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This vignette presents the technical details of the statistical procedure implemented in the package. Readers
that would like to have a global overview of the main functions and tools proposed in the package are encouraged
to read the vignette VignetteGeneGeneInteR Introduction.

1 Introduction

In this vignette we consider statistical procedures to test for the interaction between two genes in susceptibility
with a binary phenotype, typically a case/control disease status. Let Y ∈ {0, 1} be the phenotype, where Y = 0
stands for a control and Y = 1 a case, and X1 and X2 be the two genes for which the interaction is tested.

Let consider a sample of n individuals with nc controls and nd cases (nc+nd = n) and Y = [y1, . . . , yn]′ the vector
of the observed binary phenotypes. Each gene is a collection of respectively m1 and m2 SNPs. The observed
genotypes for gene X1 can be represented by a n×m1 matrix: X1 = [x1ij ]i∈1...n;j∈1...m1

where x1ij ∈ {0; 1; 2} is
the number of copies of the minor allele for SNP j carried by individual i. A similar representation is used for
gene X2 where X2 is a n×m2 matrix. Let us further introduce Xc

1 and Xc
2 the matrices of observed genotypes

among controls for gene 1 and 2 and Xd
1 and Xd

2 among cases for both genes. Thus Xc
1 is a nc ×m1 matrix,

Xd
1 a nd ×m1 matrix, Xc

2 a nc ×m2 matrix and Xd
2 a nd ×m2 matrix. A general setup of the observed values

can be presented as follows:

Y =



y1
...
ync

ync+1

...
ync+nd


X1 =


Xc

1

Xd
1

 =



x111 . . . x11m1

...
. . .

...
x1nc1 . . . x1ncm1

x1(nc+1)1 . . . x1(nc+1)m1

...
. . .

...
x1(nc+nd)1

. . . x1(nc+nd)m1


X2 =


Xc

2

Xd
2

 =



x211 . . . x21m2

...
. . .

...
x2nc1 . . . x2ncm1

x2(nc+1)1 . . . x2(nc+1)m1

...
. . .

...
x2(nc+nd)1

. . . x2(nc+nd)m1



In our package we proposed 10 methods for testing interaction at the gene level. These 10 methods are all
based on three main parameters: Y, a numeric or factor vector with exactly two distinct values, G1 and G2 two
SnpMatrix objects as proposed by the R Bioconductor package snpStats. Our implementation is illustrated by
the dataset gene.pair provided with the GeneGeneInteR package and summarized in the following command
lines:

> library("GeneGeneInteR")

> data("gene.pair")

> head(gene.pair$Y)

[1] HealthControl HealthControl HealthControl HealthControl HealthControl

Levels: HealthControl RheumatoidArthritis

> gene.pair$G1
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A SnpMatrix with 453 rows and 8 columns

Row names: Id1 ... Id453

Col names: rs1491710 ... rs2298849

> gene.pair$G2

A SnpMatrix with 453 rows and 4 columns

Row names: Id1 ... Id453

Col names: rs2057094 ... rs1005753

The 10 methods implemented in our package can be divided into two main families: 6 methods based on a
multidimensional modeling of the interaction at the gene level and 4 methods that combine interaction tests at
the SNP level into a single test at the gene level.

2 Multidimensional methods at the gene level

In the GeneGeneInteR package, 6 multidimensional methods have been implemented that are based on:

� Principal Components Analysis - PCA.test function,

� Canonical Correlation Analysis - CCA.test function,

� Kernel Canonical Correlation Analysis - KCCA.test function,

� Composite Linkage Disequilibrium - CLD.test function,

� Partial Least Square Path Modeling - PLSPM.test function,

� Gene-Based Information Gain Method - GBIGM.test function.

In the remainder of this section, technical and practical details are given regarding these 6 methods.

2.1 PCA-based

In the PCA-based method, a likelihood ratio test is performed to compare the model MInter to the model
MNo, where MInter is defined by:

logit
(
P
[
Y = 1|PC1

X1
. . . PCn1

X1
, PC1

X2
. . . PCn2

X2

])
= β0 +

n1∑
i=1

PCiX1
+

n2∑
j=1

PCjX2
+

n1∑
i=1

n2∑
i=2

PCiX1
PCjX2

and MNo by:

logit
(
P
[
Y = 1|PC1

X1
. . . PCn1

X1
, PC1

X2
. . . PCn2

X2

])
= β0 +

n1∑
i=1

PCiX1
+

n2∑
j=1

PCjX2

In models MInter and MNo, PC
i
X1

and PCjX2
are the ith principal component of X1 and the jth principal

component of X2. The number of principal components, n1 and n2, kept in the interaction test is determined
by the percentage of inertia retrieved by the PCA. Such a percentage is defined by the user and corresponds to
the threshold parameter.

