograms-class 19

S4 method for signature 'Chromatograms'
pData(object)

S4 replacement method for signature 'Chromatograms,data.frame'’
pData(object) <- value

S4 method for signature 'Chromatograms'
x$name

S4 replacement method for signature 'Chromatograms'’
x$name <- value

S4 replacement method for signature 'Chromatograms'’
colnames(x) <- value

S4 method for signature 'Chromatograms'
sampleNames(object)

S4 replacement method for signature 'Chromatograms,ANY'
sampleNames(object) <- value

S4 method for signature 'Chromatograms'

isEmpty(x)
Arguments

data A list of Chromatogram objects.

phenoData either a data.frame, AnnotatedDataFrame or NAnnotatedDataFrame describ-
ing the phenotypical information of the samples.
Additional parameters to be passed to the matrix constructor, such as nrow,
ncol and byrow.

object a Chromatograms object.

X For all methods: a Chromatograms object.

i For [: numeric, logical or character defining which row(s) to extract.

j For [: numeric, logical or character defining which columns(s) to extract.

drop For [: logical(1) whether to drop the dimensionality of the returned object
(if possible). The default is drop = FALSE, i.e. each subsetting returns a
Chromatograms object (or a Chromatogram object if a single element is ex-
tracted).

value For [<-: the replacement object(s). Can be a 1ist of Chromatogram objects or,
if length of i and j are 1, a single Chromatogram object.
For pData<-: a data.frame with the number of rows matching the number of
columns of object.
For colnames: a character with the new column names.

col For plot: the color to be used for plotting. Either a vector of length 1 or equal
to ncol (x).

1ty For plot: the line type (see plot for more details. Can be either a vector of
length 1 or of length equal to ncol(x).

type For plot: the type of plot (see plot for more details. Can be either a vector of

length 1 or of length equal to ncol (x).

20 Chromatograms-class
xlab For plot: the x-axis label.
ylab For plot: the y-axis label.
main For plot: the plot title. If not provided the mz range will be used as plot title.
name For $, the name of the pheno data column.

Details

The Chromatograms class extends the base matrix class and hence allows to store Chromatogram
objects in a two-dimensional array. Each row is supposed to contain Chromatogram objects for one
MS data slice with a common mz and rt range. Columns contain Chromatogram objects from the
same sample.

plot: if nrow(x) > 1 the plot area is split into nrow(x) sub-plots and the chromatograms of one
row are plotted in each.

Value

For [: the subset of the Chromatograms object. If a single element is extracted (e.g. if i and j
are of length 1) a Chromatogram object is returned. Otherwise (if drop = FALSE, the default, is
specified) a Chromatograms object is returned. If drop = TRUE is specified, the method returns a
list of Chromatogram objects.

For phenoData: an NAnnotatedDataFrame representing the pheno data of the object.
For pData: a data. frame representing the pheno data of the object.

For $: the value of the corresponding column in the pheno data table of the object.

Note

Subsetting with [will always return a Chromatograms object (with the exception of extracting a
single element) unless drop = TRUE is specified. This is different from the default subsetting
behaviour of matrix-like objects.

Author(s)

Johannes Rainer

See Also

Chromatogram for the class representing chromatogram data. chromatogram for the method to
extract a Chromatograms object from a MSnExp or OnDiskMSnExp object.

Examples

Creating some chromatogram objects to put them into a Chromatograms object
ints <- abs(rnorm(25, sd = 200))

ch1l <- Chromatogram(rtime = 1:length(ints), ints)

ints <- abs(rnorm(32, sd = 90))

ch2 <- Chromatogram(rtime = 1:length(ints), ints)

ints <- abs(rnorm(19, sd = 120))

ch3 <- Chromatogram(rtime = 1:length(ints), ints)

ints <- abs(rnorm(21, sd = 40))

ch4 <- Chromatogram(rtime = 1:length(ints), ints)

Create a Chromatograms object with 2 rows and 2 columns
chrs <- Chromatograms(list(ch1, ch2, ch3, ch4), nrow = 2)

clean-methods 21

chrs

Extract the first element from the second column. Extracting a single
element always returns a Chromatogram object.
chrs[1, 2]

Extract the second row. Extracting a row or column (i.e. multiple elements
returns by default a list of Chromatogram objects.
chrs[2,]

Extract the second row with drop = FALSE, i.e. return a Chromatograms
object.
chrs[2, , drop = FALSE]

Replace the first element.
chrs[1, 1] <- ch3
chrs

Add a pheno data.

pd <- data.frame(name = c("first sample”, "second sample”),
idx = 1:2)

pData(chrs) <- pd

Column names correspond to the row names of the pheno data
chrs

Access a column within the pheno data
chrs$name

Create some random Chromatogram objects

ints <- abs(rnorm(123, mean = 200, sd = 32))

ch1l <- Chromatogram(rtime = seq_along(ints), intensity = ints, mz = 231)
ints <- abs(rnorm(122, mean = 250, sd = 43))

ch2 <- Chromatogram(rtime = seq_along(ints), intensity = ints, mz = 231)
ints <- abs(rnorm(125, mean = 590, sd = 120))

ch3 <- Chromatogram(rtime = seq_along(ints), intensity
ints <- abs(rnorm(124, mean = 1200, sd = 509))

ch4 <- Chromatogram(rtime = seq_along(ints), intensity = ints, mz = 542)

ints, mz = 542)

Combine into a 2x2 Chromatograms object
chrs <- Chromatograms(list(chl, ch2, ch3, ch4), byrow = TRUE, ncol = 2)

Plot the second row
plot(chrs[2, , drop = FALSE])

Plot all chromatograms
plot(chrs, col = c("#ff000080", "#00ff0080"))

clean-methods Clean "MSnExp’, ’Spectrum’ or ’Chromatogram’ instances

Description

This method cleans out individual spectra (Spectrum instances), chromatograms (Chromatogram
instances) or whole experiments (MSnExp instances) of O-intensity peaks. Unless all is set to FALSE,

22 clean-methods

original O-intensity values are retained only around peaks. If more than two 0’s were separating two
peaks, only the first and last ones, those directly adjacent to the peak ranges are kept. If two peaks
are separated by only one O-intensity value, it is retained. An illustrative example is shown below.

Methods

signature(object = "MSnExp", all = "logical”, verbose = "logical”) Cleans all spec-
tra in MSnExp object. Displays a control bar if verbose set to TRUE (default). Returns a cleaned
MSnExp instance.

signature(object = "Spectrum”, all = "logical”, msLevel. = "numeric”) Cleans the Spectrum
object. Returns a cleaned Spectrum instance. If all = TRUE, then all zeros are removed.
msLevel. defines the level of the spectrum, and if msLevel (object) != msLevel., cleaning
is ignored. Only relevant when called from OnDiskMSnExp and is only relevant for developers.

signature(object = "Chromatogram”, all = "logical”, na.rm = "logical”) Cleans the
Chromatogram instance and returns a cleaned Chromatogram object. If na. rmis TRUE (default
is FALSE) all NA intensities are removed before cleaning the chromatogram.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

See Also

removePeaks and trimMz for other spectra processing methods.

Examples

int <- ¢(1,9,90,90,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0)
spl <- new("Spectrum2”,
intensity=int,
mz=1:1length(int))
sp2 <- clean(sp1) #i# default is all=FALSE
intensity(sp1)
intensity(sp2)
intensity(clean(sp1, all = TRUE))

mz(sp1)
mz(sp2)
mz(clean(spl, all = TRUE))

data(itraqdata)

itraqdata2 <- clean(itraqdata)
sum(peaksCount(itraqdata))
sum(peaksCount (itragdata2))
processingData(itraqdata2)

Create a simple Chromatogram object
chr <- Chromatogram(rtime = 1:12,
intensity = c(@, 0, 20, 0, @, 9, 123, 124343, 3432, 0, 0, 0))

Remove 0-intensity values keeping those adjacent to peaks
chr <- clean(chr)

intensity(chr)

Remove all @-intensity values

combineFeatures 23

chr <- clean(chr, all = TRUE)
intensity(chr)

Clean a Chromatogram with NAs.
chr <- Chromatogram(rtime = 1:12,
intensity = c(@, 9, 20, NA, NA, 0, 123, 124343, 3432, 0, 0, 0))
chr <- clean(chr, all = FALSE, na.rm = TRUE)
intensity(chr)

combineFeatures Combines features in an MSnSet object

Description

This function combines the features in an "MSnSet” instance applying a summarisation function
(see fun argument) to sets of features as defined by a factor (see groupBy argument). Note that the
feature names are automatically updated based on the groupBy parameter.

The coefficient of variations are automatically computed and collated to the featureData slot. See
cv and cv.norm arguments for details.

NB: All the functions available as fun take a na.rm argument. This argument is FALSE by default.
This will have as effect that NA get propagated at the higher level. It is generally advised to set
na.rm = TRUE. See the example below.

Usage
combineFeatures(object, groupBy, fun = c("mean”, "median”,
"weighted.mean”, "sum”, "medpolish”, "iPQF", "NTR"), redundancy.handler =
c("unique”, "multiple"”), cv = TRUE, cv.norm = "sum”, verbose =
isMSnbaseVerbose(), ...)
Arguments
object An instance of class "MSnSet"” whose features will be summerised.
groupBy A factor, character, numeric or a list of the above defining how to sum-
merise the features. The list must be of length nrow(object). Each element
of the list is a vector describing the feature mapping. If the list can be named,
its names must match fetureNames(object). See redundancy.handler for
details about the latter.
fun The summerising function. Currently, mean, median, weighted mean, sum, me-

dian polish, iPQF (see iPQF for details) and NTR (see NTR for details) are im-
plemented, but user-defined functions can also be supplied.
redundancy.handler

If groupBy is a 1list, one of "unique” (default) or "multiple” (ignored other-
wise) defining how to handle peptides that can be associated to multiple higher-
level features (proteins) upon combination. Using "unique” will only consider
uniquely matching features (features matching multiple proteins will be dis-
carded). "multiple” will allow matching to multiple proteins and each feature
will be repeatedly tallied for each possible matching protein.

24 combineFeatures

cv A logical defining if feature coefficients of variation should be computed and
stored as feature meta-data. Default is TRUE.

cv.norm A character defining how to normalise the feature intensitites prior to CV cal-
culation. Default is sum. Use none to keep intensities as is. See featureCV for
more details.

verbose A logical indicating whether verbose output is to be printed out.

Additional arguments for the fun function.

Value

A new "MSnSet” instance is returned with ncol (i.e. number of samples) is unchanged, but nrow
(i.e. the number od features) is now equals to the number of levels in groupBy. The feature metadata
(featureData slot) is updated accordingly and only the first occurrence of a feature in the original
feature meta-data is kept.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

References

iPQF: a new peptide-to-protein summarization method using peptide spectra characteristics to im-
prove protein quantification. Fischer M, Renard BY. Bioinformatics. 2016 Apr 1;32(7):1040-7.
doi:10.1093/bioinformatics/btv675. Epub 2015 Nov 20. PubMed PMID:26589272.

See Also

featureCV to calculate coefficient of variation, nFeatures to document the number of features per
group in the feature data, and the aggvar to explore variability within protein groups.

iPQF for iPQF summarisation.

NTR for normalisation to reference summarisation.

Examples

data(msnset)
msnset <- msnset[11:15,]
exprs(msnset)

arbitrary grouping into two groups

grp <- as.factor(c(1, 1, 2, 2, 2))

msnset.comb <- combineFeatures(msnset, grp, "sum")
dim(msnset.comb)

exprs(msnset.comb)

fvarLabels(msnset.comb)

grouping with a list

grpl <- list(c("A", "B"), "A", "A", "C", c("C", "B"))

optional naming

names(grpl) <- featureNames(msnset)

exprs(combineFeatures(msnset, grpl, fun = "sum”, redundancy.handler = "unique"))
exprs(combineFeatures(msnset, grpl, fun " " "multiple”))

sum”, redundancy.handler

missing data
exprs(msnset)[4, 4] <-

commonFeatureNames 25

exprs(msnset)[2, 2] <- NA
exprs(msnset)
NAs propagate in the 115 and 117 channels
exprs(combineFeatures(msnset, grp, "sum"))
NAs are removed before summing
exprs(combineFeatures(msnset, grp, "sum”, na.rm = TRUE))

using iPQF
data(msnset2)
res <- combineFeatures(msnset2,
groupBy = fData(msnset2)$accession,

redundancy.handler = "unique”,
fun = "iPQF",
low.support.filter = FALSE,
ratio.calc = "sum",
method.combine = FALSE)
head(exprs(res))
commonFeatureNames Keep only common feature names
Description

Subsets MSnSet instances to their common feature names.

Usage

commonFeatureNames(x, y)

Arguments
X An instance of class MSnSet or a 1list or MSnSetList with at least 2 MSnSet
objects.
y An instance of class MSnSet. Ignored if x is a 1ist/MSnSetList.
Value

An linkS4class{MSnSetList} composed of the input MSnSet containing only common features
in the same order. The names of the output are either the names of the x and y input variables or the
names of x if a list is provided.

Author(s)

Laurent Gatto

Examples

library(”"pRolocdata”)

data(tan2009r1)

data(tan2009r2)

cmn <- commonFeatureNames(tan2009r1, tan2009r2)
names(cmn)

as a named list

26 compareSpectra-methods

names (commonFeatureNames(list(a = tan2009r1, b = tan2009r2)))

without message

suppressMessages(cmn <- commonFeatureNames(tan2009r1, tan2009r2))
more than 2 instance

data(tan2009r3)
cmn <- commonFeatureNames(list(tan2009r1, tan2009r2, tan2009r3))
length(cmn)
compareMSnSets Compare two MSnSets
Description

Compares two MSnSet instances. The qual and processingData slots are generally omitted.

Usage
compareMSnSets(x, y, qual = FALSE, proc = FALSE)

Arguments

X First MSnSet

y Second MSnSet

qual Should the qual slots be compared? Default is FALSE.

proc Should the processingData slots be compared? Default is FALSE.
Value

A logical
Author(s)

Laurent Gatto

compareSpectra-methods
Compare Spectra of an ’"MSnExp’ or ’Spectrum’ instances

Description

This method compares spectra (Spectrum instances) pairwise or all spectra of an experiment (MSnExp
instances). Currently the comparison is based on the number of common peaks fun = "common”,

the Pearson correlation fun = "cor”, the dot product fun = "dotproduct” or a user-defined
function.

For fun = "common” the tolerance (default 25e-6) can be set and the tolerance can be defined to
be relative (default relative = TRUE) or absolute (relative = FALSE). To compare spectra with
fun = "cor"” and fun = "dotproduct”, the spectra need to be binned. The binSize argument (in
Dalton) controls the binning precision. Please see bin for details.

