Using the ONCOSCORE package

Luca De Sano* Ca

Carlo Gambacorti Passerini[†] Rocco Piazza[†]

Daniele Ramazzotti*

Roberta Spinelli[†]

September 29, 2017

Overview. ONCOSCORE is a tool to measure the association of genes to cancer based on citation frequency in biomedical literature. The score is evaluated from PubMed literature by dynamically updatable web queries.

In this vignette, we give an overview of the package by presenting some of its main functions.

The ONCOSCORE analysis consists of two parts. One can estimate a score to asses the oncogenic potential of a set of genes, given the lecterature knowledge, at the time of the analysis, or one can study the trend of such score over time.

We next present the two analysis and we conclude with showing the capabilities of the tool to visualize the results.

Requirements. First we load the library.

library(OncoScore)

OncoScore analysis. The query that we show next retrieves from PubMed the citations, at the time of the query, for a list of genes in cancer related and in all the documents.

query = perform.query(c("ASXL1","IDH1","IDH2","SETBP1","TET2"))

Starting the queries for the selected genes.

Performing queries for cancer literature
 Number of papers found in PubMed for ASXL1 was: 309
 Number of papers found in PubMed for IDH1 was: 1450
 Number of papers found in PubMed for IDH2 was: 557
 Number of papers found in PubMed for SETBP1 was: 69
 Number of papers found in PubMed for TET2 was: 560

Performing queries for all the literature
 Number of papers found in PubMed for ASXL1 was: 350
 Number of papers found in PubMed for IDH1 was: 1581
 Number of papers found in PubMed for IDH2 was: 648
 Number of papers found in PubMed for SETBP1 was: 89
 Number of papers found in PubMed for TET2 was: 717

*Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi Milano Bicocca Milano, Italy.

[†]Dipartimento di Medicina e Chirurgia, Università degli Studi Milano Bicocca Milano, Italy.

OncoScore provides a function to merge gene names if requested by the user. This function is useful when there are aliases in the gene list.

CON	nbine.que	ry.results(quer	ry, c('IDH1',	'IDH2'),	'new_gene')
##		CitationsGene	CitationsGene	InCancer	
##	ASXL1	350		309	
##	SETBP1	89		69	
##	TET2	717		560	
##	new_gene	2229		2007	

OncoScore also provides a function to retireve the names of the genes in a given portion of a chromosome that can be exploited if we are dealing, e.g., with copy number alterations hitting regions rather than specific genes.

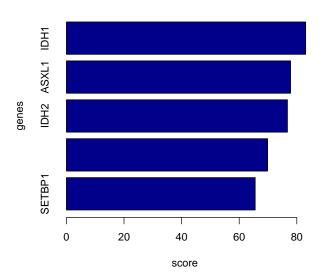
```
chr13 = get.genes.from.biomart(chromosome=13,start=54700000,end=72800000)
head(chr13)
[1] "LINC00374" "RNA5SP30" "RNU7-87P" "HNF4GP1"
                                                      "RN7SL375P" "BORA"
Furthermore, one can also automatically perform the OncoScore analysis on chromosomic regions as follows:
result = compute.oncoscore.from.region(10, 100000, 500000)
### Performing query on BioMart
### Performing web query on: RNA5SP297 RNA5SP298 RN7SL754P ZMYND11 DIP2C
### Starting the queries for the selected genes.
### Performing queries for cancer literature
    Number of papers found in PubMed for RNA5SP297 was: -1
    Number of papers found in PubMed for RNA5SP298 was: -1
    Number of papers found in PubMed for RN7SL754P was: -1
    Number of papers found in PubMed for ZMYND11 was: 27
    Number of papers found in PubMed for DIP2C was: 1
### Performing queries for all the literature
    Number of papers found in PubMed for RNA5SP297 was: -1
    Number of papers found in PubMed for RNA5SP298 was: -1
    Number of papers found in PubMed for RN7SL754P was: -1
    Number of papers found in PubMed for ZMYND11 was: 45
    Number of papers found in PubMed for DIP2C was: 3
### Processing data
### Computing frequencies scores
### Estimating oncogenes
### Results:
     RNA5SP297 -> 0
     RNA5SP298 -> 0
     RN7SL754P -> 0
     ZMYND11 -> 49.07473
     DIP2C -> 12.30234
We now compute a score for each of the genes, to estimate their oncogenic potential.
result = compute.oncoscore(query)
## ### Processing data
```

Computing frequencies scores
Estimating oncogenes
Results:
ASXL1 -> 77.8392
IDH1 -> 83.08351
IDH2 -> 76.75356
SETBP1 -> 65.556
TET2 -> 69.86954