In our package, two distinct Principal Component decomposition are provided by the functions PCA.test via
the argument method. With method="Std", dataset is standardized using variables’ standard deviation while
with method="GenFreq", dataset is standardized using standard deviation under Hardy-Weinberg equilibrium,
as proposed in the snpStats package.

When the percentage of inertia asked by the user is high, the number of PCs can be important and fitting
logistic models MInter and MNo is likely to fail. In that case, the number of PCs in each gene is iteratively
reduced until convergence of the glm function for fitting models MInter and MNo.
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The following lines provide an example of the PCA.test function:

> PCA.test(Y=gene.pair$Y, G1=gene.pair$G1, G2=gene.pair$G2,threshold=0.7,

+ method="GenFreq")

Gene-based interaction based on Principal Component Analysis - GenFreq

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

Deviance = 8.2157, df = 6.0, threshold = 0.7, p-value = 0.2227

alternative hypothesis: true deviance is greater than 0

sample estimates:

Deviance without interaction Deviance with interaction

615.2977 607.0821

> PCA.test(Y=gene.pair$Y, G1=gene.pair$G1, G2=gene.pair$G2,threshold=0.7,

+ method="Std")

Gene-based interaction based on Principal Component Analysis - Std

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

Deviance = 8.5074, df = 6.0, threshold = 0.7, p-value = 0.2032

alternative hypothesis: true deviance is greater than 0

sample estimates:

Deviance without interaction Deviance with interaction

615.0911 606.5837

2.2 Canonical Correlation Analysis (CCA)

The CCA test is based on a Wald-type statistic defined as follows (see [Peng et al., 2010] for details):

UCCA =
zd − zc√

V(zd) + V(zc)

where zd = 1
2 (log(1 + rd)− log(1− rd)) and zc = 1

2 (log(1 + rc)− log(1− rc)) with rd the maximum canonical
correlation coefficient between Xd

1 and Xd
2 and rc the maximum canonical correlation coefficient between Xc

1

and Xc
2 computed for controls (Y = 0). As suggested by [Peng et al., 2010], the sampled variances V(zd) and

V(zc) were evaluated by applying a bootstrapping method. The number of bootstrap sample used to estimate
V(zd) and V(zc) is determined by the n.boot argument. P-value is then obtained by noting that under the null
hypothesis UCCA ∼ N (0, 1).

CCA based gene-gene interaction is implemented in the CCA.test function and mainly depends on the cancor

function from the Stats package [R Core Team, 2016].

R> set.seed(1234)

> CCA.test(Y=gene.pair$Y, G1=gene.pair$G1, G2=gene.pair$G2,n.boot=500)

Gene-based interaction based on Canonical Correspondance Analysis

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

CCU = 0.60304, n.boot = 500, p-value = 0.5465

alternative hypothesis: true CCU is not equal to 0

sample estimates:

z0 z1

0.2940799 0.2414700
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2.3 Kernel Canonical Correlation Analysis (KCCA)

The KCCA based test provides a generalization of CCA test to detect non-linear co-association between X1

and X2 [Yuan et al., 2012, Larson and Schaid, 2013] and is based on the following Wald-type statistic:

UKCCA =
kzd − kzc√

V(kzd) + V(kzc)

where kzd = 1
2 (log(1 + krd)− log(1− krd)) and kzc = 1

2 (log(1 + krc)− log(1− krc)) with krd the maximum
kernel canonical correlation coefficient between Xd

1 and Xd
2 and krc the maximum kernel canonical correlation

coefficient between Xc
1 and Xc

2.

Similar to the CCA test, V(kzd) and V(kzc) are estimated using bootstrap techniques [Yuan et al., 2012,
Larson and Schaid, 2013] and the p-value is obtained using the standard gaussian distribution of UKCCA under
the null hypothesis. Since the performance of kernel methods strongly relates to the choice of kernel functions,
the default is the Radial Basis kernel Function (RBF) owing to its flexibility in parameter specification. How-
ever, other kernel functions, such as linear, polynomial or spline kernels, can be used. Thus, in addition to
the three arguments Y, G1 and G2, our implementation of the KCCA test proposes two optional arguments:
n.boot that determines the number of bootstrap samples and kernel that provides the kernel function to be
used. This kernel parameter is character string matching one of the kernel name provided by the kernlab
package [Karatzoglou et al., 2004] such as ”rbfdot”, ”polydot”, ”tanhdot”, ”vanilladot”, ”laplacedot”, ”besseldot”,
”anovadot”, ”splinedot”. Specific arguments, sigma, degree, scale, offsetand order, can also be passed to
the kcca.test function in order to parameterized the kernel used in the analysis.