Instead of these three predefined functions for fun a user-defined comparison function can be sup-
plied. This function takes two Spectrum objects as the first two arguments and . .. as third argu-
ment. The function must return a single numeric value. See the example section.

estimateNoise-methods 27

Methods
signature(objectl = "MSnExp"”, object2 = "missing”, fun = "character”, ...) Compares
all spectra in an MSnExp object. The ... arguments are passed to the internal functions. Re-
turns a matrix of dimension length(object1) by length(object1).
signature(objectl = "Spectrum”, object2 = "Spectrum”, fun = "character”, ...) Compares
two Spectrum objects. See the above explanation for fun and Returns a single numeric
value.
Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

References

Stein, S. E., & Scott, D. R. (1994). Optimization and testing of mass spectral library search algo-
rithms for compound identification. Journal of the American Society for Mass Spectrometry, 5(9),
859-866. doi: http://dx.doi.org/10.1016/1044-0305(94)87009-8

Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., King, N., Stein, S. E. and Aebersold, R. (2007)
Development and validation of a spectral library searching method for peptide identification from
MS/MS. Proteomics, 7: 655-667. doi: http://dx.doi.org/10.1002/pmic.200600625

See Also

bin, clean, pickPeaks, smooth, removePeaks and trimMz for other spectra processing methods.

Examples

s1 <- new("Spectrum2”, mz=1:10, intensity=1:10)
s2 <- new("Spectrum2”, mz=1:10, intensity=10:1)
compareSpectra(sl, s2)

compareSpectra(sl, s2, fun="cor"”, binSize=2)
compareSpectra(sl, s2, fun="dotproduct")

define our own (useless) comparison function (it is just a basic example)

equallLength <- function(x, vy, ...) {
return(peaksCount(x)/(peaksCount(y)+.Machine$double.eps))

3

compareSpectra(s1, s2, fun=equallLength)

compareSpectra(s1, new("Spectrum2”, mz=1:5, intensity=1:5), fun=equallength)

compareSpectra(s1, new("Spectrum2”), fun=equallength)

data(itraqdata)
compareSpectra(itraqdatal1:5], fun="cor")

estimateNoise-methods Noise Estimation for 'Spectrum’ instances

Description

This method performs a noise estimation on individual spectra (Spectrum instances). There are cur-

rently two different noise estimators, the Median Absolute Deviation (method = "MAD") and Fried-

man’s Super Smoother (method = "SuperSmoother"”), as implemented in the MALDIquant: :detectPeaks
and MALDIquant: :estimateNoise functions respectively.

28 exprsToRatios-methods

Methods

signature(object = "Spectrum”, method = "character”, ...) Estiamtes the noise in a non-
centroided spectrum (Spectrum instance). method could be "MAD" or "SuperSmoother"”. The
arguments . . . are passed to the noise estimator functions implemented in MALDIquant: :estimateNoise.
Currenlty only the method = "SuperSmoother" accepts additional arguments, e.g. span.
Please see supsmu for details. This method returns a two-column matrix with the m/z and
intensity values in the first and the second column.

signature(object = "MSnExp”, method = "character”, ...) Estimates noise for all spec-
train object.
Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

References
S. Gibb and K. Strimmer. 2012. MALDIquant: a versatile R package for the analysis of mass spec-
trometry data. Bioinformatics 28: 2270-2271. http://strimmerlab.org/software/maldiquant/
See Also

pickPeaks, and the underlying method in MALDIquant: estimateNoise.

Examples

spl <- new("Spectruml”,

intensity = c(1:6, 5:1),

mz = 1:11,

centroided = FALSE)
estimateNoise(sp1, method = "SuperSmoother™)

exprsToRatios-methods Calculate all ratio pairs

Description

Calculations all possible ratios for the assayData columns in an "MSnSet”. The function getRatios(x, log = FALSE)
takes a matrix x as input and is used by exprsToRatios.

Methods

signature(object = "MSnSet”, log = "logical”) If logis FALSE (default) the ratios for all
the assayData columns are computed; otherwise, log ratios (differences) are calculated.

signature(object = "matrix”, log = "logical”) As above, but for a matrix instance.

Examples

data(msnset)

pData(msnset)
head(exprs(msnset))

r <- exprsToRatios(msnset)
head(exprs(r))

pData(r)

http://strimmerlab.org/software/maldiquant/

extractPrecSpectra-methods 29

extractPrecSpectra-methods
Extracts precursor-specific spectra from an "MSnExp’ object

Description

Extracts the MSMS spectra that originate from the precursor(s) having the same MZ value as defined
in theprec argument.

A warning will be issued of one or several of the precursor MZ values in prec are absent in the
experiment precursor MZ values (i.e in precursorMz(object)).

Methods
signature(object = "MSnExp”, prec = "numeric”) Returns an "MSnExp" containing MSMS
spectra whose precursor MZ values are in prec.
Author(s)

Laurent Gatto <lg390@cam.ac.uk>

Examples

file <- dir(system.file(package="MSnbase"”,dir="extdata"),
full.name=TRUE,pattern="mzXML$")

aa <- readMSData(file,verbose=FALSE)

my.prec <- precursorMz(aa)[1]

my.prec

bb <- extractPrecSpectra(aa,my.prec)

precursorMz(bb)

processingData(bb)

factorsAsStrings Converts factors to strings

Description

This function produces the opposite as the stringsAsFactors argument in the data.frame or
read. table functions; it converts factors columns to characters.

Usage

factorsAsStrings(x)
Arguments

X A data.frame
Value

A data.frame where factors are converted to characters.

30 FeatComp-class

Author(s)

Laurent Gatto

Examples

data(iris)
str(iris)
str(factorsAsStrings(iris))

FeatComp-class Class "FeatComp"”

Description

Comparing feature names of two comparable MSnSet instances.

Objects from the Class

Objects can be created with compfnames. The method compares the feature names of two objects
of class "MSnSet”. It prints a summary matrix of common and unique feature names and invisibly
returns a list of FeatComp instances.

The function will compute the common and unique features for all feature names of the two input
objects (featureNames(x) and feautreNames(y)) as well as distinct subsets as defined in the
fcol1l and fcol2 feautre variables.

Slots

name: Object of class "character"” defining the name of the compared features. By convention,
"all” is used when all feature names are used; otherwise, the respective levels of the feature
variables fcol1 and fcol2.

common: Object of class "character” with the common feature names.

uniquel: Objectof class "character” with the features unique to the first MSnSet (x in compfname).
unique2: Object of class "character” with the features unique to the seconn MSnSet (y in compfname).
all: Object of class "logical” defining if all features of only a subset were compared. One

expects that name == "all” when all is TRUE.
Methods
Accessors names, common, uniquel and unique2 can be used to access the respective FeatComp
slots.
compfnames signature(x = "MSnSet"”, y = "MSnSet"”, fcoll = "character"”, fcol2 = "character”, simpli;

creates the FeatComp comparison object for instances x and y. The feature variables to be
considered to details feature comparison can be defined by fcoll (default is "markers"” and
fcol2 for x and y respectively). Setting either to NULL will only consider all feature names;
in such case, of simplify is TRUE (default), an FeatComp object is returned instead of a list
of length 1. The verbose logical controls if a summary table needs to be printed (default is
TRUE).

compfnames signature(x = "list”, y = "missing”, ...): when x is a list of MSnSet
instances, compfnames is applied to all element pairs of x. Additional parameters fcoll,
fcol2, simplify and verbose are passed to the pairwise comparison method.

show signature(object = "FeatComp"): prints a summary of the object.

featureCV 31

Author(s)

Laurent Gatto <lg390@cam.ac.uk> and Thomas Naake

See Also

averageMSnSet to compuate an average MSnSet.

Examples

library("pRolocdata”)

data(tan2009r1)

data(tan2009r2)

x <- compfnames(tan2009ri1, tan2009r2)
x[[1]]

x[2:3]

head(common(x[[11]1))

data(tan2009r3)

tanl <- list(tan2009r1, tan2009r2, tan2009r3)
xx <- compfnames(tanl, fcoll = NULL)
length(xx)

tail(xx)

all.equal(xx[[15]],
compfnames(tan2009r2, tan2009r3, fcoll = NULL))
str(sapply(xx, common))

featureCV Calculates coeffivient of variation for features

Description

This function calculates the column-wise coefficient of variation (CV), i.e. the ration between the
standard deviation and the mean, for the features in an "MSnSet"”. The CVs are calculated for the
groups of features defined by groupBy. For groups defined by single features, NA is returned.

Usage
featureCV(x, groupBy, na.rm = TRUE, norm = c("sum”, "max", "none",
"center.mean”, "center.median”, "quantiles”, "quantiles.robust"))
Arguments
X An instance of class "MSnSet".
groupBy An object of class factor defining how to summerise the features.
na.rm A logical defining whether missing values should be removed.
norm One of 'none’ (default), ’sum’, 'max’, ’center.mean’, ’center.median’ ’quantiles’

or ’quantiles.robust’ defining if and how the data should be normalised prior to
CV calculation. See normalise for more details.

32 FeaturesOflnterest-class

Value

A matrix of dimensions length(levels(groupBy)) by ncol(x) with the respecive CVs.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>, Sebastian Gibb <mail @sebastiangibb.de>

See Also

combineFeatures

Examples

data(msnset)

msnset <- msnset[1:4]

gb <- factor(rep(1:2, each = 2))
featureCV(msnset, gb)

FeaturesOfInterest-class
Features of Interest

Description

The Features of Interest infrastructure allows to define a set of features of particular interest to be
used/matched against existing data sets contained in "MSnSet"”. A specific set of features is stored
as an FeaturesOfInterest object and a collection of such non-redundant instances (for example
for a specific organism, project, ...) can be collected in a FoICollection.

Objects from the Class

Objects can be created with the respective FeaturesOfInterest and FoICollection constructors.

FeaturesOfInterest instances can be generated in two different ways: the constructor takes either
(1) a set of features names (a character vector) and a description (character of length 1 - any
subsequent elements are silently ignored) or (2) feature names, a description and an instance of class
"MSnSet”. In the latter case, we call such FeaturesOfInterest objects traceable, because we can
identify the origin of the feature names and thus their validity. This is done by inspecting the MSnSet
instance and recording its dimensions, its name and a unique md5 hash tag (these are stores as part
of the optional objpar slot). In such cases, the feature names passed to the FeaturesOfInterest
constructor must also be present in the MSnSet; if one or more are not, an error will be thrown. If
your features of interest to be recorded stem for an existing experiment and have all been observed,
it is advised to pass the 3 arguments to the constructor to ensure that the feature names as valid.
Otherwise, only the third argument should be omitted.

FoICollection instances can be constructed by creating an empty collection and serial additions of
FeaturesOfInterest using addFeaturesOfInterest or by passing alist of FeaturesOfInterest
instance.

FeaturesOflnterest-class 33

Slots

FeaturesOfInterest class:

description: Object of class "character” describing the instance.

objpar: Optional object of class "list” providing details about the MSnSet instance originally
used to create the instance. See details section.

fnames: Object of class "character” with the feature of interest names.
date: Object of class "character” with the date the instance was first generated.

.__classVersion__: Object of class "Versions” with the FeaturesOfInterest class version.
Only relevant for development.

FoICollection class:

foic: Object of class "1ist"” with the FeaturesOfInterest.

.__classVersion__: Object of class "Versions” with the FoICollection class version. Only
relevant for development.

Extends

Class "Versioned”, directly.

Methods
FeaturesOfInterest class:

description signature(object = "FeaturesOfInterest”): returns the description of object.
foi signature(object = "FeaturesOfInterest"”): returns the features of interests.

length signature(x = "FeaturesOfInterest”): returns the number of features of interest in x.
show signature(object = "FeaturesOfInterest”): displays object.

fnamesIn signature(x = "FeaturesOfInterst”, y = "MSnSet”, count = "logical"”):
if count is FALSE (default), return a logical indicating whether there is at least one feautre
of interest present in x? Otherwise, returns the number of such features. Works also with
matrices and data.frames.

[Subsetting works like lists. Returns a new FoICollection.

[[Subsetting works like lists. Returns a new FeatureOfInterest.

FoICollection class:

description signature(object = "FoICollection"): returns the description of object.

foi signature(object = "FoICollection"): returns a list of FeaturesOfInterest.

length signature(x = "FoICollection"): returns the number of FeaturesOfInterest in the
collection.

lengths signature(x = "FolICollection"): returns the number of features of interest in each

FeaturesOfInterest in the collection x.

addFeaturesOfInterest signature(x = "FeaturesOfInterest”, y = "FolICollection”):
add the FeaturesOfInterest instance x to FoICollection y. If x is already present, a
message is printed and y is returned unchanged.

rmFeaturesOfInterest signature(object = "FoICollection”, i = "numeric"): removes
the ith FeatureOfInterest in the collection object.

show signature(object = "FoICollection"): displays object.

34 FeaturesOflnterest-class

Author(s)

Laurent Gatto <Ig390@cam.ac.uk>

Examples

library("pRolocdata”)

data(tan2009r1)

x <- FeaturesOfInterest(description = "A traceable test set of features of interest”,
fnames = featureNames(tan2009r1)[1:10],
object = tan2009r1)

X

description(x)

foi(x)

y <- FeaturesOfInterest(description = "Non-traceable features of interest”,
fnames = featureNames(tan2009r1)[111:113])

y

an illegal FeaturesOfInterest

try(FeaturesOfInterest(description = "Won't work”,
fnames = c("A", "Z", featureNames(tan2009r1)),
object = tan2009r1))

FeaturesOfinterest(description = "This work, but not traceable”,
fnames = c("A", "Z", featureNames(tan2009r1)))

xx <- FoICollection()
XX

xx <- addFeaturesOfInterest(x, xx)
xx <- addFeaturesOfInterest(y, xx)
names(xx) <- LETTERS[1:2]

XX

Sub-setting
xx[1]

xx[[1]1]
xx[["A"]]

description(xx)
foi(xx)

fnamesIn(x, tan2009r1)
fnamesIn(x, tan2009r1, count = TRUE)

rmFeaturesOfInterest(xx, 1)

fillUp 35

fillUp Fills up a vector

Description

nn

This function replaces all the empty characters "" and/or NAs with the value of the closest preceding
the preceding non-NA/"" element. The function is used to populate dataframe or matrice columns
where only the cells of the first row in a set of partially identical rows are explicitly populated and
the following are empty.

Usage
fillUp(x)

Arguments

X a vector.

Value

nn

A vector as x with all empty characters "" and NA values replaced by the preceding non-NA/"" value.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

Examples
d <- data.frame(protein=c("Prot1”,"”,"","Prot2”,"",""),
peptide=c("pep11”,"","pep12”,"pep21”, "pep22",""),
score=c(1:2,NA,1:3))
d
e <- apply(d,2,fillUp)
e

data.frame(e)
fillUp(d[,11)

filterIdentificationDataFrame
Filter out unreliable PSMs.

