netReg Simon Dirmeier 2017-05-05

Introduction

Modelling biological associations or dependencies using linear regression models is often complicated when the analysed data-sets are high-dimensional and less observations than variables are available $(n \ll p)$. For these scenarios methods utilizing a priori knowledge, e.g. in the form of biological networks, have been proposed, arguing that this information might provide better estimates for regression coefficients. Recently several network-based regularization techniques have been proposed (C. Li and Li 2008, Kim, Pan, and Shen (2013), Cheng et al. (2014)).

netReg provides a highly-efficient implementation of these graph-penalized regression model. The models introduce a priori generated biological graph information into generalized linear models yielding sparse or smooth solutions for regression coefficients.

netReg computes coefficients using *cyclic coordinate descent* as previously introduced (Fu 1998, Friedman et al. (2007)), (Friedman, Hastie, and Tibshirani 2010). The package is an R-wrapper to an external C++ library that uses RcppArmadillo (Eddelbuettel and Sanderson 2014) for fast matrix calculations and dlib (King 2009) for gradient-free convex optimization for model selection.

Edgenet tutorial

This section explains how to fit a linear model and do parameter estimation using edgenet-regularization. The model is a truncated version from (Cheng et al. 2014) that is able to introduce prior graphs for the design and response matrices for penalization.

At first we generate some toy data randomly:

```
set.seed(23)
X <- matrix(rnorm(1000*5), 1000)
Y <- matrix(rnorm(1000*5), 1000)</pre>
```

Then we load the **netReg** library:

library(netReg)

For edgenet we need to create an affinity matrix for the co-variables first. We also can create a graph for the responses, but this is not necessary to demonstrate the method. We could create a random graph like this:

```
aff.mat <- matrix(rbeta(25, 1, 5), 5)
aff.mat <- (t(aff.mat) + aff.mat) / 2
diag(aff.mat) <- 0</pre>
```

We created the affinity matrix absolutely random, although in practice a *real* (biological) observed affinity matrix should be used, because in the end the affinity matrix decides the shrinkage of the coefficients.

Model fitting

Fitting a model using edge-based regularization with netReg is easy:

```
fit <- edgenet(X=X, Y=Y, G.X=aff.mat, lambda=1, psigx=1, family="gaussian")</pre>
   print(fit)
##
## Call: edgenet.default(X = X, Y = Y, G.X = aff.mat, lambda = 1, psigx = 1,
##
       family = "gaussian")
##
## Coefficients:
                            [,2]
                                                       [,4]
                                                                    [,5]
##
               [,1]
                                           [,3]
## [1,] 0.01497323
                     0.015657011 0.0006453391 0.04699207 -0.009302215
## [2,] -0.01076841 0.069246936 -0.0876302568 -0.00405287 -0.007441449
## [3,] -0.02396619 -0.006507272 0.0244506149 0.02685324 -0.014316626
        0.00000000 -0.039063322 -0.0301731092 -0.02050031 0.001355670
## [4,]
        0.04213578 0.021257125 0.0242694757 -0.02222326 -0.008547463
## [5,]
## Intercept:
##
                [,1]
## [1,] 0.019672657
## [2,] -0.047832210
## [3,] -0.004606925
## [4,] -0.025844237
## [5,] 0.032155794
## Parameters:
## lambda psi_gx psi_gy
##
        1
               1
                      0
## Family:
## [1] "gaussian"
```

In this case we used a single affinity matrix G.X which represents the relationship of the covariables X. If the design matrix has p variables, G.X has to be an $(p \times p)$ -dimensional symmetric matrix. We can also include a matrix for the response matrix Y with q dependent variables. In that case the affinity matrix G.Y has to be $(q \times q)$ -dimensional (and also symmetric).

The fit object contains information about coefficients, intercepts, residuals, etc. Having the coefficients estimated we are able to predict novel data-sets:

X.new <- matrix(rnorm(10*5),10)
pred <- predict(fit, X.new)</pre>

The **pred** objects contains the predicted values for the responses.