KCCA based gene-gene interaction test is implemented in the KCCA.test function and mainly depends on the
kcca function from the kernlab package [Karatzoglou et al., 2004].

> set.seed(1234)

> KCCA.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,

+ kernel="rbfdot",sigma = 0.05,n.boot=500)

Gene-based interaction based on Kernel Canonical Correspondance

Analysis

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

KCCU = 1.4055, n.boot = 500, p-value = 0.1599

alternative hypothesis: true KCCU is not equal to 0

sample estimates:

z0 z1

3.717346 -3.759154

> set.seed(1234)

> KCCA.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,

+ kernel="polydot",degree = 1, scale = 1, offset = 1)

Gene-based interaction based on Kernel Canonical Correspondance

Analysis

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

KCCU = 1.4106, n.boot = 100, p-value = 0.1584

alternative hypothesis: true KCCU is not equal to 0

sample estimates:

z0 z1

4.161048 -4.251702
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2.4 Partial Least Square Path Modeling (PLSPM)

The PLSPM testing has been introduced by [Zhang et al., 2013] and is based on the Wald-like statistic:

UPLSPM =
βd − βc√
V(βd − βc)

where βd (resp. βc) is the path coefficient between Xd
1 and Xd

2 (resp. Xc
1 and Xc

2). As quoted by [Zhang et al., 2013],
the distribution of UPLSPM is unknown and significance can be tested with bootstrapping method.

PLSPM based gene-gene interaction test is implemented in the PLSPM.test function and mainly depends on
the plspm function from the plspm package [Sanchez et al., 2015].

> set.seed(1234)

> PLSPM.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,n.perm=1000)

Gene-based interaction based on Partial Least Squares Path Modeling

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

U = 4.0938, n.perm = 1000, p-value = 0.18

alternative hypothesis: true U is not equal to 0

sample estimates:

beta0 beta1

-0.2125869 0.2434624

2.5 Composite Linkage Disequilibrium (CLD)

The CLD method, proposed in [Rajapakse et al., 2012] is based on the normalized quadratic distance (NQD)
and is defined as

δ2 = tr.
(

(D̃ − C̃)W−1(D̃ − C̃)W−1
)

where D̃, C̃ and W are three (m1 +m2)× (m1 +m2) matrices of the covariance between the whole set of SNPs
that combines SNPs from both genes. More precisely, D̃ and C̃ are defined as follows:

D̃ =

[
W11 D12

D21 W22

]
C̃ =

[
W11 C12

C21 W22

]
where W11 (resp. W22) is the pooled estimate of the covariance matrix for X1 (resp. X2, D12(= D′21) and
C12(= C ′21) are the sample covariance matrix between the two genes estimated from

(
Xd

1 ,X
d
2

)
and (Xc

1,X
c
2)

respectively. In more details, the sample covariance matrices in cases, denoted by D, and in controls, denoted
by C, can be partitioned in 4 blocks as follows:

D = Cov
(
Xd

1 ,X
d
2

)
=

[
D11 D12

D21 D22

]
C = Cov (Xc

1,X
c
2) =

[
C11 C12

C21 C22

]
The pooled estimate of the covariance matrix, W , can thus been obtained by:

W =
ncC + ndD

nc + nd
=

[
W11 W12

W21 W22

]
Since the distribution of δ2 is not known under the null hypothesis, significance testing is performed using
permutation tests, as proposed by [Rajapakse et al., 2012]. Such a test has been implemented in our package
in the CLD.test function where the number of permutations is determined by the argument n.perm.