Description
A function to filter out PSMs matching to the decoy database, of rank greater than one and matching
non-proteotypic peptides.

Usage

filterIdentificationDataFrame(x, decoy = "isDecoy", rank = "rank",
accession = "DatabaseAccess”, spectrumID = "spectrumID”,
verbose = isMSnbaseVerbose())

36 formatRt

Arguments
X A data. frame containing PSMs.
decoy The column name defining whether entries match the decoy database. Default is
"isDecoy". The column should be a logical and only PSMs holding a FALSE
are retained. Ignored is set to NULL.
rank The column name holding the rank of the PSM. Default is "rank”. This column
should be a numeric and only PSMs having rank equal to 1 are retained. Ignored
is set to NULL.
accession The column name holding the protein (groups) accession. Defaultis "DatabaseAccess”.
Ignored is set to NULL.
spectrumID The name of the spectrum identifier column. Default is spectrumID.
verbose A logical verbosity flag. Default is to take isMSnbaseVerbose().
Details

The PSMs should be stored in a data.frame such as those produced by readMzIdData(). Note
that this function should be called before calling the reduce method on a PSM data. frame.

Value

A new data. frame with filtered out peptides and with the same columns as the input x.

Author(s)

Laurent Gatto

formatRt Format Retention Time

Description

Converts seconds to/from min:sec’ format

Usage

formatRt(rt)

Arguments

rt retention in seconds (numeric) or "'mm:sec" (character).

Details
This function is used to convert retention times. Conversion is seconds to/from the more human
friendly format "mm:sec".

Value

A vector of same length as rt.

get.amino.acids 37

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

Examples

formatRt(1524)
formatRt("25:24")

get.amino.acids Amino acids

Description
Returns a data. frame of amino acid properties: AA, ResidueMass, Abbrev3, ImmoniumIonMass,
Name, Hydrophobicity, Hydrophilicity, SideChainMass, pK1, pK2 and pI.

Usage

get.amino.acids()

Value

A data.frame

Author(s)

Laurent Gatto

Examples

get.amino.acids()

get.atomic.mass Atomic mass.

Description

Returns a double of used atomic mass.

Usage

get.atomic.mass()

Value

A named double.

Author(s)
Sebastian Gibb

38 grepEcols

Examples

get.atomic.mass()

getVariableName Return a variable name

Description

Return the name of variable varname in call match_call.

Usage

getVariableName(match_call, varname)

Arguments

match_call An object of class call, as returned by match.call.

varname An character of length 1 which is looked up in match_call.
Value

A character with the name of the variable passed as parameter varname in parent close of match_call.

Author(s)

Laurent Gatto

Examples

a<-1

f <- function(x, y)

MSnbase: : :getVariableName(match.call(), "x")
f(x = a)

fly = a)

grepEcols Returns the matching column names of indices.

Description

Given a text spread sheet f and a pattern to be matched to its header (first line in the file), the
function returns the matching columns names or indices of the corresponding data. frame.

Usage

grepEcols(f, pattern, ..., n =1)

getEcols(f, ..., n=1)

imageNA2 39

Arguments
f A connection object or a character string to be read in with readLines(f, n = 1).
pattern A character string containing a regular expression to be matched to the file’s
header.
Additional parameters passed to strsplit to split the file header into individual
column names.
n An integer specifying which line in file f to grep (get). Default is 1. Note that
this argument must be named.
Details

The function starts by reading the first line of the file (or connection) f with readLines, then splits
it according to the optional ... arguments (it is important to correctly specify strsplit’s split
character vector here) and then matches pattern to the individual column names using grep.

Similarly, getEcols can be used to explore the column names and decide for the appropriate
pattern value.

These functions are useful to check the parameters to be provided to readMSnSet2.

Value
Depending on value, the matching column names of indices. In case of getEcols, a character of

column names.

Author(s)

Laurent Gatto

See Also

readMSnSet?2

imageNA2 NA heatmap visualisation for 2 groups

Description

Produces a heatmap after reordring rows and columsn to highlight missing value patterns.

Usage

imageNA2(object, pcol, Rowv, Colv = TRUE, useGroupMean = FALSE,
plot = TRUE, ...)

40

Arguments

object
pcol

Rowv

Colv

useGroupMean

plot

Value

impute-methods

An instance of class MSnSet

Either the name of a phenoData variable to be used to determine the group struc-
ture or a factor or any object that can be coerced as a factor of length equal
to nrow(object). The resulting factor must have 2 levels. If missing (default)
image(object) is called.

Determines if and how the rows/features are reordered. If missing (default),
rows are reordered according to order ((nNA1T + 1)#2/(nNA2 + 1)), where
NAT1 and NA2 are the number of missing values in each group. Use a vector of
numerics of feautre names to customise row order.

A logical that determines if columns/samples are reordered. Default is TRUE.

Replace individual feature intensities by the group mean intensity. Default is
FALSE.

A logical specifying of an image should be produced. Default is TRUE.

Additional arguments passed to image.

Used for its side effect of plotting. Invisibly returns Rovw and Colv.

Author(s)

Laurent Gatto, Samuel Wieczorek and Thomas Burger

Examples

library("”pRolocdata”)

library(”"pRoloc")
data(dunkley2006)

pcol <- ifelse(dunkley2006$fraction <= 5, "A", "B")
nax <- makeNaData(dunkley2006, pNA = 0.10)
exprs(nax)[sample(nrow(nax), 30@), pcol == "A"] <- NA
exprs(nax)[sample(nrow(nax), 50), pcol == "B"] <- NA
MSnbase: : : imageNA2(nax, pcol)
MSnbase: : : imageNA2(nax, pcol, useGroupMean = TRUE)

MSnbase: : : imageNA2(nax, pcol, Colv = FALSE, useGroupMean

FALSE)

MSnbase: : : imageNA2(nax, pcol, Colv = FALSE, useGroupMean = TRUE)

impute-methods

Quantitative proteomics data imputation

Description

The impute method performs data imputation on an MSnSet instance using a variety of methods
(see below). The imputation and the parameters are logged into the processingData(object)

slot.

Users should proceed with care when imputing data and take precautions to assure that the impu-
tation produce valid results, in particular with naive imputations such as replacing missing values

with 0.

impute-methods 41

Details

There are two types of mechanisms resulting in missing values in LC/MSMS experiments.

» Missing values resulting from absence of detection of a feature, despite ions being present
at detectable concentrations. For example in the case of ion suppression or as a result from
the stochastic, data-dependent nature of the MS acquisition method. These missing value are
expected to be randomly distributed in the data and are defined as missing at random (MAR)
or missing completely at random (MCAR).

* Biologically relevant missing values resulting from the absence of the low abundance of ions
(below the limit of detection of the instrument). These missing values are not expected to be
randomly distributed in the data and are defined as missing not at random (MNAR).

MNAR features should ideally be imputed with a left-censor method, such as QRILC below. Con-
versely, it is recommended to use host deck methods such nearest neighbours, Bayesian missing
value imputation or maximum likelihood methods when values are missing at random.

Currently, the following imputation methods are available:

MLE Maximum likelihood-based imputation method using the EM algorithm. Implemented in
the norm: :imp.norm function. See imp.norm for details and additional parameters. Note
that here, ... are passed to the em.norm function, rather to the actual imputation function
imp.norm.

bpca Bayesian missing value imputation are available, as implemented in the and pcaMethods: : pca
functions. See pca for details and additional parameters.

knn Nearest neighbour averaging, as implemented in the impute::impute.knn function. See
impute.knn for details and additional parameters.

QRILC A missing data imputation method that performs the imputation of left-censored miss-
ing data using random draws from a truncated distribution with parameters estimated us-
ing quantile regression. Implemented in the imputeLCMD::impute.QRILC function. See
impute.QRILC for details and additional parameters.

MinDet Performs the imputation of left-censored missing data using a deterministic minimal value
approach. Considering a expression data with n samples and p features, for each sample,
the missing entries are replaced with a minimal value observed in that sample. The mini-
mal value observed is estimated as being the g-th quantile (default 9 = ©.01) of the ob-
served values in that sample. Implemented in the imputeLCMD: :impute.MinDet function.
See impute.MinDet for details and additional parameters.

MinProb Performs the imputation of left-censored missing data by random draws from a Gaussian
distribution centred to a minimal value. Considering an expression data matrix with n samples
and p features, for each sample, the mean value of the Gaussian distribution is set to a mini-
mal observed value in that sample. The minimal value observed is estimated as being the g-th
quantile (default g = 0.01) of the observed values in that sample. The standard deviation is
estimated as the median of the feature standard deviations. Note that when estimating the stan-
dard deviation of the Gaussian distribution, only the peptides/proteins which present more than
50% recorded values are considered. Implemented in the imputelLCMD: :impute.MinProb
function. See impute.MinProb for details and additional parameters.

min Replaces the missing values by the smallest non-missing value in the data.
zero Replaces the missing values by 0.

mixed A mixed imputation applying two methods (to be defined by the user as mar for val-
ues missing at random and mnar for values missing not at random, see example) on two
M[C]JAR/MNAR subsets of the data (as defined by the user by a randna logical, of length
equal to nrow(object)).

42 impute-methods

nbavg Average neighbour imputation for fractions collected along a fractionation/separation gra-
dient, such as sub-cellular fractions. The method assumes that the fraction are ordered along
the gradient and is invalid otherwise.
Continuous sets NA value at the beginning and the end of the quantitation vectors are set to
the lowest observed value in the data or to a user defined value passed as argument k. Them,
when a missing value is flanked by two non-missing neighbouring values, it is imputed by the
mean of its direct neighbours. A stretch of 2 or more missing values will not be imputed. See
the example below.

The naset MSnSet is an real quantitative data where quantitative values have been replaced by NAs.
See script/naset.R for details.

Methods

signature(object = "MSnSet”, method, ...) This method performs data imputation on the
object MSnSet instance using the method algorithm. ... is used to pass parameters to the
imputation function. See the respective methods for details and additional parameters.

Author(s)

Laurent Gatto and Samuel Wieczorek

References

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani,
David Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays Bioin-
formatics (2001) 17 (6): 520-525.

Oba et al., A Bayesian missing value estimation method for gene expression profile data, Bioinfor-
matics (2003) 19 (16): 2088-2096.

Cosmin Lazar (2015). imputeLCMD: A collection of methods for left-censored missing data impu-
tation. R package version 2.0. http://CRAN.R-project.org/package=imputeLCMD.

Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple Natures of Missing Val-
ues in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J Proteome
Res. 2016 Apr 1;15(4):1116-25. doi: 10.1021/acs.jproteome.5Sb00981. PubMed PMID: 26906401.

Examples

data(naset)

table of missing values along the rows
table(fData(naset)$nNA)

table of missing values along the columns
pData(naset)$nNA

non-random missing values

notna <- which(!fData(naset)$randna)
length(notna)

notna

impute(naset, method = "min")
if (require(”imputeLCMD")) {

impute(naset, method = "QRILC")
impute(naset, method = "MinDet")

http://CRAN.R-project.org/package=imputeLCMD

iPQF 43

if (require(”"norm™"))
impute(naset, method = "MLE")

impute(naset, "mixed”,
randna = fData(naset)$randna,
mar = "knn"”, mnar = "QRILC")

neighbour averaging

X <- naset[1:4, 1:6]

exprs(x)[1, 11 <= NA ## min value

exprs(x)[2, 3] <- NA ## average

exprs(x)[3, 1:2] <- NA ## min value and average
4th row: no imputation

exprs(x)

exprs(impute(x, "nbavg"))

iPQF iPQF: iTRAQ (and TMT) Protein Quantification based on Features

Description

The iPQF spectra-to-protein summarisation method integrates peptide spectra characteristics and
quantitative values for protein quantitation estimation. Spectra features, such as charge state, se-
quence length, identification score and others, contain valuable information concerning quantifi-
cation accuracy. The iPQF algorithm assigns weights to spectra according to their overall feature
reliability and computes a weighted mean to estimate protein quantities. See also combineFeatures
for a more general overview of feature aggregation and examples.

Usage

n

iPQF (object, groupBy, low.support.filter = FALSE, ratio.calc = "sum”,
method.combine = FALSE, feature.weight = c(7, 6, 4, 3, 2, 1, 5)*2)

Arguments
object An instance of class MSnSet containing absolute ion intensities.
groupBy Vector defining spectra to protein matching. Generally, this is a feature variable

such as fData(object)$accession.

low.support.filter
A logical specifying if proteins being supported by only 1-2 peptide spectra
should be filtered out. Default is FALSE.

ratio.calc Either "none” (don’t calculate any ratios), "sum” (default), or a specific chan-
nel (one of sampleNames(object)) defining how to calculate relative peptides
intensities.

method.combine A logical defining whether to further use median polish to combine features.

feature.weight Vector "numeric” giving weight to the different features. Default is the squared
order of the features redundant -unique-distance metric, charge state, ion inten-
sity, sequence length, identification score, modification state, and mass based on
a robustness analysis.

44 isCentroidedFromFile

Value

A matrix with estimated protein ratios.

Author(s)

Martina Fischer

References

iPQF: a new peptide-to-protein summarization method using peptide spectra characteristics to im-
prove protein quantification. Fischer M, Renard BY. Bioinformatics. 2016 Apr 1;32(7):1040-7.
doi:10.1093/bioinformatics/btv675. Epub 2015 Nov 20. PubMed PMID:26589272.

Examples

data(msnset2)

head(exprs(msnset2))

prot <- combineFeatures(msnset2,
groupBy = fData(msnset2)$accession,
fun = "iPQF")

head(exprs(prot))

isCentroidedFromFile Get mode from mzML data file

Description
The function extracts the mode (profile or centroided) from the raw mass spectrometry file by pars-
ing the mzML file directly. If the object x stems from any other type of file, NAs are returned.
Usage

isCentroidedFromFile(x)

Arguments

X An object of class OnDiskMSnExp.

Details

This function is much faster than isCentroided(), which estimates mode from the data, but is
limited to data stemming from mzML files which are still available in their original location (and
accessed with fileNames(x)).

Value

A named logical vector of the same length as x.

Author(s)

Laurent Gatto

iTRAQ4 45

Examples

library("msdata”)
f <- proteomics(full.names = TRUE,
pattern = "TMT_Erwinia_1uLSike_Top1QHCD_isol2_45stepped_60min_01.mzML.gz")
X <- readMSData(f, mode = "onDisk")
table(isCentroidedFromFile(x), msLevel(x))

iTRAQ4 iTRAQ 4-plex set

Description

This instance of class "ReporterIons” corresponds to the iTRAQ 4-plex set, i.e the 114, 115,
116 and 117 isobaric tags. In the iTRAQS data set, an unfragmented tag, i.e reporter and attached
isobaric tag, is also included at MZ 145. These objects are used to plot the reporter ions of interest
in an MSMS spectra (see "Spectrum2”) as well as for quantification (see quantify).