Model selection

In most cases we do not have the optimal shrinkage parameters λ , ψ_{gx} and ψ_{gy} . For these settings you can use netReg's included model selection. We use Powell's BOBYQA algorithm ((Powell 2009)) for gradient-free optimization that is included in the C++ library Dlib. Doing the model selection only requires calling cv.edgnet:

```
cv <- cv.edgenet(X=X, Y=Y, G.X=aff.mat, family="gaussian", maxit=1000)
print(cv)</pre>
```

##

```
## Call: cv.edgenet.default(X = X, Y = Y, G.X = aff.mat, maxit = 1000,
## family = "gaussian")
##
## Parameters:
```

```
## lambda psigx psigy
## 0 0 0
## Family:
## [1] "gaussian"
```

You can use the fitted parameters for the normal edgenet function. In this scenario λ , ψ_{gx} and ψ_{gy} should be roughly 0 for three reasons:

- we had enough data and a small number of covariables (n > p), so we can find the *BLUE* estimator,
- we created X and Y independent of each other,
- our prior graph aff.mat had little weight.

Let's do a scenario where we need to shrink some coefficients, i.e. $n \ll p$. We choose a small p, such that the computation does not take too long.

```
p <- 25
X <- matrix(rnorm(10*p), 10)
Y <- matrix(rnorm(10*p), 10)
aff.mat <- matrix(rgamma(p * p, 5, 1), p)
aff.mat <- (t(aff.mat) + aff.mat)
diag(aff.mat) <- 0
cv <- cv.edgenet(X=X, Y=Y, G.X=aff.mat, family="gaussian", maxit=1000)
print(cv)
```

```
##
## Call: cv.edgenet.default(X = X, Y = Y, G.X = aff.mat, maxit = 1000,
## family = "gaussian")
##
## Parameters:
## lambda psigx psigy
## 6.882653 0.000000 0.000000
## Family:
## [1] "gaussian"
```

In the above example λ should have changed quite a bit, while ψ_{gy} should still be 0. Since we generated aff.mat randomly ψ_{gx} should be roughly (or exact) zero as well. This makes sense intuitively since we did not put any biological relationships into the affinity matrices.

References

Cheng, Wei, Xiang Zhang, Zhishan Guo, Yu Shi, and Wei Wang. 2014. "Graph-Regularized Dual Lasso for Robust EQTL Mapping." *Bioinformatics* 30 (12). Oxford Univ Press: i139–i148.

Eddelbuettel, Dirk, and Conrad Sanderson. 2014. "RcppArmadillo: Accelerating R with High-Performance C++ Linear Algebra." Computational Statistics & Data Analysis 71. Elsevier: 1054–63.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent." *Journal of Statistical Software* 33 (1). NIH Public Access: 1.

Friedman, Jerome, Trevor Hastie, Holger Höfling, Robert Tibshirani, and others. 2007. "Pathwise Coordinate Optimization." *The Annals of Applied Statistics* 1 (2). Institute of Mathematical Statistics: 302–32.

Fu, Wenjiang J. 1998. "Penalized Regressions: The Bridge Versus the Lasso." *Journal of Computational and Graphical Statistics* 7 (3). Taylor & Francis: 397–416.

Kim, Sunkyung, Wei Pan, and Xiaotong Shen. 2013. "Network-Based Penalized Regression with Application to Genomic Data." *Biometrics* 69 (3). Wiley Online Library: 582–93.

King, Davis E. 2009. "Dlib-Ml: A Machine Learning Toolkit." Journal of Machine Learning Research 10

(Jul): 1755–8.

Li, Caiyan, and Hongzhe Li. 2008. "Network-Constrained Regularization and Variable Selection for Analysis of Genomic Data." *Bioinformatics* 24 (9). Oxford Univ Press: 1175–82.

Powell, Michael JD. 2009. "The Bobyqa Algorithm for Bound Constrained Optimization Without Derivatives." Cambridge NA Report NA2009/06, University of Cambridge, Cambridge. Citeseer.