OncoScore timeline analysis. The query that we show next retrieves from PubMed the citations, at specified time points, for a list of genes in cancer related and in all the documents.

```
query.timepoints = perform.query.timeseries(c("ASXL1","IDH1","IDH2","SETBP1","TET2"),
   c("2012/03/01", "2013/03/01", "2014/03/01", "2015/03/01", "2016/03/01"))
### Starting the queries for the selected genes.
### Quering PubMed for timepoint 2012/03/01
    ### Performing queries for cancer literature
    Number of papers found in PubMed for ASXL1 was: 83
    Number of papers found in PubMed for IDH1 was: 408
    Number of papers found in PubMed for IDH2 was: 172
    Number of papers found in PubMed for SETBP1 was: 5
    Number of papers found in PubMed for TET2 was: 169
    ### Performing queries for all the literature
    Number of papers found in PubMed for ASXL1 was: 91
   Number of papers found in PubMed for IDH1 was: 488
   Number of papers found in PubMed for IDH2 was: 234
   Number of papers found in PubMed for SETBP1 was: 10
    Number of papers found in PubMed for TET2 was: 196
### Quering PubMed for timepoint 2013/03/01
    ### Performing queries for cancer literature
    Number of papers found in PubMed for ASXL1 was: 132
    Number of papers found in PubMed for IDH1 was: 662
    Number of papers found in PubMed for IDH2 was: 267
    Number of papers found in PubMed for SETBP1 was: 11
    Number of papers found in PubMed for TET2 was: 254
    ### Performing queries for all the literature
    Number of papers found in PubMed for ASXL1 was: 149
    Number of papers found in PubMed for IDH1 was: 753
    Number of papers found in PubMed for IDH2 was: 336
    Number of papers found in PubMed for SETBP1 was: 18
    Number of papers found in PubMed for TET2 was: 302
### Quering PubMed for timepoint 2014/03/01
    ### Performing queries for cancer literature
   Number of papers found in PubMed for ASXL1 was: 185
    Number of papers found in PubMed for IDH1 was: 903
    Number of papers found in PubMed for IDH2 was: 364
    Number of papers found in PubMed for SETBP1 was: 29
    Number of papers found in PubMed for TET2 was: 342
    ### Performing queries for all the literature
    Number of papers found in PubMed for ASXL1 was: 208
    Number of papers found in PubMed for IDH1 was: 1002
    Number of papers found in PubMed for IDH2 was: 439
    Number of papers found in PubMed for SETBP1 was: 36
    Number of papers found in PubMed for TET2 was: 430
### Quering PubMed for timepoint 2015/03/01
    ### Performing queries for cancer literature
    Number of papers found in PubMed for ASXL1 was: 250
    Number of papers found in PubMed for IDH1 was: 1188
    Number of papers found in PubMed for IDH2 was: 467
    Number of papers found in PubMed for SETBP1 was: 49
    Number of papers found in PubMed for TET2 was: 452
    ### Performing queries for all the literature
    Number of papers found in PubMed for ASXL1 was: 283
    Number of papers found in PubMed for IDH1 was: 1300
    Number of papers found in PubMed for IDH2 was: 550
    Number of papers found in PubMed for SETBP1 was: 64
    Number of papers found in PubMed for TET2 was: 576
```

```
### Quering PubMed for timepoint 2016/03/01
### Performing queries for cancer literature
Number of papers found in PubMed for ASXL1 was: 309
Number of papers found in PubMed for IDH1 was: 1446
Number of papers found in PubMed for SETBP1 was: 557
Number of papers found in PubMed for TET2 was: 558
### Performing queries for all the literature
Number of papers found in PubMed for ASXL1 was: 350
Number of papers found in PubMed for IDH1 was: 1576
Number of papers found in PubMed for IDH2 was: 648
Number of papers found in PubMed for SETBP1 was: 89
Number of papers found in PubMed for TET2 was: 715
```


We now compute a score for each of the genes, to estimate their oncogenic potential at specified time points.

