Package 'SIMLR'

October 18, 2017

Version 1.2.3

Date 2017-09-29

Title SIMLR: Single-cell Interpretation via Multi-kernel LeaRning

Maintainer Daniele Ramazzotti <daniele.ramazzotti@yahoo.com>

Depends R (>= 3.4),

Imports parallel, Matrix, stats, methods, Rcpp, pracma, RcppAnnoy, RSpectra

Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph,

Description Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical to identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization. SIMLR is capable of separating known subpopulations more accurately in single-cell data sets than do existing dimension reduction methods. Additionally, SIMLR demonstrates high sensitivity and accuracy on high-throughput peripheral blood mononuclear cells (PBMC) data sets generated by the GemCode single-cell technology from 10x Genomics.

Encoding UTF-8

LazyData TRUE

License file LICENSE

URL https://github.com/BatzoglouLabSU/SIMLR

BugReports https://github.com/BatzoglouLabSU/SIMLR

biocViews Clustering, GeneExpression, Sequencing, SingleCell

RoxygenNote 6.0.1

LinkingTo Rcpp

NeedsCompilation yes

VignetteBuilder knitr

Author Bo Wang [aut], Daniele Ramazzotti [aut, cre], Luca De Sano [aut], Junjie Zhu [ctb], Emma Pierson [ctb], Serafim Batzoglou [ctb]

R topics documented:

BuettnerFlorian	2
MMLR	2
MLR_Feature_Ranking	3
MLR_Large_Scale	4
ZeiselAmit	4
	6

Index

BuettnerFlorian test dataset for SIMLR

Description

example dataset to test SIMLR from the work by Buettner, Florian, et al.

Usage

data(BuettnerFlorian)

Format

gene expression measurements of individual cells

Value

list of 6: $in_X = input$ dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Buettner, Florian, et al. "Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells." Nature biotechnology 33.2 (2015): 155-160.

SIMLR

SIMLR

Description

perform the SIMLR clustering algorithm

Usage

```
SIMLR(X, c, no.dim = NA, k = 10, if.impute = FALSE, normalize = FALSE,
cores.ratio = 1)
```

2

Arguments

Х	an (m x n) data matrix of gene expression measurements of individual cells or and object of class SCESet $% \left({{{\left[{{{}}} {{\left[{{{\left[{{{}}} {{\left[{{{\left[{{{}}} {{\left[{{}} {{}}$
с	number of clusters to be estimated over X
no.dim	number of dimensions
k	tuning parameter
if.impute	should I traspose the input data?
normalize	should I normalize the input data?
cores.ratio	ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the cells based on SIMLR and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S = similarities computed by SIMLR, F = results from network diffusion, ydata = data referring the the results by k-means, alphaK = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE, LF = parameters of the clustering

Examples

SIMLR(X = BuettnerFlorian\$in_X, c = BuettnerFlorian\$n_clust, cores.ratio = 0)

SIMLR_Feature_Ranking SIMLR Feature Ranking

Description

perform the SIMLR feature ranking algorithm. This takes as input the original input data and the corresponding similarity matrix computed by SIMLR

Usage

```
SIMLR_Feature_Ranking(A, X)
```

Arguments

A	an (n x n) similarity matrix by SIMLR
Х	an $(m \ x \ n)$ data matrix of gene expression measurements of individual cells

Value

a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

Examples

```
SIMLR_Feature_Ranking(A = BuettnerFlorian$results$S, X = BuettnerFlorian$in_X)
```

SIMLR_Large_Scale SIMLR Large Scale

Description

perform the SIMLR clustering algorithm for large scale datasets

Usage

```
SIMLR_Large_Scale(X, c, k = 10, kk = 100, if.impute = FALSE,
normalize = FALSE)
```

Arguments

Х	an (m x n) data matrix of gene expression measurements of individual cells or and object of class SCESet $% \left({{{\left[{{{}}} {{\left[{{{\left[{{{}}} {{\left[{{{\left[{{{}}} {{\left[{{}} {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {{} } {} } } } \right)} } \right)$
с	number of clusters to be estimated over X
k	tuning parameter
kk	number of principal components to be assessed in the PCA
if.impute	should I traspose the input data?
normalize	should I normalize the input data?

Value

clusters the cells based on SIMLR Large Scale and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S0 = similarities computed by SIMLR, F = results from the large scale iterative procedure, ydata = data referring the the results by k-means, alphaK = clustering coefficients, val = distances from the k-nearest neighbour search, ind = indeces from the k-nearest neighbour search, execution.time = execution time of the present run

Examples

```
SIMLR_Large_Scale(X = ZeiselAmit$in_X, c = ZeiselAmit$n_clust, k = 5, kk = 5)
```

ZeiselAmit	test dataset for	SIMLR large scale

Description

example dataset to test SIMLR large scale, reduced version from the work by Zeisel, Amit, et al.

Usage

data(ZeiselAmit)

ZeiselAmit

Format

gene expression measurements of individual cells

Value

list of 6: $in_X = input$ dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Zeisel, Amit, et al. "Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq." Science 347.6226 (2015): 1138-1142.

Index

BuettnerFlorian, 2

SIMLR,2 SIMLR_Feature_Ranking,3 SIMLR_Large_Scale,4

ZeiselAmit,4