> set.seed(1234)

> CLD.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,n.perm=2000)
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Gene-based interaction based on Composite Linkage Disequilibrium

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

CLD = 0.49257, n.perm = 2000, p-value = 0.8865

alternative hypothesis: true CLD is not equal to 0

sample estimates:

CLD

0.4925654

2.6 Gene-Based Information Gain Method (GBIGM)

Introduced by [Li et al., 2015], the GBIGM method is based on the information gain rate ∆R1,2. ∆R1,2 is
defined as follows:

∆R1,2 =
min(H1, H2)−H1,2

min(H1, H2)

where H1, H2, H1,2 are the conditional entropies, given the Y, of X1, X2 and the pooled SNP set (X1,X2)
respectively. Assuming that H(.) is the classical entropy function, we have:

H1 = H(Y,X1)−H(X1)

H2 = H(Y,X2)−H(X2)

H1,2 = H(Y,X1,X2)−H(X1,X2)

Since the distribution of ∆R1,2 is unknown, the significance testing is performed by permutations as suggested
by [Li et al., 2015]. The GBIGM method has been implemented in the GBIGM.test function and the number of
permutations is defined by the argument n.perm.

> set.seed(1234)

> GBIGM.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,n.perm=2000)

Gene-based interaction based on Gene-based Information Gain Method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

DeltaR1,2 = 0.46441, n.perm = 2000, p-value = 0.441

alternative hypothesis: two.sided

sample estimates:

DeltaR1,2

0.4644093

3 From SNP-SNP interaction to Gene-Gene interaction testing

This section provides details of the four statistical methods that proposes a gene-based test from SNP-based
tests [Emily, 2016]. Rather than considering multiple SNPs in both gene as part of a joint model, these methods
aim at aggregating p-values obtained at the SNP level into a single p-value at a gene level.

Interaction testing at the SNP level
Let consider a pair of SNPs, (X1,j , X2,k) where X1,j is the jth SNP of gene X1 and X2,k the kth SNP of gene X2

(1 ≤ j ≤ m1 and 1 ≤ k ≤ m2). To test for interaction at the SNP level, we used the following Wald statistic:

Wjk =
β̂j,k3

̂
σ

(
β̂j,k3

)
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where β̂j,k3 is an estimate of the interaction coefficient βj,k3 of the following logistic model:

log

(
P[Y = 1|X1,j = x1, X2,k = x2]

1− P[Y = 1|X1,j = x1, X2,k = x2]

)
= βj,k0 + βj,k1 x1 + βj,k2 x2 + βj,k3 x1x2

β̂j,k3 is obtained by maximizing the likelihood function on the observed data Y, X1 and X2 while
̂

σ

(
β̂j,k3

)
is

calculating by inverting the Hessian of the likelihood. Since the solution of the maximization of the likelihood
function does not have a closed form, we compute Wjk according to the iteratively reweighted least squares
algorithm proposed in the glm function of the stats package [R Core Team, 2016] .

To combine the statistics Wjk into a single test, [Ma et al., 2013] proposed four methods that all account
for covariance matrix Σ = [σ(j,k),(j′,k′)] j=1...m1;k=1...m2

j′=1...m1;k
′=1...m2

, a (m1 × m2) × (m1 × m2) symmetric matrix where

σ(j,k),(j′,k′) = Cov(Wjk,Wj′,k′). As proposed by [Emily, 2016], the covariance between Wjk and Wj′,k′ is
estimated by:

̂σ(j,k),(j′,k′) = rj,j′rk,k′

where rj,j′ =
pjj′−pjpj′√

pj(1−pj)pj′ (1−pj′ )
is the widely used correlation measure between SNP j and SNP j′, given that

pj and pj′ are the respective allelic frequencies and pjj′ is the joint allelic frequency [Hill and Robertson, 1968].

In the remainder of this section, the four methods: minP (function minP.test, GATES (function gates.test),
tTS (function tTS.test) and tProd (function tProd.test) are detailed.

3.1 minP

The minP test is based on the minimum p-value that is often used to combine p-values of association (see
[Conneely and Boehnke, 2007]). Let Wmax = max |W11|, . . . , |Wm1,m2

| be the maximum of the absolute observed
statistics. The minP is then defined by:

minP = 1− P
[

max(|Z1|, |Z2|, . . . , |Zm1m2
|) < Wmax

]
. (1)

where Z = (Z1, Z2, . . . , Zm1m2) is a random vector that follows a multivariate normal distribution Z ∼ N (0,Σ).

The computation of Equation (1) requires the calculation of the probability distribution of a multivariate
normal random variable. For that purpose, we used the pmvnorm function from the R package mvtnorm

[Genz and Bretz, 2009].