Usage

iTRAQ4
iTRAQ5
iTRAQ8
iTRAQ9

References

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S,
Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin
DJ. "Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric
tagging reagents." Mol Cell Proteomics, 2004 Dec;3(12):1154-69. Epub 2004 Sep 22. PubMed
PMID: 15385600.

See Also

TMT6.

Examples

iTRAQ4
iTRAQ4[1:2]

newReporter <- new("ReporterIons”,
description="an example”,
name="my reporter ions",
reporterNames=c("myrepl1”, "myrep2"),
mz=c(121,122),
col=c("red”,"blue"),
width=0.05)

newReporter

46 listOf

itraqdata Example MSnExp and MSnSet data sets

Description

itraqdata is and example data sets is an iTRAQ 4-plex experiment that has been run on an Orbitrap
Velos instrument. It includes identification data in the feature data slot obtain from the Mascot
search engine. It is a subset of an spike-in experiment where proteins have spiked in an Erwinia
background, as described in

Karp et al. (2010), Addressing accuracy and precision issues in iTRAQ quantitation, Mol Cell
Proteomics. 2010 Sep;9(9):1885-97. Epub 2010 Apr 10. (PMID 20382981).

The spiked-in proteins in itradata are BSA and ENO and are present in relative abundances 1,
2.5,5,10and 10, 5, 2.5, 1 in the 114, 115, 116 and 117 reporter tags.

The msnset object is produced by running the quantify method on the itraqdata experimental
data, as detailed in the quantify example. This example data set is used in the MSnbase-demo
vignette, available with vignette(”"MSnbase-demo”, package="MSnbase").

The msnset2 object is another example iTRAQ4 data that is used to demonstrate features of the
package, in particular the iPQF feature aggregation method, described in iPQF. It corresponds to 11
proteins with spectra measurements from the original data set described by Breitwieser et al. (2011)

General statistical modeling of data from protein relative expression isobaric tags. J. Proteome
Res., 10, 2758-2766.

Usage

itraqdata

Examples

data(itraqdata)
itraqdata

created by

msnset <- quantify(itraqdata, method = "trap”, reporters = iTRAQ4)
data(msnset)

msnset

data(msnset2)
msnset2

listof Tests equality of list elements class

Description

Compares equality of all members of a list.

Usage
listOf(x, class, valid = TRUE)

makeCamelCase 47

Arguments

X A codelist.

class A character defining the expected class.

valid A logical defining if all elements should be tested for validity. Default is TRUE.
Value

TRUE is all elements of x inherit from class.

Author(s)

Laurent Gatto

Examples

listOf(list(), "foo")
listOof(list("a"”, "b"), "character")
listOf(list("a", 1), "character"”)

makeCamelCase Convert to camel case by replacing dots by captial letters

Description

Convert a vector of characters to camel case by replacing dots by captial letters.

Usage

makeCamelCase(x, prefix)

Arguments

X A vector to be transformed to camel case.

prefix An optional character of length one. Any additional elements are ignores.
Value

A character of same length as x.

Author(s)

Laurent Gatto

Examples

nms <- c("aa.foo"”, "ab.bar")
makeCamelCase (nms)
makeCamelCase(nms, prefix = "x")

48 makeNaData

makeNaData Create a data with missing values

Description

These functions take an instance of class "MSnSet” and sets randomly selected values to NA.

Usage

makeNaData(object, nNA, pNA, exclude)

makeNaData2(object, nRows, nNAs, exclude)

whichNA(x)
Arguments
object An instance of class MSnSet.
nNA The absolute number of missing values to be assigned.
pNA The proportion of missing values to be assignmed.
exclude A vector to be used to subset object, defining rows that should not be used to
set NAs.
nRows The number of rows for each set.
nNAs The number of missing values for each set.
X A matrix or an instance of class MSnSet.
Details

makeNaData randomly selects a number nNA (or a proportion pNA) of cells in the expression matrix
to be set to NA.

makeNaData2 will select length(nRows) sets of rows from object, each with nRows[i] rows
respectively. The first set will be assigned nNAs[1] missing values, the second nNAs[2], ... As
opposed to makeNaData, this permits to control the number of NAs per rows.

The whichNA can be used to extract the indices of the missing values, as illustrated in the example.

Value
An instance of class MSnSet, as object, but with the appropriate number/proportion of missing
values. The returned object has an additional feature meta-data columns, nNA

Author(s)

Laurent Gatto

MIAPE-class 49

Examples

Example 1
library(pRolocdata)
data(dunkley2006)
sum(is.na(dunkley2006))
dunkleyNA <- makeNaData(dunkley2006, nNA = 150)
processingData(dunkleyNA)
sum(is.na(dunkleyNA))
table(fData(dunkleyNA)$nNA)
naldx <- whichNA(dunkleyNA)
head(naldx)
Example 2
dunkleyNA <- makeNaData(dunkley2006, nNA = 150, exclude = 1:10)
processingData(dunkleyNA)
table(fData(dunkleyNA)$nNA[1:10])
table(fData(dunkleyNA)$nNA)
Example 3
nr <- rep(10, 5)
na <- 1:5
x <- makeNaData2(dunkley2006[1:100, 1:5],
nRows = nr,
nNAs = na)
processingData(x)
(res <- table(fData(x)$nNA))
stopifnot(as.numeric(names(res)[-1]) == na)
stopifnot(res[-1] == nr)
Example 3
nr2 <- c(5, 12, 11, 8)
na2 <- c(3, 8, 1, 4)
x2 <- makeNaData2(dunkley2006[1:100, 1:10],
nRows = nr2,
nNAs = na2)
processingData(x2)
(res2 <- table(fData(x2)$nNA))
stopifnot(as.numeric(names(res2)[-1]) == sort(na2))
stopifnot(res2[-1] == nr2[order(na2)])
Example 5
nr3 <- c(5, 12, 11, 8)
na3 <- c(3, 8, 1, 3)
x3 <- makeNaData2(dunkley2006[1:100, 1:101],
nRows = nr3,
nNAs = na3)
processingData(x3)
(res3 <- table(fData(x3)$nNA))

MIAPE-class The "MIAPE" Class for Storing Proteomics Experiment Information

Description

The Minimum Information About a Proteomics Experiment. The current implementation is based
on the MIAPE-MS 2.4 document.

50

MIAPE-class

Slots

title: Object of class character containing a single-sentence experiment title.
abstract: Object of class character containing an abstract describing the experiment.
url: Object of class character containing a URL for the experiment.

pubMedIds: Object of class character listing strings of PubMed identifiers of papers relevant to
the dataset.

samples: Object of class 1ist containing information about the samples.

preprocessing: Object of class 1ist containing information about the pre-processing steps used
on the raw data from this experiment.

other: Object of class 1ist containing other information for which none of the above slots applies.

dateStamp: Object of class character, giving the date on which the work described was initiated;
given in the standard ’YYYY-MM-DD’ format (with hyphens).

name: Object of class character containing the name of the (stable) primary contact person for
this data set; this could be the experimenter, lab head, line manager, ...

lab: Object of class character containing the laboratory where the experiment was conducted.
contact: Object of class character containing contact information for lab and/or experimenter.

email: Object of class character containing tmail contact information for the primary contact
person (see name above).

instrumentModel: Object of class character indicating the model of the mass spectrometer used
to generate the data.

instrumentManufacturer: Object of class character indicating the manufacturing company of
the mass spectrometer.

instrumentCustomisations: Object of class character describing any significant (i.e. affecting
behaviour) deviations from the manufacturer’s specification for the mass spectrometer.

softwareName: Object of class character with the instrument management and data analysis
package(s) name(s).

softwareVersion: Object of class character with the instrument management and data analysis
package(s) version(s).

switchingCriteria: Object of class character describing the list of conditions that cause the
switch from survey or zoom mode (MS1) to or tandem mode (MSn where n > 1); e.g. "parent
ion” mass lists, neutral loss criteria and so on [applied for tandem MS only].

isolationWidth: Object of class numeric describing, for tandem instruments, the total width (i.e.
not half for plus-or-minus) of the gate applied around a selected precursor ion m/z, provided
for all levels or by MS level.

parameterFile: Object of class character giving the location and name under which the mass
spectrometer’s parameter settings file for the run is stored, if available. Ideally this should be
a URI+filename, or most preferably an LSID, where feasible.

ionSource: Object of class character describing the ion source (ESI, MALDI, ...).

ionSourceDetails: Object of class character describing the relevant details about the ion source.
See MIAPE-MI docuement for more details.

analyser: Object of class character describing the analyzer type (Quadrupole, time-of-flight,
ion trap, ...).

analyserDetails: Object of class character describing the relevant details about the analyzer.
See MIAPE-MI document for more details.

MIAPE-class 51

collisionGas: Object of class character describing the composition of the gas used to fragment
ions in the collision cell.

collisionPressure: Object of class numeric providing the pressure (in bars) of the collision gas.

collisionEnergy: Object of class character specifying for the process of imparting a particular
impetus to ions with a given m/z value, as they travel into the collision cell for fragmentation.
This could be a global figure (e.g. for tandem TOF’s), or a complex function; for example a
gradient (stepped or continuous) of m/z values (for quads) or activation frequencies (for traps)
with associated collision energies (given in eV). Note that collision energies are also provided
for individual "Spectrum2” instances, and is the preferred way of accessing this data.

detectorType: Object of class character describing the type of detector used in the machine
(microchannel plate, channeltron, ...).

detectorSensitivity: Object of class character giving and appropriate measure of the sensi-
tivity of the described detector (e.g. applied voltage).

Methods
The following methods as in "MIAME":

abstract(MIAPE): An accessor function for abstract.
expinfo(MIAPE): An accessor function for name, lab, contact, title, and url.

notes(MIAPE), notes(MIAPE) <- value: Accessor functions for other. notes(MIAME) <- character
appends character to notes; use notes(MIAPE) <- list to replace the notes entirely.

otherInfo(MIAPE): An accessor function for other.

preproc(MIAPE): An accessor function for preprocessing.

pubMedIds(MIAPE), pubMedIds(MIAME) <- value: Accessor function for pubMedIds.
expemail (MIAPE): An accessor function for email slot.

exptitle(MIAPE): An accessor function for title slot.

analyzer (MIAPE): An accessor function for analyser slot. analyser (MIAPE) is also available.

analyzerDetails(MIAPE): An accessor function for analyserDetails slot. analyserDetails
is also available.

detectorType(MIAPE): An accessor function for detectorType slot.

ionSource (MIAPE): An accessor function for ionSource slot.

ionSourceDetails(MIAPE): An accessor function for ionSourceDetails slot.

instrumentModel (MIAPE): An accessor function for instrumentModel slot.

instrumentManufacturer (MIAPE): An accessor function for instrumentManufacturer slot.

instrumentCustomisations(MIAPE): An accessor function for instrumentCustomisations slot.

as(,"MIAME"): Coerce the object from MIAPE to MIAME class. Used when converting an MSnSet
into an ExpressionSet.

MIAPE-specific methods, including MIAPE-MS meta-data:

show(MIAPE): Displays the experiment data.
msInfo(MIAPE): Displays "MIAPE-MS’ information.

Extends

Class "MIAxE", directly. Class "Versioned”, by class "MIAXE", distance 2.

52 missing-data

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

References

About MIAPE: http://www.psidev.info/index.php?g=node/91, and references therein, espe-
cially ’Guidelines for reporting the use of mass spectrometry in proteomics’, Nature Biotechnology
26, 860-861 (2008).

missing-data Documenting missing data visualisation

Description

There is a need for adequate handling of missing value impuation in quantitative proteomics. Before
developing a framework to handle missing data imputation optimally, we propose a set of visuali-
sation tools. This document serves as an internal notebook for current progress and ideas that will
eventually materialise in exported functionality in the MSnbase package.

Details

The explore the structure of missing values, we propose to

1. Explore missing values in the frame of the experimental design. The imageNA2 function offers
such a simple visualisation. It is currently limited to 2-group designs/comparisons. In case of time
course experiments or sub-cellular fractionation along a density gradient, we propose to split the
time/gradient into 2 groups (early/late, top/bottom) as a first approximation.

2. Explore the proportion of missing values in each group.
3. Explore the total and group-wise feature intensity distributions.

The existing plotNA function illustrates the completeness/missingness of the data.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>, Samuel Wieczorek and Thomas Burger

See Also

plotNA, imageNA2.

Examples

Other suggestions

library("pRolocdata”)

library(”"pRoloc")

data(dunkley2006)

set.seed(1)

nax <- makeNaData(dunkley2006, pNA = 0.10)

pcol <- factor(ifelse(dunkley2006%$fraction <= 5, "A", "B"))
sell <- pcol == "A"

missing values in each sample
barplot(colSums(is.na(nax)), col = pcol)

http://www.psidev.info/index.php?q=node/91

MSmap-class 53

table of missing values in proteins

par(mfrow = c(3, 1))

barplot(table(rowSums(is.na(nax))), main = "All")
barplot(table(rowSums(is.na(nax)[sel1,1)), main = "Group A")
barplot(table(rowSums(is.na(nax)[!sel1,1)), main = "Group B")

fData(nax)$nNA1 <- rowSums(is.na(nax)[, selll)
fData(nax)$nNA2 <- rowSums(is.na(nax)[, !sell])
fData(nax)$nNA <- rowSums(is.na(nax))

0 <- MSnbase:::imageNA2(nax, pcol)

plot((fData(nax)$nNA1 - fData(nax)$nNA2)[o], type = "1")
grid()

plot(sort(fData(nax)$nNA1 - fData(nax)$nNA2), type = "1")
grid()

02 <- order(fData(nax)$nNA1 - fData(nax)$nNA2)
MSnbase: : : imageNA2(nax, pcol, Rowv=02)

layout(matrix(c(rep(1, 10), rep(2, 5)), nc = 3))
MSnbase: : :imageNA2(nax, pcol, Rowv=02)
plot((fData(nax)$nNA1 - fData(nax)$nNA)[o2], type = "1", col = "red"”,
ylim = c(-9, 9), ylab = "")
lines((fData(nax)$nNA - fData(nax)$nNA2)[o02], col = "steelblue")
lines((fData(nax)$nNA1 - fData(nax)$nNA2)[o02], type = "1",
lwd = 2)

MSmap-class Class MSmap

Description

A class to store mass spectrometry data maps, i.e intensities collected along the M/Z and retention
time space during a mass spectrometry acquisition.