result.timeseries = compute.oncoscore.timeseries(query.timepoints) ## ### Computing oncoscore for timepoint 2012/03/01 ## ### Processing data ## ### Computing frequencies scores ## ### Estimating oncogenes ## ### Results: ## ASXL1 -> 77.19348 ## IDH1 -> 74.24489 ## IDH2 -> 64.1649 ## SETBP1 -> 34.9485 ## TET2 -> 74.90108 ## ### Computing oncoscore for timepoint 2013/03/01 ## ### Processing data ## ### Computing frequencies scores ## ### Estimating oncogenes ## ### Results: ## ASXL1 -> 76.31902 ## IDH1 -> 78.71551 ## IDH2 -> 69.99559 SETBP1 -> 46.4559 ## ## TET2 -> 73.89695 ## ### Computing oncoscore for timepoint 2014/03/01 ## ### Processing data ## ### Computing frequencies scores ## ### Estimating oncogenes ## ### Results: ## ASXL1 -> 77.39202 IDH1 -> 81.07946 ## IDH2 -> 73.46995 ## ## SETBP1 -> 64.97398 ## TET2 -> 70.44331 ## ### Computing oncoscore for timepoint 2015/03/01 ## ### Processing data ## ### Computing frequencies scores ## ### Estimating oncogenes ## ### Results: ## ASXL1 -> 77.49295 ## IDH1 -> 82.55032 ## IDH2 -> 75.58179 ## SETBP1 -> 63.80208 ## TET2 -> 69.91466 ## ### Computing oncoscore for timepoint 2016/03/01 ## ### Processing data

Computing frequencies scores
Estimating oncogenes
Results:
ASXL1 -> 77.8392
IDH1 -> 83.11346
IDH2 -> 76.75356
SETBP1 -> 65.556
TET2 -> 69.81125

Visualization of the results. We next plot the scores measuring the oncogenetic potential of the considered genes as a barplot.

plot.oncoscore(result, col = 'darkblue')

OncoScore

Figure 1: Oncogenetic potential of the considered genes.

We finally plot the trend of the scores over the considered times as absolute and values and as variations.

```
plot.oncoscore.timeseries(result.timeseries)
```

```
plot.oncoscore.timeseries(result.timeseries,
    incremental = TRUE,
    ylab='absolute variation')
plot.oncoscore.timeseries(result.timeseries,
    incremental = TRUE,
    relative = TRUE,
    ylab='relative variation')
```

sessionInfo()

- R version 3.4.1 (2017-06-30), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Running under: Ubuntu 16.04.3 LTS
- Matrix products: default

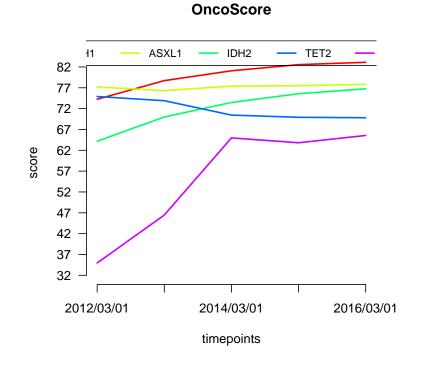


Figure 2: Absolute values of the oncogenetic potential of the considered genes over times.

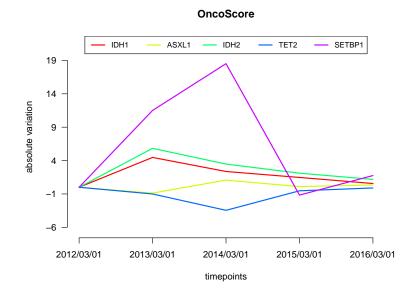


Figure 3: Variations of the oncogenetic potential of the considered genes over times.

- BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so
- LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: OncoScore 1.4.2
- Loaded via a namespace (and not attached): AnnotationDbi 1.38.2, Biobase 2.36.2, BiocGenerics 0.22.0, BiocStyle 2.4.1, DBI 0.7, IRanges 2.10.3, RCurl 1.95-4.8, RSQLite 2.0, Rcpp 0.12.13, S4Vectors 0.14.5, XML 3.98-1.9, backports 1.1.1, biomaRt 2.32.1, bit 1.1-12, bit64 0.9-7, bitops 1.0-6, blob 1.1.0, compiler 3.4.1, digest 0.6.12, evaluate 0.10.1, highr 0.6, htmltools 0.3.6, knitr 1.17, magrittr 1.5,

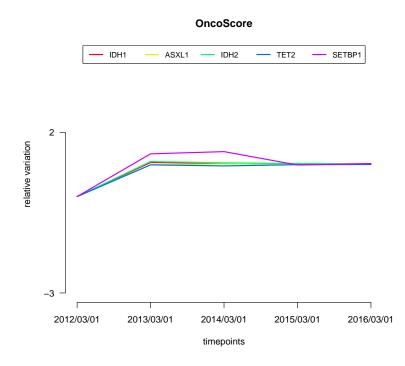


Figure 4: Variations as relative values of the oncogenetic potential of the considered genes over times.

memoise 1.1.0, parallel 3.4.1, rlang 0.1.2, rmarkdown 1.6, rprojroot 1.2, stats4 3.4.1, stringi 1.1.5, stringr 1.2.0, tibble 1.3.4, tools 3.4.1, yaml 2.1.14