> set.seed(1234)

> minP.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2)

Gene-based interaction based on minP method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

Wmax = 0.0099241, p-value = 0.1796

alternative hypothesis: true Wmax is greater than 0

sample estimates:

Wmax

0.009924148

3.2 GATES
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The GATES procedure, proposed by [Li et al., 2011], is an extension of the Simes procedure used to assess
the gene level association significance. Let p(1), . . . , p(m1m2) be the ascending SNP-SNP interaction m1 ×m2

p-values, GATES p-value is then defined by

pGATES = min

(
mep(1)

me(1)
,
mep(2)

me(2)
, . . . ,

mep(m1m2)

me(m1m2)

)
where me is the number of effective tests among the m1 × m2 tests and me(i) the number of effective tests
among the i most significative tests associated with the lowest order p-values p(1), . . . , p(i). The number of
effective tests ought to characterize the number of independent tests equivalent to the correlated tests that are
really performed and is often used to account for dependence in a multiple testing correction.

Although no formal definition of the number of effective tests has been formulated in the literature, several
procedures have been proposed to estimate such number. All methods are based on a transformation of the set of
eigenvalues of the SNP covariance matrix assuming that (1) if the SNPs are independent, the number of effective
tests is the number of performed, (2) if the absolute value of the correlation between any pair of SNPs is equal to
1, the number of effective tests is 1. In the GeneGeneInteR package, four main methods have been implemented
and can be chosen by the user with the argument merest: Cheverud-Nyholt method - me.est="ChevNy"

[Cheverud, 2001, Nyholt, 2004], Keff method -me.est="Keff" [Moskvina and Schmidt, 2008], Li and Ji method
- me.est="LiJi" [Li and Ji, 2005] and Galwey - me.est="Galwey" [Galwey, 2009].

> set.seed(1234)

> gates.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,me.est="ChevNy")

Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

GATES = 0.0099241, p-value = 0.2939

alternative hypothesis: less

sample estimates:

GATES

0.009924148

> set.seed(1234)

> gates.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,alpha=0.05,me.est="Keff")

Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

GATES = 0.013945, p-value = 0.1899

alternative hypothesis: less

sample estimates:

GATES

0.01394543

> set.seed(1234)

> gates.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,me.est="LiJi")

Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

GATES = 0.013945, p-value = 0.1255

alternative hypothesis: less

sample estimates:

GATES

0.01394543
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> set.seed(1234)

> gates.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,me.est="Galwey")

Gene-based interaction based on GATES method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

GATES = 0.013945, p-value = 0.1596

alternative hypothesis: less

sample estimates:

GATES

0.01394543
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3.3 tTS and tProd

tTS and tProd procedures are two truncated tail strength methods that aim at combining signals from all
single-SNP p-values less than a predefined cutoff value [Jiang et al., 2011]. Denoting by τ the cutoff value, the
two truncated p-values are defined as follows [Zaykin et al., 2002]:

tTS =
1

m1m2

m1m2∑
i=1

I(p(i) < τ)

(
1− p(i)

m1m2 + 1

i

)

tProd =

m1m2∏
i=1

p
I(pi<τ)
i

where I is the indicator function.

When p-values are correlated, the null distribution of tTS and tProd are unknown. Following the approach
proposed by [Zaykin et al., 2002], a p-value is obtained in the GeneGeneInteR package by computing an em-
pirical null distribution using Monte-Carlo (MC) simulations. For each MC iteration, an empirical value for
tTS (or tProd) is obtained by simulating a vector of Wjk with respect to a multivariate normal distribution

with a vector of 0 means and Σ̂ as covariance matrix. The empirical p-value is calculated as the proportion of
simulated statistics larger than the observed statistic on the “true” set of Wjk.

tTS and tProd methods have been implemented in the functions tTS.test and tProd.test of the GeneGeneIn-
teR package. Additional to the mandatory Y, G1 and G2 arguments, these two functions have two optional
arguments: tau and n.sim that control the cutoff value and the number of simulations used to estimate the
empirical value respectively. The following coding lines give an example of the tTS.test and tProd.test:

> set.seed(1234)

> tTS.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,tau=0.5,n.sim=10000)

Gene-based interaction based on the Truncated Tail Strength method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

tTS = -0.0099127, tau = 0.5, p-value = 0.5104

alternative hypothesis: less

sample estimates:

tTS

-0.009912706

> set.seed(1234)

> tProd.test(Y=gene.pair$Y, G1=gene.pair$G1,G2=gene.pair$G2,tau=0.05,n.sim=1000)

Gene-based interaction based on the Truncated Product method

data: gene.pair$Y and (gene.pair$G1 , gene.pair$G2)

tProd = 0.0001384, tau = 0.05, p-value = 0.265

alternative hypothesis: less

sample estimates:

tProd

0.0001383965
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