Objects from the Class
Objects can be created with the MSmap constructor. The constructor has the following arguments:

object An object created by mzR: : openMSfile.

scans A numeric indicating the scan indices to be extracted from object to create the MS map. If
missing, all MS1 spectra will be used.

lowMz A numeric of length 1 defining the lower bound of the M/Z range of the MS map.
highMz A numeric of length 1 defining the upper bound of the M/Z range of the MS map.
resMz The resolution along the M/Z range.

hd An optional data. frame as produced by mzR: :header (object). If missing, will be computer
within the function.

54 MSmap-class

zeroIsNA Set O intensities to NA. This can be used to clarify the 3 dimensional plot produce by
plot3D.

Slots

call: Object of class "call” - the call used to generate the instance.

map: Object of class "matrix” containing the actual MS map.

mz: Object of class "numeric” with the M/Z sampling bins.

res: Object of class "numeric” storing the the M/Z resolution used to create the map.
rt: Object of class "numeric” with the retention times of the map spectra.

ms: Object of class "numeric"” with the MS levels of the spectra.

t: Object of class "logical” indicating if the instance has been transposed.

filename: Object of class "character” specifying the filename of the original raw MS data.

Methods

coerce signature(from = "MSmap”, to = "data.frame"): convert the MSmap instance in a
data.frame. Useful for plotting with lattice or ggplot2.

fileName signature(object = "MSmap"): returns the raw data filename.

msLevel signature(object = "MSmap”): returns the MS level of the map spectra.

msMap signature(object = "MSmap"): returns the actual map matrix.

mz signature(object = "MSmap"”, ...): returns the M/Z values of the map. Additional argu-

ments are currently ignored.

rtime signature(object = "MSmap”, ...): returns retention time values of the map. Additional
arguments are currently ignored.

mzRes signature(object = "MSmap"): returns the resolution with which the sample along the
M/Z range was done.

dim signature(x = "MSmap”): returns the dimensions of the map. ncol and nrow return the
number of columns and rows respectively.

t signature(x = "MSmap"): transposes the map.
show signature(object = "MSmap"): prints a summary of the map.
plot signature(x = "MSmap”, allTicks = "logical"): produces an image of the map using

lattice::levelplot. By default, allTicks is TRUE and all M/Z and retention times ticks of
drawn. If set to FALSE, only 10 ticks in each dimension are plotted.

plot3D signature(object = "MSmap”, rgl = "logical"”): produces an three dimensional
view of the map using lattice::cloude(..., type = "h"). If rgl is TRUE, the map is
visualised on a rgl device and can be rotated with the mouse.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

MSnbaseOptions 55

Examples

Not run:
downloads the data
library("rpx")
px1 <- PXDataset("PXD000001")
(i <- grep("TMT.+mzML", pxfiles(px1), value = TRUE))
mzf <- pxget(px1, i)

reads the data
ms <- openMSfile(mzf)
hd <- header(ms)

a set of spectra of interest: MS1 spectra eluted

between 30 and 35 minutes retention time

ms1 <- which(hd$msLevel == 1)

rtsel <- hd$retentionTime[ms1] / 60 > 30 &
hd$retentionTime[ms1] / 60 < 35

the map
M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd)

plot(M, aspect = 1, allTicks = FALSE)

plot3D(M)

if (require(”rgl”) & interactive())
plot3D(M, rgl = TRUE)

With some MS2 spectra

i <- ms1[which(rtsel)][1]

j <= ms1[which(rtsel)][2]

M2 <- MSmap(ms, i:j, 100, 1000, 1, hd)
plot3D(M2)

End(Not run)

MSnbaseOptions MSnbase options

Description

MSnbase defined a few options globally using the standard R options mechanism. The current
values of these options can be queried with MSnbaseOptions. The options are:

* verbose: defines a session-wide verbosity flag, that is used if the verbose argument in indi-
vidual functions is not set.

* PARALLEL_THRESH: defines the minimum number of spectra per file necessary before using
parallel processing.

» fastLoad: logical(1). If TRUE performs faster data loading for all methods of OnDiskM-
SnExp that load data from the original files (such as spectrapply()). Users experiencing
data I/O errors (observed mostly on macOS systems) should set this option to FALSE.

56 MSnExp-class
Usage

MSnbaseOptions()

isMSnbaseVerbose()

setMSnbaseVerbose (opt)

setMSnbaseParallelThresh(opt = 1000)

setMSnbaseFastLoad(opt = TRUE)

isMSnbaseFastLoad()
Arguments

opt The value of the new option
Details

isMSnbaseVerbose is one wrapper for the verbosity flag, also available through options("MSnbase"”) $verbose.

There are also setters to set options individually. When run without argument, the verbosity setter
inverts the current value of the option.

Value

A list of MSnbase options and the single option values for the individual accessors.

MSnExp-class The "MSnExp’ Class for MS Data And Meta-Data

Description

The MSnExp class encapsulates data and meta-data for mass spectrometry experiments, as described
in the slots section. Several data files (currently in mzXML) can be loaded together with the function
readMSData.

This class extends the virtual "pSet” class.

In version 1.19.12, the polarity slot had been added to the "Spectrum” class (previously in
"Spectrum1”). Hence, "MSnExp" objects created prior to this change will not be valid anymore,
since all MS2 spectra will be missing the polarity slot. Object can be appropriately updated using
the updateObject method.

The feature variables in the feature data slot will depend on the file. See also the documentation in
the mzR package that parses the raw data files and produces these data.

Objects from the Class

Objects can be created by calls of the form new(”"MSnExp”, ...). However, it is preferred to use
the readMSData function that will read raw mass spectrometry data to generate a valid "MSnExp"
instance.

MSnExp-class 57

Slots

assayData: Object of class "environment” containing the MS spectra (see "Spectrum1” and
"Spectrum2"). Slot is inherited from "pSet".

phenoData: Object of class "NAnnotatedDataFrame” containing experimenter-supplied variables
describing sample (i.e the individual tags for an labelled MS experiment) See phenoData for
more details. Slot is inherited from "pSet”.

featureData: Object of class "AnnotatedDataFrame"” containing variables describing features
(spectra in our case), e.g. identificaiton data, peptide sequence, identification score,... (inher-
ited from "eSet"). See featureData for more details. Slot is inherited from "pSet".

experimentData: Object of class "MIAPE", containing details of experimental methods. See experimentData
for more details. Slot is inherited from "pSet”.

protocolData: Objectof class "AnnotatedDataFrame” containing equipment-generated variables
(inherited from "eSet"). See protocolData for more details. Slot is inherited from "pSet”.

processingData: Object of class "MSnProcess” that records all processing. Slot is inherited from
n pset n .

.__classVersion__: Object of class "Versions" describing the versions of R, the Biobase pack-

age, "pSet” and MSnExp of the current instance. Slot is inherited from "pSet”. Intended for
developer use and debugging (inherited from "eSet").
Extends
Class "pSet”, directly. Class "VersionedBiobase”, by class "pSet", distance 2. Class "Versioned"”,
by class "pSet", distance 3.
Methods

See the "pSet” class for documentation on accessors inherited from pSet, subsetting and general
attribute accession.

bin signature(object = "MSnExp"): Bins spectra. See bin documentation for more details and
examples.
clean signature(object = "MSnExp"): Removes unused O intensity data points. See clean

documentation for more details and examples.

compareSpectra signature(objectl = "Spectrum”,object2 = "missing"”): Compares spec-
tra. See compareSpectra documentation for more details and examples.

extractPrecSpectra signature(object = "MSnExp"”, prec = "numeric"): extracts spec-
tra with precursor MZ value equal to prec and returns an object of class "MSnExp’. See
extractPrecSpectra documentation for more details and examples.

pickPeaks signature(object = "MSnExp"): Performs the peak picking to generate centroided
spectra. See pickPeaks documentation for more details and examples.

estimateNoise signature(object = "MSnExp"): Estimates the noise in all profile spectra of
object. See estimateNoise documentation for more details and examples.

plot signature(x = "MSnExp”, y = "missing"”): Plots all the spectra of the MSnExp instance.
See plot.MSnExp documentation for more details.

plot2d signature(object = "MSnExp", ...): Plots retention time against precursor MZ for
MSnExp instances. See plot2d documentation for more details.

plotDensity signature(object = "MSnExp", ...): Plots the density of parameters of interest.
instances. See plotDensity documentation for more details.

58

MSnExp-class

plotMzDelta signature(object = "MSnExp", ...): Plots a histogram of the m/z difference
betwee all of the highest peaks of all MS2 spectra of an experiment. See plotMzDelta docu-
mentation for more details.

quantify signature(object = "MSnExp"): Performs quantification for all the MS2 spectra of
the MSnExp instance. See quantify documentation for more details. Also for OnDiskMSnExp

objects.

removePeaks signature(object = "MSnExp"): Removes peaks lower that a threshold t. See
removePeaks documentation for more details and examples.

removeReporters signature(object = "MSnExp”, ...): Removes reporter ion peaks from all
MS2 spectra of an experiment. See removeReporters documentation for more details and
examples.

smooth signature(x = "MSnExp"): Smooths spectra. See smooth documentation for more

details and examples.

addldentificationData signature(object = "MSnExp", ...): Adds identification data to an
experiment. See addIdentificationData documentation for more details and examples.

removeNold signature(object = "MSnExp"”, fcol = "pepseq”, keep = NULL): Removes
non-identified features. See removeNoId documentation for more details and examples.

removeMultipleAssignment signature(object = "MSnExp”,fcol = "nprot"): Removes
protein groups (or feature belong to protein groups) with more than one member. The latter
is defined by extracting a feature variable (default is "nprot”). Also removes non-identified

features.

idSummary signature(object = "MSnExp”, ...): Prints a summary that lists the percentage
of identified features per file (called coverage).

show signature(object = "MSnExp"): Displays object content as text.

isolationWindow signature(object = "MSnExp"”, ...): Returns the isolation window offsets

for the MS2 spectra. See isolationWindow for details.

trimMz signature(object = "MSnExp"): Trims the MZ range of all the spectra of the MSnExp
instance. See trimMz documentation for more details and examples.

isCentroided(object, k = 0.025, qtl = 0.9, verbose = TRUE) A heuristic assessing if the

spectra in the object are in profile or centroided mode. The function takes the qt1th quantile
top peaks, then calculates the difference between adjacent M/Z value and returns TRUE if the
first quartile is greater than k. (See MSnbase:::.isCentroided for the code.) If verbose
(default), a table indicating mode for all MS levels is printed.

The function has been tuned to work for MS1 and MS2 spectra and data centroided using
different peak picking algorithms, but false positives can occur. See https://github.com/
lgatto/MSnbase/issues/131 for details. For whole experiments, where all MS1 and MS2
spectra are expected to be in the same, albeit possibly different modes, it is advised to assign
the majority result for MS1 and MS2 spectra, rather than results for individual spectra. See an
example below.

Filtering and subsetting functions:

filterRt signature(object = "MSnExp”, rt = "numeric”,msLevel. = "numeric"): Retains
MS spectra of level msLevel. with a retention times within rt[1] and rt[2].

filterMsLevel signature(object = "MSnExp"”, msLevel. = "numeric"): Retains MS spectra
of level msLevel..

filterMz signature(object = "MSnExp"”, mz = "numeric”,msLevel. = "numeric"). See
filterMz for details.

https://github.com/lgatto/MSnbase/issues/131
https://github.com/lgatto/MSnbase/issues/131

MSnProcess-class 59

filterFile signature(object = "MSnExp", file): Retains MS data of files matching the file
index or file name provided with parameter file.

filter AcquisitionNum

filterEmptySpectra signature(object = "MSnExp"): Remove empty spectra from object (see
isEmpty).

splitByFile signature(object = "MSnExp"”, f = "factor"”): split a MSnExp object by file into
a list of MSnExp objects given the grouping in factor f.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

References

Information about the mzXML format as well converters from vendor specific formats to mzXML:
http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML.

See Also

"pSet"” and readMSData for loading mzXML, mzData or mzML files to generate an instance of MSnExp.
chromatogram to extract chromatographic data from a MSnExp or OnDiskMSnExp object.

write for the function to write the data to mzML or mzXML file(s).

Examples

mzxmlfile <- dir(system.file("extdata"”,package="MSnbase"),
pattern="mzXML", full.names=TRUE)

msnexp <- readMSData(mzxmlfile)

msnexp

MSnProcess-class The "MSnProcess" Class

Description

MSnProcess is a container for MSnExp and MSnSet processing information. It records data files,
processing steps, thresholds, analysis methods and times that have been applied to MSnExp or
MSnSet instances.

Slots

files: Object of class "character" storing the raw data files used in experiment described by the
"MSnProcess” instance.

processing: Object of class "character” storing all the processing steps and times.
merged: Object of class "logical” indicating whether spectra have been merged.

cleaned: Object of class "logical” indicating whether spectra have been cleaned. See clean for
more details and examples.

removedPeaks: Object of class "character” describing whether peaks have been removed and
which threshold was used. See removePeaks for more details and examples.

http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML

60 MSnSet-class

smoothed: Object of class "logical” indicating whether spectra have been smoothed.

trimmed: Object of class "numeric” documenting if/how the data has been trimmed.
normalised: Object of class "logical” describing whether and how data have been normalised.
MSnbaseVersion: Object of class "character” indicating the version of MSnbase.

.__classVersion__: Object of class "Versions" indicating the version of the MSnProcess in-
stance. Intended for developer use and debugging.

Extends

Class "Versioned”, directly.

Methods

fileNames signature(object = "MSnProcess”): Returns the file names used in experiment
described by the "MSnProcess" instance.

show signature(object = "MSnProcess"”): Displays object content as text.

combine signature(x = "MSnProcess”, y = "MSnProcess"): Combines multiple MSnProcess
instances.

Note

This class is likely to be updated using an AnnotatedDataFrame.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>

See Also

See the "MSnExp" and "MSnSet” classes that actually use MSnProcess as a slot.

Examples

showClass("MSnProcess”)

MSnSet-class The "MSnSet" Class for MS Proteomics Expression Data and Meta-
Data

Description

The MSnSet holds quantified expression data for MS proteomics data and the experimental meta-
data. The MSnSet class is derived from the "eSet” class and mimics the "ExpressionSet” class
classically used for microarray data.

MSnSet-class 61

Objects from the Class

The constructor MSnSet (exprs, fData, pData) can be used to create MSnSet instances. Argu-
ment exprsis amatrix and fData and pData must be of clas data. frame or "AnnotatedDataFrame”
and all must meet the dimensions and name validity constrains.

Objects can also be created by calls of the form new(”"MSnSet"”, exprs, ...). See also
"ExpressionSet” for helpful information. Expression data produced from other softwares can thus
make use of this standardized data container to benefit R and Bioconductor packages. Importer
functions will be developed to stream-line the generation of "MSnSet"” instances from third-party
software.

A coercion method is also available to transform an IBSpectra object (names x) from the isobar
package into an MSnSet: as(x, "MSnSet").

In the frame of the MSnbase package, MSnSet instances can be generated from "MSnExp" experi-
ments using the quantify method).

Slots

qual: Object of class "data. frame” that records peaks data for each of the reporter ions to be used
as quality metrics.

processingData: Object of class "MSnProcess” that records all processing.

assayData: Object of class "assayData” containing a matrix with equal with column number
equal to nrow(phenoData). assayData must contain a matrix exprs with rows represening
features (e.g., reporters ions) and columns representing samples. See the "AssayData” class,
exprs and assayData accessor for more details. This slot in indirectly inherited from "eSet".

phenoData: Object of class "AnnotatedDataFrame” containing experimenter-supplied variables
describing sample (i.e the individual tags for an labelled MS experiment) (indireclty inherited
from "eSet"). See phenoData and the "eSet" class for more details.

featureData: Object of class "AnnotatedDataFrame” containing variables describing features
(spectra in our case), e.g. identificaiton data, peptide sequence, identification score,... (inher-
ited indirectly from "eSet"). See featureData and the "eSet" class for more details.

experimentData: Object of class "MIAPE", containing details of experimental methods (inherited
from "eSet"). See experimentData and the "eSet" class for more details.

annotation: not used here.

protocolData: Objectof class "AnnotatedDataFrame” containing equipment-generated variables
(inherited indirectly from "eSet"). See protocolData and the "eSet" class for more details.

.__classVersion__: Object of class "Versions” describing the versions of R, the Biobase pack-
age, "eSet"”, "pSet” and MSnSet of the current instance. Intended for developer use and
debugging (inherited indirectly from "eSet").

Extends

Class "eSet", directly. Class "VersionedBiobase"”, by class "eSet", distance 2. Class "Versioned”,
by class "eSet", distance 3.
Methods

MSnSet specific methods or over-riding it’s super-class are described below. See also more "eSet”
for inherited methods.

62

MSnSet-class

acquisitionNum acquisitionNum(signature(object = "MSnSet"”)): Returns the a numeric
vector with acquisition number of each spectrum. The vector names are the corresponding
spectrum names. The information is extracted from the object’s featureData slot.

fromFile fromFile(signature(object = "MSnSet")): get the index of the file (in fileNames(object))
from which the raw spectra from which the corresponding feature were originally read. The
relevant information is extracted from the object’s featureData slot.

Returns a numeric vector with names corresponding to the spectrum names.

dim signature(x = "MSnSet"): Returns the dimensions of object’s assay data, i.e the number of
samples and the number of features.

fileNames signature(object = "MSnSet"): Access file names in the processingData slot.

msInfo signature(object = "MSnSet"”): Prints the MIAPE-MS meta-data stored in the experimentData
slot.

processingData signature(object = "MSnSet"): Access the processingData slot.
show signature(object = "MSnSet"): Displays object content as text.
qual signature(object = "MSnSet"): Access the reporter ion peaks description.

purityCorrect signature(object = "MSnSet”, impurities = "matrix"): performs reporter
ions purity correction. See purityCorrect documentation for more details.

normalise signature(object = "MSnSet"): Performs MSnSet normalisation. See normalise
for more details.

t signature(x = "MSnSet"): Returns a transposed MSnSet object where features are now aligned
along columns and samples along rows and the phenoData and featureData slots have been
swapped. The protocolData slot is always dropped.

as(,"'ExpressionSet'') signature(x = "MSnSet"): Coerce object from MSnSet to ExpressionSet-class.
The experimentData slot is converted to a MIAME instance. It is also possible to coerce an
ExpressionSet to and MSnSet, in which case the experimentData slot is newly initialised.

as(,''data.frame') signature(x = "MSnSet"): Coerce object from MSnSet to data. frame. The
MSnSet is transposed and the PhenoData slot is appended. See also ms2df below.

write.exprs signature(x = "MSnSet")Writes expression values to a tab-separated file (default is
tmp. txt). The fDataCols parameter can be used to specify which featureData columns (as
column names, column number or logical) to append on the right of the expression matrix.
The following arguments are the same as write. table.

combine signature(x = "MSnSet", y = "MSnSet", ...) Combines 2 or more MSnSet instances ac-
cording to their feature names. Note that the qual slot and the processing information are
silently dropped.

topN signature(object = "MSnSet", groupBy, n =3, fun, ..., verbose = isMSnbase Verbose()) Selects
the n most intense features (typically peptides or spectra) out of all available for each set
defined by groupBy (typically proteins) and creates a new instance of class MSnSet. If less
than n features are available, all are selected. The ncol (object) features are summerised
using fun (default is sum) prior to be ordered in decreasing order. Additional parameters can
be passed to fun through ..., for instance to control the behaviour of topN in case of NA
values. (Works also with matrix instances.)

See also the nQuants function to retrieve the actual number of retained peptides out of n.

A complete use case using topN and nQuants is detailed in the synapter package vignette.
filterNA signature(object = "MSnSet", pNA = "numeric", pattern = "character", droplevels = "log-

ical") This method subsets object by removing features that have (strictly) more than pNA

percent of NA values. Default pNA is 0, which removes any feature that exhibits missing data.
The method can also be used with a character pattern composed of @ or 1 characters only. A @

MSnSet-class 63

represent a column/sample that is allowed a missing values, while columns/samples with and
1 must not have NAs.

This method also accepts matrix instances. droplevels defines whether unused levels in the
feature meta-data ought to be lost. Default is TRUE. See the droplevels method below.

See also the is.na.MSnSet and plotNA methods for missing data exploration.

filterZero signature(object = "MSnSet", pNA = "numeric", pattern = "character", droplevels =
"logical") As filterNA, but for zeros.

log signature(object = "MSnSet", base = "numeric") Log transforms exprs(object) using base: : log.
base (defaults is e="exp(1) ') must be a positive or complex number, the base with respect to
which logarithms are computed.

droplevels signature(x = "MSnSet", ...)Drops the unused factor levels in the featureData slot.
See droplevels for details.

exprsToRatios signature(object = "MSnSet”, log = "logical”)calculates all possible
ratios between object’s columns/samples. See exprsToRatios for more details.

impute signature(object = "MSnSet"”, ...) Performs data imputation on the MSnSet object.
See impute for more details.

trimws signature(object = "MSnSet", ...)Trim leading and/or trailing white spaces in the feature
data slot. Also available for data.frame objects. See ?base: : trimws for details.

Additional accessors for the experimental metadata (experimentData slot) are defined. See "MIAPE"
for details.

Plotting

meanSdPlot signature(object = "MSnSet") Plots row standard deviations versus row means.
See meanSdPlot (vsn package) for more details.

image signature(x = "MSnSet"”, facetBy = "character”,sOrderBy = "character”, legend = "character”,
"numeric”)Produces an heatmap of expression values in the x object. Simple horizontal
facetting is enabled by passing a single character as facetBy. Arbitrary facetting can be per-
formed manually by saving the return value of the method (see example below). Re-ordering
of the samples is possible by providing the name of a phenotypic variable to sOrderBy. The
title of the legend can be set with legend and the colours with the low and high arguments.
If any negative value is detected in the data, the values are considered as log fold-changes and
a divergent colour scale is used. Otherwise, a gradient from low to high is used. To scale the
quantitative data in x prior to plotting, please see the scale method.
When there are more than nmax (default is 50) features/rows, these are not printed. This
behaviour can be controlled by setting fnames to TRUE (always print) or FALSE (never print).
See examples below.
The code is based on Vlad Petyuk’s vp.misc: :image_msnset. The previous version of this
method is still available through the image?2 function.

plotNA signature(object = "MSnSet”, pNA = "numeric") Plots missing data for an MSnSet
instance. pNA is a numeric of length 1 that specifies the percentage of accepted missing data
values per features. This value will be highlighted with a point on the figure, illustrating
the overall percentage of NA values in the full data set and the number of proteins retained.
Default is 1/2. See also plotNA.

MAplot signature(object = "MSnSet"”, log.it = "logical”, base = "numeric”, ...)
Produces MA plots (Ratio as a function of average intensity) for the samples in object. If
ncol(object) == 2, then one MA plot is produced using the ma.plot function from the
affy package. If object has more than 2 columns, then mva.pairs. log.it specifies is the
data should be log-transformed (default is TRUE) using base. Further ... arguments will be
passed to the respective functions.

64 MSnSet-class

addldentificationData signature(object = "MSnSet"”, ...): Adds identification data to a
MSnSet instance. See addIdentificationData documentation for more details and exam-
ples.

removeNold signature(object = "MSnSet", fcol = "pepseq"”, keep = NULL): Removes
non-identified features. See removeNoId documentation for more details and examples.

removeMultipleAssignment signature(object = "MSnSet",fcol = "nprot"”): Removes
protein groups (or feature belong to protein groups) with more than one member. The latter
is defined by extracting a feature variable (default is "nprot"”). Also removes non-identified
features/

idSummary signature(object = "MSnSet”, ...): Prints a summary that lists the percentage
of identified features per file (called coverage).

Functions

updateFvarLabels signature(object, label, sep) This function updates object’s featureData vari-
able labels by appending label. By default, 1abel is the variable name and the separator sep
is ..

updateSampleNames signature(object, label, sep) This function updates object’s sample names
by appending label. By default, 1abel is the variable name and the separator sep is ..

updateFeatureNames signature(object, label, sep) This function updates object’s feature names
by appending label. By default, 1abel is the variable name and the separator sep is ..

ms2df signature(x, fcols)Coerces the MSnSet instance to a data. frame. The direction of the data
is retained and the feature variable labels that match fcol are appended to the expression
values. See also as(x, "data.frame") above.

Author(s)

Laurent Gatto <Ig390@cam.ac.uk>

See Also

"eSet”, "ExpressionSet"” and quantify. MSnSet quantitation values and annotation can be ex-
ported to a file with write.exprs. See readMSnSet to create and MSnSet using data available in a
spreadsheet or data. frame.

Examples

data(msnset)
msnset <- msnset[10:15]

exprs(msnset)[1, c(1, 4)] <- NA
exprs(msnset)[2, c(1, 2)] <- NA

is.na(msnset)

featureNames(filterNA(msnset, pNA = 1/4))
featureNames(filterNA(msnset, pattern = "0110"))

M <- matrix(rnorm(12), 4)

pd <- data.frame(otherpdata = letters[1:3])
fd <- data.frame(otherfdata = letters[1:4])
x@ <- MSnSet(M, fd, pd)

sampleNames (x@)

M <- matrix(rnorm(12), 4)

MSnSetList-class 65

colnames(M) <- LETTERS[1:3]

rownames (M) <- paste@("id"”, LETTERS[1:4])
pd <- data.frame(otherpdata = letters[1:3])
rownames(pd) <- colnames(M)

fd <- data.frame(otherfdata = letters[1:4])
rownames (fd) <- rownames(M)

X <- MSnSet(M, fd, pd)

sampleNames(x)

Visualisation

library(”"pRolocdata")

data(dunkley2006)

image (dunkley2006)

Changing colours

image(dunkley2006, high = "darkgreen”)

image (dunkley2006, high "darkgreen”, low = "yellow")
Forcing feature names

image (dunkley2006, fnames = TRUE)

Facetting

image (dunkley2006, facetBy = "replicate")

p <- image(dunkley2006)

library("ggplot2"”) ## for facet_grid

p + facet_grid(replicate ~ membrane.prep, scales = 'free', space = 'free')
p + facet_grid(markers ~ replicate)

Fold-changes

dd <- dunkley2006

exprs(dd) <- exprs(dd) - 0.25

image (dd)

image(dd, low = "green”, high = "red")

Feature names are displayed by default for smaller data
dunkley2006 <- dunkley2006[1:25,]

image (dunkley2006)

image (dunkley2006, legend = "hello")

MSnSetList-class Storing multiple related MSnSets

Description

A class for storing lists of MSnSet instances.

Details

There are two ways to store different sets of measurements pertaining an experimental unit, such as
replicated measures of different conditions that were recorded over more than one MS acquisition.
Without focusing on any proteomics technology in particular, these multiple assays can be recorded
as

* A single combined MSnSet (see the section Combining MSnSet instances in the MSnbase-
demo section). In such cases, the different experimental (phenotypical) conditions are recorded
as an AnnotatedDataFrame in the phenoData slots.

66 MSnSetList-class

Quantitative data for features that were missing in an assay are generally encode as missing
with NA values. Alternatively, only features observed in all assays could be selected. See the
commonFeatureNames functions to select only common features among two or more MSnSet
instance.

* Each set of measurements is stored in an MSnSet which are combined into one MSnSetList.
Each MSnSet elements can have identical or different samples and features. Unless compiled
directly manually by the user, one would expect at least one of these dimensions (features/rows
or samples/columns) are conserved (i.e. all feature or samples names are identical). See
split/unsplit below.

Objects from the Class

Objects can be created and manipluated with:

MSnSetList(x) The class constructor that takes a list of valid MSnSet instances as input x.

split(x, f) AnMSnSetList can be created from an MSnSet instance. x is a single MSnSet and
f is a factor or a character of length 1. In the latter case, f will be matched to the feature-
and phenodata variable names (in that order). If a match is found, the respective variable is ex-
tracted, converted to a factor if it is not one already, and used to split x along the features/rows
(f was a feature variable name) or samples/columns (f was a phenotypic variable name). If
f is passed as a factor, its length will be matched to nrow(x) or ncol(x) (in that order) to
determine if x will be split along the features (rows) or sample (columns). Hence, the length
of f must match exactly to either dimension.

unsplit(value, f) The unsplit method reverses the effect of splitting the value MSnSet along
the groups f.

as(x, "MSnSetList”) Where x is an instance of class MzTab. See the class documentation for
details.

Slots

x: Object of class 1ist containing valid MSnSet instances. Can be extracted with the msnsets()
accessor.

log: Object of class 1ist containing an object creation log, containing among other elements the
call that generated the object. Can be accessed with objlog().

.__classVersion__: The version of the instance. For development purposes only.

Methods

"[[" Extracts a single MSnSet at position.

"[" Extracts one of more MSnSets as MSnSetList.

length Returns the number of MSnSets.

names Returns the names of MSnSets, if available. The replacement method is also available.
show Display the object by printing a short summary.

lapply(x, FUN, ...) Apply function FUN to each element of the input x. If the application of
FUN returns and MSnSet, then the return value is an MSnSetList, otherwise a list.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

MzTab-class 67

See Also

The commonFeatureNames function to select common features among MSnSet instances.

Examples

library("pRolocdata”)
data(tan2009r1)
data(tan2009r2)

The MSnSetList class

an unnamed example

msnl <- MSnSetList(list(tan2009r1, tan2009r2))
a named example

msnl <- MSnSetList(list(A = tan2009r1, B = tan2009r2))
names(msnl)

msnsets(msnl)

length(msnl)

objlog(msnl)

msnl[[1]1] ## an MSnSet

msnl[1] ## an MSnSetList of length 1

Iterating over the elements
lapply(msnl, dim) ## a list
lapply(msnl, normalise) ## an MSnSetlList

Splitting and unsplitting

splitting along the columns/samples

data(dunkley2006)

head(pData(dunkley2006))

(splt <- split(dunkley2006, "replicate”))

lapply(splt, dim) ## the number of rows and columns of the split elements
unsplt <- unsplit(splt, dunkley2006$replicate)
stopifnot(compareMSnSets(dunkley2006, unsplt))

splitting along the rows/features
head(fData(dunkley2006))

(splt <- split(dunkley2006, "markers"))

unsplt <- unsplit(splt, factor(fData(dunkley2006)$markers))
simplify2array(lapply(splt, dim))
stopifnot(compareMSnSets(dunkley2006, unsplt))

MzTab-class Parse MzTab files

Description

The MzTab class stores the output of a basic parsing of amzTab file. It contain the metadata (a 1ist),
comments (a character vector), and the at least of of the following data types: proteins, peptides,
PSMs and small molecules (as data. frames).

At this stage, the metadata and data are only minimally parsed. More specific data extraction and
preparation are delegated to more specialised functions, such as the as(., to = "MSnSetList")
and readMzTabData for proteomics data.

Note that no attempts are made to verify the validitiy of the mzTab file.

68 MzTab-class

Objects from the Class

Objects can be created by calls the the constructor MzTab that takes a single mzTab file as input.

The objects can subsequently be coerced to MSnSetList instances with as(object, "MSnSetList").
The resulting MSnSetList contains possibly empty MSnSet instances for proteins, peptide and
PSMs, respectively named "Proteins”, "Peptides” and "PSMs".

The assaydata slots of the two former are populated with the protein_abundance_assay[1-n] and
peptide_abundance_assay[1-n] columns in the mzTab file. No abundance values are defined for
the latter. The respective feature names correspond to protein accessions, peptide sequences and
PSM identifiers, possibly made unique as by appending sequence numbers to duplicates.

Slots

Metadata: Object of class "1ist" storing the metadata section.

Filename: Object of class "character” storing the orginal file name.

Proteins: Object of class "data.frame” storing the protein data.

Peptides: Object of class "data.frame” storing the peptide data.

PSMs: Object of class "data.frame” storing the PSM data.

SmallMolecules: Object of class "data.frame"” storing the small molecules data.

Comments: Object of class "character” storing the comments that were present in the file.

Accessors
metadata signature(x = "MzTab"): returns the meta data 1ist.
mzTabMode signature(x = "MzTab"): returns the mode (complete or summary) of the mzTab
data. A shortcut for metadata(x)$ mzTab-mode"*.
mzTabType signature(x = "MzTab"): returns the type (quantification or identification) of the
mzTab data. A shortcut for metadata(x)$ mzTab-type"*.
fileName signature(object = "MzTab"): returns the file name of the original mzTab file.

peptides signature(object = "MzTab"): returns the peptide data. frame.
proteins signature(object = "MzTab"): returns the proteins data. frame.
psms signature(object = "MzTab"): returns the PSMs data. frame.

smallMolecules signature(object = "MzTab"): returns the small molecules data. frame.
comments signature(object = "MzTab"): returns the comments.

Author(s)
Laurent Gatto, with contributions from Richard Cotton (see https://github.com/lgatto/MSnbase/
issues/41).

References

The mzTab format is a light-weight, tab-delimited file format for proteomics data. See https://github.com/HUPO-
PSI/mzTab for details and specifications.

Griss J, Jones AR, Sachsenberg T, Walzer M, Gatto L, Hartler J, Thallinger GG, Salek RM, Stein-

beck C, Neuhauser N, Cox J, Neumann S, Fan J, Reisinger F, Xu QW, Del Toro N, Perez-Riverol

Y, Ghali F, Bandeira N, Xenarios I, Kohlbacher O, Vizcaino JA, Hermjakob H. The mzTab data

exchange format: communicating mass-spectrometry-based proteomics and metabolomics experi-

mental results to a wider audience. Mol Cell Proteomics. 2014 Oct;13(10):2765-75. doi: 10.1074/mcp.O113.036681.
Epub 2014 Jun 30. PubMed PMID: 24980485; PubMed Central PMCID: PMC4189001.

https://github.com/lgatto/MSnbase/issues/41
https://github.com/lgatto/MSnbase/issues/41

NAnnotatedDataFrame-class 69

Examples

Test files from the mzTab developement repository

fls <- c("Cytidine.mzTab", "MTBLS2.mztab",
"PRIDE_Exp_Complete_Ac_1643.xml-mztab.txt",
"PRIDE_Exp_Complete_Ac_16649.xml-mztab.txt",
"SILAC_CQI.mzTab", "SILAC_SQ.mzTab",
"iTRAQ_CQI.mzTab", "iTRAQ_SQI.mzTab",
"labelfree_CQI.mzTab"”, "labelfree_SQI.mzTab",
"lipidomics-HFD-LD-study-PL-DG-SM.mzTab",
"lipidomics-HFD-LD-study-TG.mzTab")

baseUrl <- "https://raw.githubusercontent.com/HUPO-PSI/mzTab/master/examples/"

a list of mzTab objects

mzt <- sapply(file.path(baseUrl, fls), MzTab)
stopifnot(length(mzt) == length(fls))
mzt[[4]]

dim(proteins(mzt[[411))
dim(psms(mzt[[41]))

prots4 <- proteins(mzt[[4]])
class(prots4)
prots4[1:5, 1:4]

NAnnotatedDataFrame-class
Class Containing Measured Variables and Their Meta-Data Descrip-
tion for Multiplexed Experiments.

Description

An NAnnotatedDataFrame is an "AnnotatedDataFrame”, as defined in the *Biobase’ package that
includes additional labels for multiplexing annotation.

Objects from the Class

See "AnnotatedDataFrame” for object creation with new. Multiplexing data is defined by setting
the multiplex and multilLables parameters.

Slots

multiplex: Object of class "numeric” indicating the number of multiplexed samples described.

multilabels: Object of class "character” describing the multiplexing.

varMetadata: Object of class "data.frame” with number of rows equal number of columns in
data, and at least one column, named labelDescription, containing a textual description of
each variable. Inherited from "AnnotatedDataFrame”.

data: Objectof class "data.frame” containing samples (rows) and measured variables (columns).
Inherited from "AnnotatedDataFrame”.

dimLabels: Object of class "character” of length 2 that provides labels for the rows and columns
in the show method. Inherited from "AnnotatedDataFrame”.

.__classVersion__: Object of class "Versions” describing the instance version. Intended for

developer use. Inherited from "AnnotatedDataFrame”.

70 naplot

Extends

Class "AnnotatedDataFrame”, directly. Class "Versioned”, by class "AnnotatedDataFrame", dis-
tance 2.

Methods

dim signature(object = "NAnnotatedDataFrame"): Returns the number of samples, variables
and multiplex cardinality in the object.

multiplex signature(object = "NAnnotatedDataFrame"): Returns the number of multipexed
samples described by the object.

multiLabels signature(object = "NAnnotatedDataFrame”): Returns the multiplex labels.

show signature(object = "NAnnotatedDataFrame”): Textual description of the object.

Author(s)

Laurent Gatto <Ig390@cam.ac.uk>

See Also

"AnnotatedDataFrame"”.

Examples

df <- data.frame(x=1:3,
y=LETTERS[1:3],
row.names=paste(”Sample”,1:3,sep=""))
metaData <-
data.frame(labelDescription=c(
"Numbers”,
"Factor levels"))
mplx <- c("M1","M2")
new("NAnnotatedDataFrame",
data=df,
varMetadata=metaData,
multiplex=length(mplx),
multilabels=mplx)

naplot Overview of missing value

Description

Visualise missing values as a heatmap and barplots along the samples and features.

Usage

naplot(object, verbose = isMSnbaseVerbose(), reorderRows = TRUE,
reorderColumns = TRUE, ...)

navMsS 71

Arguments
object An object of class MSnSet.
verbose If verbose (default is isMSnbaseVerbose()), print a table of missing values.
reorderRows If reorderRows (default is TRUE) rows are ordered by number of NA.

reorderColumns If reorderColumns (default is TRUE) columns are ordered by number of NA.

Additional parameters passed to image2.

Value

Used for its side effect. Invisibly returns NULL

Author(s)

Laurent Gatto

Examples

data(naset)
naplot(naset)

navMs Navigate an MSnExp object

Description

Navigate an MSnExp object by moving to the next or previous spectrum.

Usage
navMS(i, object, msLevel, nav = c("nextMS", "prevMS"), ...)
nextMS(...)
prevMS(...)
Arguments
i The name or index of the current spectrum
object The MSnExp object
msLevel The MS level of the next or previous spectrum. If missing (default), then the
level of the current spectrum is used.
nav One of "nextMS" or "prevMS", to obtain the next or previous spectrum of level
msLevel.
Additional parameters. Currently ignored.
Value

An object of class Spectruml or Spectrum2, depending on the value of msLevel or NULL, of no
spectrum is found.

72 nFeatures

Author(s)

Laurent Gatto

Examples

f <- msdata::proteomics(full.names = TRUE, pattern = "MS3")

x <- readMSData(f, centroided. = c(FALSE, TRUE, FALSE), mode = "onDisk")
(sp <- which(msLevel(x) == 3)[2]) ## 2nd MS3 spectrum

x[[sp]] ## curent MS3

MSnbase: ::nextMS(sp, x) ## next MS3

MSnbase: : :prevMS(sp, x) ## prev MS3

MSnbase:: :prevMS(sp, x, 2L) ## prev MS2

MSnbase:: :prevMS(sp, x, 1L) ## prev MS1

nFeatures How many features in a group?

Description
This function computes the number of features in the group defined by the feature variable fcol
and appends this information in the feature data of object.

Usage

nFeatures(object, fcol)

Arguments

object An instance of class MSnSet.

fcol Feature variable defining the feature grouping structure.
Value

An updated MSnSet with a new feature variable fcol.nFeatures.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)

data("hyperLOPIT2015ms3r1psm"”)

hyperLOPIT2015ms3r1psm <- nFeatures(hyperLOPIT2015ms3r1psm,
"Protein.Group.Accessions")

i <= c("Protein.Group.Accessions”, "Protein.Group.Accessions.nFeatures”)

fData(hyperLOPIT2015ms3r1psm)[1:10, i]

normalise-methods 73

normalise-methods Normalisation of MSnExp, MSnSet and Spectrum objects

Description

The normalise method (also available as normalize) performs basic normalisation on spectra
intensities of single spectra (”"Spectrum” or "Spectrum2” objects), whole experiments ("MSnExp"
objects) or quantified expression data ("MSnSet” objects).

Raw spectra and experiments are normalised using max or sum only. For MSMS spectra could be
normalised to their precursor additionally. Each peak intensity is divided by the highest intensity
in the spectrum, the sum of intensities or the intensity of the precursor. These methods aim at
facilitating relative peaks heights between different spectra.

The method parameter for "MSnSet" can be one of sum, max, quantiles, center.mean, center.median,
.median, quantiles.robust or vsn. For sum and max, each feature’s reporter intensity is divided
by the maximum or the sum respectively. These two methods are applied along the features (rows).

center.mean and center.median translate the respective sample (column) intensities according
to the column mean or median. diff.median translates all samples (columns) so that they all
match the grand median. Using quantiles or quantiles.robust applies (robust) quantile nor-
malisation, as implemented in normalize.quantiles and normalize.quantiles.robust of the
preprocessCore package. vsn uses the vsn2 function from the vsn package. Note that the latter
also glog-transforms the intensities. See respective manuals for more details and function argu-
ments.

A scale method, mimicking the base scale method exists for "MSnSet" instances. See ?base: :scale
for details.

Arguments
object An object of class "Spectrum”, "Spectrum2”, "MSnExp"” or "MSnSet".
method A character vector of length one that describes how to normalise the object. See
description for details.
Additional arguments passed to the normalisation function.
Methods

The normalise methods:

signature(object = "MSnSet”, method = "character”) Normalises the object reporter ions
intensities using method.

signature(object = "MSnExp", method = "character”) Normalises the object peak inten-
sities using method.

signature(object = "Spectrum”, method = "character”) Normalises the object peak in-
tensities using method.

signature(object = "Spectrum2”, method = "character”, precursorIntensity) Normalises
the object peak intensities using method. If method == "precursor”, precursorIntensity

allows to specify the intensity of the precursor manually.
The scale method:

signature(x = "MSnSet"”, center = "logical”, scale = "logical”) See ?base::scale.

74 normToReference

Examples

quantifying full experiment

data(msnset)

msnset.nrm <- normalise(msnset, "quantiles")
msnset.nrm

normToReference Combine peptides into proteins.

Description

This function combines peptides into their proteins by normalising the intensity values to a reference
run/sample for each protein.

Usage
normToReference(x, group, reference = .referenceFractionValues(x = x, group =
group))
Arguments
X matrix, exprs matrix of an MSnSet object.
group double or factor, grouping variable, i.e. protein accession; has to be of length
equal nrow(x).
reference double, vector of reference values, has to be of the same length as group and
nrow(x).
Details

This function is not intented to be used directly (that’s why it is not exported via NAMESPACE).
Instead the user should use combineFeatures.

The algorithm is described in Nikolovski et al., briefly it works as follows:

1. Find reference run (column) for each protein (grouped rows). We use the run (column) with
the lowest number of NA. If multiple candidates are available we use the one with the highest
intensity. This step is skipped if the user use his own reference vector.

2. For each protein (grouped rows) and each run (column):

(a) Find peptides (grouped rows) shared by the current run (column) and the reference run
(column).

(b) Sum the shared peptides (grouped rows) for the current run (column) and the reference
run (column).

(c) The ratio of the shared peptides (grouped rows) of the current run (column) and the ref-
erence run (column) is the new intensity for the current protein for the current run.

Value

a matrix with one row per protein.

Author(s)
Sebastian Gibb <mail @sebastiangibb.de>, Pavel Shliaha

npcv 75

References

Nikolovski N, Shliaha PV, Gatto L, Dupree P, Lilley KS. Label-free protein quantification for
plant Golgi protein localization and abundance. Plant Physiol. 2014 Oct;166(2):1033-43. DOI:
10.1104/pp.114.245589. PubMed PMID: 25122472.

See Also

combineFeatures

Examples

library("MSnbase")
data(msnset)

choose the reference run automatically
combineFeatures(msnset, groupBy=fData(msnset)$ProteinAccession)

use a user-given reference
combineFeatures(msnset, groupBy=fData(msnset)$ProteinAccession,
reference=rep(2, 55))

npcv Non-parametric coefficient of variation

Description
Calculates a non-parametric version of the coefficient of variation where the standard deviation is
replaced by the median absolute deviations (see mad for details) and divided by the absolute value
of the mean.

Usage
npcv(x, na.rm = TRUE)

Arguments
X A numeric.
na.rm A logical (default is TRUE indicating whether NA values should be stripped
before the computation of the median absolute deviation and mean.
Details

Note that the mad of a single value is 0 (as opposed to NA for the standard deviation, see example
below).

Value

A numeric.

Author(s)

Laurent Gatto

76 nQuants

Examples

set.seed(1)

npcv(rnorm(10))

replicate(10, npcv(rnorm(10)))
npcv(1)

mad(1)

sd(1)

nQuants Count the number of quantitfied features.

Description

This function counts the number of quantified features, i.e non NA quantitation values, for each
group of features for all the samples in an "MSnSet" object. The group of features are defined by a
feature variable names, i.e the name of a column of fData(object).

Usage

nQuants(x, groupBy)

Arguments
X An instance of class "MSnSet".
groupBy An object of class factor defining how to summerise the features. (Note that
this parameter was previously named fcol and referred to a feature variable
label. This has been updated in version 1.19.12 for consistency with other func-
tions.)
Details

This function is typically used after topN and before combineFeatures, when the summerising
function is sum, or any function that does not normalise to the number of features aggregated. In
the former case, sums of features might be the result of O (if no feature was quantified) to n (if all
topN’s n features were quantified) features, and one might want to rescale the sums based on the
number of non-NA features effectively summed.

Value

A matrix of dimensions length(levels(groupBy)) by ncol(x)

A matrix of dimensions length(levels(factor(fData(object)[, fcoll))) by ncol(object)
of integers.

Author(s)

Laurent Gatto <1g390@cam.ac.uk>, Sebastian Gibb <mail @sebastiangibb.de>

OnDiskMSnExp-class 77

Examples

data(msnset)
n<-2
msnset <- topN(msnset, groupBy = fData(msnset)$ProteinAccession, n)
m <- nQuants(msnset, groupBy = fData(msnset)$ProteinAccession)
msnset2 <- combineFeatures(msnset,
groupBy = fData(msnset)$ProteinAccession,
fun = sum)
stopifnot(dim(n) == dim(msnset2))
head(exprs(msnset2))
head(exprs(msnset2) * (n/m))

OnDiskMSnExp-class The OnDiskMSnExp Class for MS Data And Meta-Data

Description

Like the MSnExp class, the OnDiskMSnExp class encapsulates data and meta-data for mass spec-
trometry experiments, but does, in contrast to the former, not keep the spectrum data in memory,
but fetches the M/Z and intensity values on demand from the raw files. This results in some in-
stances to a reduced performance, has however the advantage of a much smaller memory footprint.

Details

The OnDiskMSnExp object stores many spectrum related information into the featureData, thus,
some calls, like rtime to retrieve the retention time of the individual scans does not require the
raw data to be read. Only M/Z and intensity values are loaded on-the-fly from the original files.
Extraction of values for individual scans is, for mzML files, very fast. Extraction of the full data
(all spectra) are performed in a per-file parallel processing strategy.

Data manipulations related to spectras’ M/Z or intensity values (e.g. removePeaks or clean) are
(for OnDiskMSnExp objects) not applied immediately, but are stored for later execution into the
spectraProcessingQueue. The manipulations are performed on-the-fly upon data retrieval. Other
manipulations, like removal of individual spectra are applied directly, since the corresponding data
is available in the object’s featureData slot.

Objects from the Class

Objects can be created by calls of the form new("OnDiskMSnExp"”, . ..). However, it is preferred to
use the readMSData function with argument backend="disk" that will read raw mass spectrometry
data to generate a valid "OnDiskMSnExp" instance.

Slots

backend: Character string specifying the used backend.

spectraProcessingQueue: list of ProcessingStep objects defining the functions to be applied
on-the-fly to the spectra data (M/Z and intensity duplets).

assayData: Object of class "environment” that is however empty, as no spectrum data is stored.
Slot is inherited from "pSet"”.

phenoData: Object of class "NAnnotatedDataFrame” containing experimenter-supplied variables
describing sample (i.e the individual tags for an labelled MS experiment) See phenoData for
more details. Slot is inherited from "pSet”.

78 OnDiskMSnExp-class

featureData: Object of class "AnnotatedDataFrame” containing variables describing features
(spectra in our case). See featureData for more details. Slot is inherited from "pSet”.

experimentData: Object of class "MIAPE", containing details of experimental methods. See experimentData

for more details. Slot is inherited from "pSet”.

protocolData: Objectof class "AnnotatedDataFrame” containing equipment-generated variables
(inherited from "eSet"). See protocolData for more details. Slot is inherited from "pSet".

processingData: Object of class "MSnProcess” that records all processing. Slot is inherited from
n pse_t n X

age, "pSet” and MSnExp of the current instance. Slot is inherited from "pSet"”. Intended for
developer use and debugging (inherited from "eSet").

.__classVersion__: Object of class "Versions” describing the versions of R, the Biobase pack-

Extends

Class "MSnExp", directly. Class "pSet”, by class "MSnExp", distance 3. Class "VersionedBiobase”,

by class "pSet", distance 4. Class "Versioned”, by class "pSet", distance 5.

Getter/setter methods

(in alphabetical order) See also methods for MSnExp or pSet objects.

[object[i]:subset the OnDiskMSnExp by spectra. i can be a numeric or logical vector specify-
ing to which spectra the data set should be reduced (with i being the index of the spectrum in
the object’s featureData).

The method returns a OnDiskMSnExp object with the data sub-set.

[[object[[i]]: extract s single spectrum from the OnDiskMSnExp object object. Argument i can
be either numeric or character specifying the index or the name of the spectrum in the object
(i.e. in the featureData). The relevant information will be extracted from the corresponding
raw data file.

The method returns a Spectruml object.
acquisitionNum acquisitionNum(signature(object="0nDiskMSnExp")): get the acquisition

number of each spectrum in each individual file. The relevant information is extracted from
the object’s featureData slot.

Returns a numeric vector with names corresponding to the spectrum names.

assayData assayData(signature(object = "OnDiskMSnExp")): Extract the full data, i.e. read

all spectra from the original files, apply all processing steps from the spectraProcessingQueue

slot and return the data. Due to the required processing time accessing the full data should be
avoided wherever possible.

Returns an environment.

centroided,centroided<- centroided(signature(object="0nDiskMSnExp"”, msLevel, =
whether individual spectra are centroided or uncentroided. The relevant information is ex-
tracted from the object’s featureData slot. Returns a logical vector with names correspond-
ing to the spectrum names. Use centroided(object) <- value to update the information,
with value being a logical vector of length equal to the number of spectra in the experiment.

isCentroided(object, k = 0.025, qtl = @.9, verbose = TRUE) A heuristic assessing if the
spectra in the object are in profile or centroided mode. The function takes the qt1th quantile
top peaks, then calculates the difference between adjacent M/Z value and returns TRUE if the
first quartile is greater than k. (See MSnbase:::.isCentroided for the code.) If verbose
(default), a table indicating mode for all MS levels is printed.

"numeric")):

OnDiskMSnExp-class 79

The function has been tuned to work for MS1 and MS2 spectra and data centroided using
different peak picking algorithms, but false positives can occur. See https://github.com/
lgatto/MSnbase/issues/131 for details. For whole experiments, where all MS1 and MS2
spectra are expected to be in the same, albeit possibly different modes, it is advised to assign
the majority result for MS1 and MS2 spectra, rather than results for individual spectra.

See also isCentroidedFromFile that accessed the mode directly from the raw data file.

smoothed,smoothed<- smoothed(signature(object="0nDiskMSnExp", msLevel. = "numeric”)):
whether individual spectra are smoothed or unsmoothed. The relevant information is extracted
from the object’s featureData slot. Returns a logical vector with names corresponding to the
spectrum names. Use smoothed(object) <- value to update the information, with value
being a logical vector of length equal to the number of spectra in the experiment.

fromFile fromFile(signature(object = "OnDiskMSnExp")): get the index of the file (in
fileNames(object)) from which the spectra were read. The relevant information is extracted
from the object’s featureData slot.
Returns a numeric vector with names corresponding to the spectrum names.

intensity intensity(signature(object="0nDiskMSnExp")): return the intensities from each
spectrum in the data set. Intensities are first read from the raw files followed by an optional
processing (depending on the processing steps defined in the spectraProcessingQueue). To
reduce the amount of required memory, this is performed on a per-file basis. The BPPARAM
argument allows to specify how and if parallel processing should be used. Information from
individual files will be processed in parallel (one process per original file).
The method returns a list of numeric intensity values. Each list element represents the
intensities from one spectrum.

ionCount ionCount(signature(object="0nDiskMSnExp",BPPARAM=bpparam())): extract the
ion count (i.e. sum of intensity values) for each spectrum in the data set. The relevant data has
to be extracted from the raw files (with eventually applying processing steps). The BPPARAM
argument can be used to define how and if parallel processing should be used. Information
from individual files will be processed in parallel (one process per original file).
Returns a numeric vector with names corresponding to the spectrum names.

length length(signature(object="0nDiskMSnExp")): Returns the number of spectra of the
current experiment.

msLevel msLevel(signature(object = "OnDiskMSnExp")): extract the MS level from the
spectra. The relevant information is extracted from the object’s featureData slot.

Returns a numeric vector with names corresponding to the spectrum names.

mz mz(signature(object="0nDiskMSnExp")): return the M/Z values from each spectrum in the
data set. M/Z values are first read from the raw files followed by an optional processing
(depending on the processing steps defined in the spectraProcessingQueue). To reduce the
amount of required memory, this is performed on a per-file basis. The BPPARAM argument
allows to specify how and if parallel processing should be used. Information from individual
files will be processed in parallel (one process per original file).
The method returns a 1ist of numeric M/Z values. Each list element represents the values
from one spectrum.

peaksCount peaksCount(signature(object="0nDiskMSnExp"”,scans="numeric"), BPPARAM=bpparam()):

extrac the peaks count from each spectrum in the object. Depending on the eventually present
ProcessingStep objects in the spectraProcessingQueue raw data will be loaded to cal-
culate the peaks count. If no steps are present, the data is extracted from the featureData.
Optional argument scans allows to specify the index of specific spectra from which the count
should be returned. The BPPARAM argument can be used to define how and if parallel pro-
cessing should be used. Information from individual files will be processed in parallel (one
process per original file).

https://github.com/lgatto/MSnbase/issues/131
https://github.com/lgatto/MSnbase/issues/131

80 OnDiskMSnExp-class

Returns a numeric vector with names corresponding to the spectrum names.

polarity polarity(signature(object="0nDiskMSnExp"”)): returns a numeric vector with the
polarity of the individual spectra in the data set. The relevant information is extracted from
the featureData.

rtime rtime(signature(object="0nDiskMSnExp")): extrac the retention time of the individual
spectra in the data set (from the featureData).

Returns a numeric vector with names corresponding to the spectrum names.

scanIndex scanIndex(signature(object="0nDiskMSnExp")): get the spectra scan indices within
the respective file. The relevant information is extracted from the object’s featureData slot.
Returns a numeric vector of indices with names corresponding to the spectrum names.

spectra spectra(signature(object="0nDiskMSnExp"), BPPARAM=bpparam()): extract spec-
trum data from the individual files. This causes the spectrum data to be read from the original
raw files. After that all processing steps defined in the spectraProcessingQueue are applied
to it. The results are then returned as a 1ist of Spectrum1 objects.
The BPPARAM argument can be used to define how and if parallel processing should be used.
Information from individual files will be processed in parallel (one process per file). Note:
extraction of selected spectra results in a considerable processing speed and should thus be
preferred over whole data extraction.
Returns a 1ist of Spectrum1 objects with names corresponding to the spectrum names.

tic tic(signature(object="0nDiskMSnExp"), initial = TRUE, BPPARAM = bpparam()):

get the total ion current (TIC) of each spectrum in the data set. If initial = TRUE, the in-
formation is extracted from the object’s featureData and represents the tic provided in the

header of the original raw data files. For initial = FALSE, the TIC is calculated
from the actual intensity values in each spectrum after applying all eventual data manipulation
methods.

BPPARAM parameter: see spectra method above.
Returns a numeric vector with names corresponding to the spectrum names.

bpi bpi(signature(object="0nDiskMSnExp"), initial = TRUE, BPPARAM = bpparam()):
get the base peak intensity (BPI), i.e. the maximum intensity from each spectrum in the data
set. If initial = TRUE, the information is extracted from the object’s featureData and rep-
resents the tic provided in the header of the original raw data files. For initial = FALSE, the
TIC is calculated from the actual intensity values in each spectrum after applying all eventual
data manipulation methods.
BPPARAM parameter: see spectra method above.
Returns a numeric vector with names corresponding to the spectrum names.

featureNames tic(signature(object="0nDiskMSnExp")): return a character of length length(object)

containing the feature names. A replacement method is also available.

spectrapply spectrapply(signature(object = "OnDiskMSnExp"), FUN = NULL,BPPARAM = bpparam(), ...):

applies the function FUN to each spectrum passing additional parameters in . . . to that function
and return its results. For FUN = NULL it returns the list of spectra (same as a call to spectra).
Parameter BPPARAM allows to specify how and if parallel processing should be enabled.

Returns a list with the result for each of spectrum.

Data manipulation methods

(in alphabetical order) See also methods for MSnExp or pSet objects. In contrast to the same-named
methods for pSet or MSnExp classes, the actual data manipulation is not performed immediately,
but only on-demand, e.g. when intensity or M/Z values are loaded.

OnDiskMSnExp-class 81

clean clean(signature(object="0nDiskMSnExp"), all=TRUE, verbose=TRUE): add an clean
processing step to the lazy processing queue of the OnDiskMSnExp object. The clean com-
mand will only be executed when spectra information (including M/Z and intensity values) is
requested from the OnDiskMSnExp object. Optional arguments to the methods are al1=TRUE
and verbose=TRUE.
The method returns an OnDiskMSnExp object.

For more details see documentation of the clean method.

normalize normalize(signature(object="0nDiskMSnExp"”), method=c("max","sum"), ...):
a